Устойчивость систем автоматического управления
Критерии и запас устойчивости системы. Ее анализ по логарифмическим частотным характеристикам. Статическая и динамическая точность. Показатели качества систем управления и переходного процесса. Модели случайных сигналов. Алгоритмы фильтрации помех.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 15.11.2018 |
Размер файла | 702,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Метод Солодовникова позволяет построить корректирующее звено для имеющейся системы так, чтобы обеспечит требуемые типовые показатели качества и запас устойчивости по амплитуде и фазе. Метод основан на имеющейся связи между частотной характеристикой и переходной функцией:
H(t) = (2/p) (P(w)/w) sin(wt) dw,
где P(w) - вещественная часть АФЧХ W(jw)=P(w)+jQ(w).
В.В. Солодовников доказал, что в любой системе имеются следующие зависимости между основными показателями качества переходного процесса и Р(щ).
§ у% > 18%, если есть "горб", т.е. Рмах > Р0;
§ у% < 18%, если нет горба;
§ у% = 0, если производная dP/dщ<0 и монотонно убывает.
Требование монотонного убывания часто налагает неоправданные ограничения на конструкцию, достаточно обеспечивать у% < 18%.
Диаграммы Солодовникова устанавливают связь между у%, tпп, Рмах и щс - частотой среза системы, то есть той частотой, где усиление системы равно 1 или L(щс) = 0.
Область существенных частот (щн, щв) - это та часть частотной характеристики, которая в основном определяет качество системы. Диапазон ЛАЧХ для области существенных частот от +26дб. до -16дб. Уровень +26дб. соответствует усилению K=20 и соответствующей установившейся ошибке eуст=1/(1+К) ? 0.05, т.е. нижняя частота области существенных частот определяется статической точностью eуст ? 0.05 при ступенчатом входном воздействии. Левее частоты щн ЛАЧХ не ниже +26дб, если не требуется астатизма, либо имеет наклон в зависимости от порядка астатизма. Уровень -16дб. соответствует малости влияния высокочастотных составляющих переходного процесса на уровне ? 10%. Наклон ЛАЧХ в области существенных частот должен быть -20дб./дек. На диаграмме Солодовникова по горизонтали отложена второстепенная величина Рмах/Р0, которая в настоящее время используется редко, а по вертикальным осям отложены у%, tпп и щс.
Использовать диаграммы Солодовникова (рис. 5.5) можно по-разному. Обычно применяется такая методика. Уточняют, какие показатели качества могут быть сформулированы заказчиком, и остальные параметры, необходимые для построения корректирующего устройства, определяют по диаграммам Солодовникова. По графикам можно, например, определить при заданном перерегулировании и времени переходного процесса частоту среза системы: (у%, tпп) > щс, n, ?A, ?ц. Причём последние три параметра обеспечиваются автоматически. Тогда алгоритм синтеза САУ при исходно заданных у%, tпп может быть, например, таким:
Рис. 5.5.
· По диаграммам определяем щс (выражение щс через tпп).
· Строим область существенных частот, что даёт нам основную часть желаемой ЛАЧХ. Достраиваем высокочастотную часть произвольно и низкочастотную часть, исходя из требуемого порядка астатизма.
· Синтезируем последовательное корректирующее звено, обеспечивающее такую ЛАЧХ. Использование методики Солодовникова гарантирует показатели качества замкнутой системы и запасы устойчивости по амплитуде на уровне ?A%=200 (коэффициент усиления может быть увеличен в два раза), и по фазе на уровне ?ц =35?.
Программы анализа качества процессов управления. Современные инструментальные средства анализа и синтеза систем управления представлены множеством различных специализированных программных пакетов и комплексов, которые позволяют в диалоговом режиме выполнять операции над матрицами и полиномами, вычислять временные и частотные характеристики, строить корневые годографы, анализировать чувствительность и устойчивость, проверять управляемость и наблюдаемость системы, находить ее полюса и нули, сравнивать переходные процессы в системе по интегральным критериям и находить лучший, определять параметры и характеристики стохастических сигналов на входе и на выходе системы, составлять и преобразовывать математические модели исследуемой системы.
Эти программные средства обладают развитым сервисом, что позволяет строить и сравнивать графики нескольких процессов, изображать взаимные зависимости, фазовые кривые и портреты, строить характеристики и диаграммы, изображать и преобразовывать структурные модели системы, при этом графические построения могут быть выполнены в двух- и трехмерном представлении.
Известны фирменные и университетские программные пакеты анализа и синтеза систем управления: LSАР - США (Ливерморская национальная лаборатория) ТUТSIМ - США (Станфордский университет); СLADP - Великобритания (Кембридж); КЕDDС - Германия (Рурский университет); МАТRIХ - фирмы Integrated Systems Inc.; SIMULINK в среде МАТLАВ известной фирмы Маth Works Inc.; МАRS - Украина (Институт кибернетики). Среди отечественных инструментальных программных средств известны разработки Академии авиационного и космического приборостроения, Санкт-Петербург; Московского инженерно-физического института; Московского государственного технического университета; Института проблем управления РАН, Москва.
Программные комплексы ТUТSIМ, МАТRIХ, SIMULINK позволяют исследовать модели любых динамических систем, которые испытывают любые внешние воздействия. Комплексы обеспечивают команды изменения структуры модели, ее параметров, выходных блоков и диапазонов рассчитываемых данных; команды одиночного и многократного запуска, останова и продолжения процесса моделирования с выводом графиков и числовых данных на экран, принтер или в файл; команды графического сервиса, позволяющие изображать оси, сетку, маркировку, комментарии к графикам, строить фазовые кривые или взаимозависимости и прочее. Комплексы располагают различными функциональными блоками для моделирования любых непрерывных и дискретных, линейных и нелинейных динамических систем, испытывающих детерминированные и стохастические воздействия.
6. Случайные процессы в системах
В реальных системах имеются помехи (возмущения), действующие в каналах передачи информации. Часто не имеется никакой, кроме статистической, информации об этих факторах, что заставляет считать эти параметры случайными величинами с заранее неизвестными законами распределения. Так возникает задача управления в условиях неопределенности. Здесь имеются два аспекта: управление в условиях неопределенности и задача борьбы с помехами.
Модели случайных сигналов. Случайные процессы и отображающие их сигналы будем считать функциями времени, принимающими случайные значения. В каждый момент времени, значение случайного процесса есть случайная величина x(t). Основной характеристикой случайной величины в момент времени t является функция p(x,t) - плотность вероятности в момент t. Плотность вероятности определяет функции математического ожидания и дисперсии случайных величин:
Mx(t) =x(t) p(x,t) dx, Dx(t) =(x(t)-Mx(t))2 p(x,t) dx.
Для описания статистической взаимосвязи значений x(t) в разные моменты времени вводятся корреляционная функция сигнала x(t):
Kx(t1,t2) = M[(x(t1)-Mx(t1)) (x(t2)-Mx(t2))],
и взаимная корреляционная функция сигналов x(t) и y(t):
Kxу(t1,t2) = M[(x(t1)-Mx(t1)) (y(t2)-My(t2))].
Отметим, что Kx(t,t) = Dx(t), т.е. при t1 = t2 = t это есть дисперсия в момент времени t.
Стационарным случайным процессом называется такой случайный процесс, для которого корреляционная функция зависит не от абсолютных значений t1 и t2, а только от их разности K(t1,t2) = K(t1-t2) = K(t). Дисперсия и математическое ожидание для стационарного случайного процесса являются константами. Стационарный случайный процесс для САУ не меняет своих статистических характеристик за время жизни системы.
Спектральная плотность S(щ) стационарного случайного процесса, есть преобразование Фурье от корреляционной функции K(ф). Соответственно, корреляционная функция K(ф) есть обратное преобразование Фурье спектральной плотности S(щ):
S(w) = K(t) exp(-jwt) dt, K(t) = (1/2p)S(w) exp(jwt) dw.
Спектральная плотность случайного процесса описывает разложение мощности процесса по гармоническим составляющим. Можно выразить дисперсию через интеграл от спектральной плотности. Это означает, что дисперсия есть суммарная мощность случайного процесса, распределённая по частоте:
D = K(0) = (1/2p)S(w) dw.
Фильтрация помех. Будем считать, что в САУ помехи могут быть в двух основных местах: помеха в канале управления (к управлению добавляется помеха W) и помеха в канале измерения (выходной сигнал измеряется с помехой V). Наиболее общая задача фильтрации шума - максимально возможное подавление обеих помех.
Если рассмотреть шумовой сигнал с бесконечным равномерным спектром, то ему будет соответствовать корреляционная функция в виде d-функции:
S(щ) = s2--= const; K(ф) = (s2/2р) д(ф); D = K(0) =?.
Эти три уравнения описывают “белый шум” с интенсивностью s2. Ясно, что такой сигнал не может быть физически реализован в силу бесконечной мощности. Можно, однако, реализовать сколь угодно близкий к этому случайный процесс, называемый "розовым шумом". Формально розовый шум получается при пропускании белого шума через любое реальное звено. При этом ограничивается спектр сигнала, так как никакое реальное звено не может пропускать бесконечную полосу частот. В результате, у реального розового шума может быть сколь угодно широкий, но убывающий спектр, а его корреляционная функция может очень быстро убывать, что означает малую связь значений процесса в разные моменты времени.
Задачу фильтрации помех будем решать как оптимальную, то есть искать условия наибольшего подавления помех. Помехи будем считать случайными процессами с известными корреляционными функциями (спектральными характеристиками). Алгоритмы управления и фильтрации могут быть реализованы по отдельности, и их одновременное функционирование в замкнутой системе не мешает друг другу. Другими словами, оптимальный фильтр можно рассчитывать отдельно от регулятора в том смысле, что характеристическое уравнение замкнутой системы оказывается равным произведению уравнений подсистемы регулирования и подсистемы фильтрации.
При анализе и синтезе фильтров используется аддитивная модель входного сигнала: u(t) = s(t)+q(t), где s(t) - полезная составляющая сигнала управления, q(t) - составляющая шумов и помех. Синтез оптимальных фильтров производится с максимальным использованием известной априорной информации как о сигналах, которые необходимо выделять, так и о шумах и помехах. Как правило, используется информация о природе полезного сигнала и шума, об их спектральном составе, о корреляционных и взаимных корреляционных характеристиках. Наличие определенных особенностей (различий) в характеристиках сигнала и шума позволяет реализовать фильтр вообще и оптимальный фильтр в частности. Если такие особенности отсутствуют, постановка задачи становится некорректной.
При наличии помех абсолютно точное выделение полезного сигнала методами линейной фильтрации, как правило, невозможно. Результат фильтрации
z(t) = h(t) b u(t-t) (6.1)
отличается от s(t) на величины e(t) = z(t)-s(t), которые являются абсолютными значениями погрешности воспроизведения полезного сигнала по координатам t. Качество фильтра оценивается средним значением квадрата величины e(t):
. (6.2)
Выражение (6.2) дает возможность определить функцию h(t) фильтра по критерию минимума среднего квадратического отклонения выходного сигнала от его действительной или заданной формы.
Фильтр Винера является оптимальным фильтром формирования из входного сигнала u(t) выходного сигнала z(t) при известной форме полезного сигнала s(t), который содержится во входном сигнале в сумме с шумами. В качестве критерия его оптимизации используется среднее квадратическое отклонение сигнала z(t) на выходе фильтра от заданной формы сигнала s(t). Подставим уравнение свертки (6.1) в раскрытой форме интегральной свертки в выражение (6.2) и получим отклонение e2 выходного сигнала z(t) от заданной формы выходного сигнала s(t):
. (6.3)
Минимум выражения (6.3) определяет функцию импульсного отклика h(t) оптимального фильтра. При этом для оптимального фильтра действительно выражение:
h(t) b Ku(t) = Kzu(t). (6.4)
Другими словами, свертка функции отклика оптимального фильтра с функцией автокорреляции входного сигнала должна быть равна функции взаимной корреляции выходного и входного сигналов.
Отметим, что Ku(t) = Ru(t)+Rq(t), где Ru - функция автокорреляции сигнала, Rq - функция автокорреляции шума, а Kzu(t) = Bzs(t)+Bzq(t), где Bzs - функция взаимной корреляции сигналов z(t) и s(t), Bzq - функция взаимной корреляции сигнала z(t) и помех q(t). Подставляя данные выражения в (6.4), получаем:
h(n) b [Ru(t)+Rq(t)] = Bzs(t)+Bzq(t). (6.5)
Частотная характеристика фильтра находится преобразованием Фурье левой и правой части уравнения (6.5):
H(w)[Wu(w)+Wq(w)] = Wzs(w)+Wzq(w),
H(w) = [Wzs(w)+Wzq(w)] / [Ws(w)+Wq(w)], (6.6)
где Ws(w) Rs(t) и Wq(w) Rq(t) - энергетические спектры (плотности мощности) сигнала и помех, Wzs(w) Bzs(t) - взаимный энергетический спектр входного и выходного сигналов, Wzq(w) Bzq(t) - взаимный энергетический спектр выходного сигнала и помех.
Обычно имеет место статистическая независимость полезного сигнала, а, следовательно, и сигнала z(t), от шумов, при этом Bzq = 0 и фильтр называют оптимальным по сглаживанию шумов при заданной форме выходного сигнала:
H(w) = Wzs(w) / [Ws(w)+Wq(w)], (6.7)
Фильтр (6.7) оптимален в том смысле, что максимизирует отношение мощности сигнала к мощности шума по всему интервалу сигнала, но не в каждой индивидуальной точке.
Выражения (6.6-6.7) достаточно наглядно демонстрируют физический смысл формирования передаточной функции фильтра. При воспроизведении сигнала частотная функция взаимной корреляции входного сигнала с выходным Wzs (плотность взаимной мощности) повторяет частотную функцию автокорреляции Ws (плотность мощности сигнала). Плотность мощности статистических шумов Wq распределена по частотному диапазону равномерно, в отличие от плотности мощности сигнала Ws, которая, в зависимости от формы сигнала, может занимать любые частотные интервалы спектрального диапазона. На частотах, где сосредоточена основная энергия сигнала, имеет место Ws(w)>>Wq(w) и H(w) 1 (как минимум, больше 0.5). Там, где значение Ws(w) становится меньше Wq, коэффициент передачи фильтра становится меньше 0.5, и в пределе H(w)=0 на всех частотах, где полностью отсутствуют частотные составляющие сигнала.
Таким образом, оптимальные фильтры учитывают особенности спектрального состава сигналов и способны формировать передаточные функции выделения полезных частот сигналов из любых диапазонов спектра с максимальных подавлением шумов на всех частотах спектрального диапазона, не содержащих полезных сигналов, при этом границы усиления-подавления устанавливаются автоматически по заданному уровню шумов.
устойчивость управление сигнал помеха
Литература
1. Мирошник И.В. Теория автоматического управления. Линейные системы: Учебное пособие для вузов. - СПб.: Питер, 2005. - 336 с.
2. Повзнер Л.Д. Теория систем управления: Учебное пособие для вузов. - М.: Изд. МГГУ, 2002. - 472 с.
3. Туманов М.П. Теория автоматического управления: Лекции.
4. Туманов М.П. Теория управления. Теория линейных систем автоматического управления: Учебное пособие. - МГИЭМ. М., 2005, 82 с.
5. Михайлов В.С. Теория управления. - К.: Выща школа, 1988.
6. Зайцев Г.Ф. Теория автоматического управления и регулирования. - К.: Выща школа, 1989.
Размещено на Allbest.ru
...Подобные документы
Частотные показатели качества системы автоматического управления в переходном режиме. Полный анализ устойчивости и качества управления для разомкнутой и замкнутой систем с помощью критериев Гурвица и Найквиста, программных продуктов Matlab, MatCad.
курсовая работа [702,6 K], добавлен 18.06.2011Производство инженерных расчетов по оценке качества переходных процессов. Исследование влияния динамического параметра рулевого привода на качество переходного процесса. Влияние коэффициента передачи разомкнутой системы на устойчивость системы управления.
курсовая работа [1,3 M], добавлен 20.04.2014Анализ устойчивости системы автоматического управления (САУ) по критерию Найквиста. Исследование устойчивости САУ по амплитудно-фазочастотной характеристике АФЧХ и по логарифмическим характеристикам. Инструменты управления приборной следящей системы.
курсовая работа [1020,7 K], добавлен 11.11.2009Общие принципы построения систем автоматического управления, основные показатели их качества. Передаточная функция разомкнутой и замкнутой систем. Определение устойчивости системы. Оценка точности отработки заданных входных и возмущающих воздействий.
реферат [906,1 K], добавлен 10.01.2016Исследование динамики элементов систем автоматического управления. Анализ устойчивости и режима автоколебаний нелинейной САУ температуры в сушильной камере с использованием методов фазовых траекторий, гармонической реализации, алгебраическим и частотным.
курсовая работа [1,3 M], добавлен 06.12.2012Передаточная функция разомкнутой системы. Анализ устойчивости системы автоматического управления. Амплитудно-фазовая частотная характеристика системы. Критерий устойчивости Гурвица. Анализ переходного процесса при подаче ступенчатого воздействия.
курсовая работа [1,1 M], добавлен 18.10.2012Нахождение передаточных функций элементов системы. Исследование ее устойчивости. Построение амплитудно-фазочастотных характеристик. Определение точности и качества системы по логарифмическим характеристикам и переходному процессу. Настройка регулятора.
курсовая работа [1,2 M], добавлен 02.07.2014Системы автоматического регулирования (САР), их виды и элементарные звенья. Алгебраические и графические критерии устойчивости систем. Частотные характеристики динамических звеньев и САР. Оценка качества регулирования, коррекция автоматических систем.
курсовая работа [1,5 M], добавлен 16.02.2013Передаточные функции звеньев. Оценка качества регулирования на основе корневых показателей. Исследование устойчивости системы. Построение переходного процесса и определение основных показателей качества регулирования. Параметры настройки регулятора.
курсовая работа [1,1 M], добавлен 05.03.2015Уравнения связей структурной схемы САУ. Анализ линейной непрерывной системы автоматического управления. Критерии устойчивости. Показатели качества переходных процессов при моделировании на ЭВМ. Синтез последовательного корректирующего устройства.
контрольная работа [157,2 K], добавлен 19.01.2016Анализ устойчивости системы автоматического управления с применением алгебраического и частного критериев устойчивости. Составление передаточной функции разомкнутой и замкнутой САУ. Оценка ее точности в вынужденном режиме, качество переходного процесса.
курсовая работа [5,7 M], добавлен 02.06.2013Оценка устойчивости системы автоматического регулирования по критериям устойчивости Найквиста, Михайлова, Гурвица (Рауса-Гурвица). Составление матрицы главного определителя для определения устойчивости системы. Листинг программы и анализ результатов.
лабораторная работа [844,0 K], добавлен 06.06.2016Виды типовых задающих воздействий. Показатели, характерные для апериодического переходного процесса, возникающего в системе. Типовые функции входного сигнала. Линейная система автоматического управления под воздействием гармонического возмущения.
реферат [58,3 K], добавлен 29.01.2011Функциональная схема замкнутой системы. Анализ устойчивости исходной линеаризованной системы по алгебраическому критерию. Построение среднечастотного и высокочастотного участков. Анализ качества системы в переходном режиме. Отработка входных сигналов.
дипломная работа [640,5 K], добавлен 15.02.2016Структурная схема системы автоматического управления (САУ). Ее статическая и переходная характеристика. Качество процесса управления. Определение показателей качества по расположению нулей и полюсов передаточной функции САУ в комплексной плоскости.
методичка [273,7 K], добавлен 29.04.2010Процесс приема сигналов на вход приемного устройства. Модели сигналов и помех. Вероятностные характеристики случайных процессов. Энергетические характеристики случайных процессов. Временные характеристики и особенности нестационарных случайных процессов.
дипломная работа [3,3 M], добавлен 30.03.2011Оценка установившихся режимов работы систем автоматического управления. Поведение элементов и систем при воздействиях, являющихся периодическими функциями времени. Частотная передаточная функция. Проверка систем на устойчивость по критерию Рауса.
контрольная работа [365,0 K], добавлен 14.11.2012Конструктивные параметры манипулятора. Применимость частотных показателей устойчивости и качества регулирования по логарифмическим амплитудным и фазовым частотным характеристикам к системе управления плоским движением манипулятора с вязкоупругим стержнем.
дипломная работа [1,8 M], добавлен 16.06.2017Расчет передаточной функции разомкнутой и замкнутой цепи. Построение переходного процесса системы при подаче на вход сигнала в виде единичной ступеньки. Исследование устойчивости системы по критерию Гурвица и Михайлова. Выводы о работоспособности системы.
контрольная работа [194,0 K], добавлен 19.05.2012Описание предметной области по основным характеристикам и частотным показателям качества системы автоматического управления, разработка структуры Интернет-подсистемы для исследования ее устойчивости. Изготовление эпитаксиально-планарного транзистора.
дипломная работа [2,6 M], добавлен 27.05.2013