Случайные процессы и сигналы

Корреляционные и ковариационные функции случайных процессов. Свойства функций автоковариации и автокорреляции. Эффективная ширина спектра для функций спектральной плотности случайных процессов. Эффективные шумовые ширина спектра и время ковариации.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид лекция
Язык русский
Дата добавления 15.11.2018
Размер файла 228,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

s(t) = c a(t), s(t) = a(t-Dt), s(t) = a(t)+b(t).

Для нелинейных систем выделим важный тип безынерционных операций нелинейной трансформации сигнала, результаты которой зависят только от его входных значений. К ним относятся, например, операции квадратирования и логарифмирования сигнала:

y(t) = [s(t)]2, y(t) = log[s(t)].

Система считается линейной, если ее реакция на входные сигналы аддитивна (выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия). Другими словами, отклик линейной системы на взвешенную сумму входных сигналов должен быть равен взвешенной сумме откликов на отдельные входные сигналы независимо от их количества и для любых весовых коэффициентов, в том числе комплексных.

Линейные системы могут быть неоднородными, если они осуществляют какое-либо линейное преобразование с прибавлением (вычитанием) заданной функции, т.е. операцию вида Z(t) = T[X(t)] = To[X(t)] + f(t).

Двухвходовая система описывается системным оператором Т, который связывает два входных воздействия, соответственно X(t) и Y(t), с выходной реакцией Z(t). Система считается линейной, если принципы аддитивности и однородности выполняются для обоих входов. Двухвходовая система может применяться, например, для суммирования двух случайных процессов с разными коэффициентами усиления их значений.

Z(t) = T[а(X1(t)+X2(t)), b(Y1(t)+Y2(t))] = aT[X1(t),Y1(t)] + bT[X2(t),Y2(t)].

Связь выходных статистических функций с входными. Для одновходовых систем при выполнении линейного преобразования Z(t) = T[X(t)] обычно ставится задача определения характеристик распределения Z(t) по известным характеристикам X(t).

Математическое ожидание выходного сигнала:

mz(t) = M{Z(t)} = M{T[X(t)]}.

Из теории линейных систем: линейный оператор можно выносить за знак математического ожидания. Отсюда следует:

mz(t) = T[M{X(t)}] = T[mx(t)], (3.1)

т.е. для определения функции математического ожидания выходного сигнала Z(t) достаточно выполнить преобразование тем же системным оператором функции математического ожидания входного сигнала X(t):

mz(t) = h(t) ? mx(t-t). (3.2)

Корреляционная функция выходного сигнала:

Rz(t1,t2) = M{Z(t1)Z(t2)}= M{T1[X(t1)] T2[X(t2)]},

где Т1 и Т2 - один и тот же оператор Т по переменным соответственно t1 и t2, что позволяет вынести его за знак математического ожидания, сохраняя переменные:

Rz(t1,t2) = T1T2[M{X(t1)X(t2)}] =T1T2[Rx(t1,t2)], (3.3)

т.е. при известной функции корреляции входного сигнала функция корреляции выходного сигнала находится двойным преобразованием тем же оператором по двум аргументам.

При определении функции Rz(t) следует учесть порядок преобразования. Для произведения выходных сигналов z(t) и z(t+t) линейной системы можно записать:

z(t)z(t+t) =h(a)h(b) x(t-a) x(t+t-b) da db.

Если взять математические ожидания от обеих частей этого равенства, то, с учетом соотношения в подынтегральном выражении

M{x(t-a) x(t+t-b)} = -Rx(t-a-t-t+b) = Rx(t+a-b),

получим:

Rz(t) =h(a)h(b) Rx(t+a-b) da db----Rx(t) ? h(t+a) ? h(t-b).----------------(9.3.4)

Таким образом, функция корреляции выходного сигнала равна функции корреляции входного сигнала, свернутой дважды, в прямом и обратном направлении, с импульсным откликом системы, что сохраняет четность корреляционной функции выходного сигнала. Аналогичное заключение действительно и для ковариационных функций.

Заметим, что для свертки импульсных откликов, производя замену t-b = t, мы имеем равенство:

h(t+a) ? h(t-b) = h(t+a+b) ? h(t) = h(t) ? h(t+g) = Rh(t),

где Rh(t) - функция корреляции импульсного отклика системы. Отсюда:

Rz(t) = Rx(t) ? Rh(t). (3.5)

т.е. функция корреляции выходного сигнала равна свертке функции корреляции входного сигнала с функцией корреляции импульсного отклика системы. Это означает появление в случайном сигнале на выходе системы определенной ковариационной зависимости, вызванной инерционностью системы, причем радиус ковариации выходного сигнала обратно пропорционален верхней частоте, пропускаемой системой.

Функции взаимной корреляции входного и выходного сигналов определяются аналогично:

Rzx(t1,t2) = T1[Rx(t1,t2)], Rxz(t1,t2) = T2[Rx(t1,t2)]. (3.6)

Для функции Rxz входного и выходного сигналов имеем:

x(t)z(t+t) dt =h(a) x(t) x(t+t-a) da dt.

Rxz(t) =h(a) Rx(t-a) da----Rx(t) ? h(t-a).----------------------------------------------(9.3.7)

т.е. функция взаимной корреляции входного и выходного сигналов равна свертке функции корреляции входного сигнала с функцией импульсного отклика системы.

Другая взаимно корреляционная функция Ryx может быть получена из соотношения:

Rzx(t) = Rxz(-t) Rx(t) ? h(t+a). (3.8)

Отметим, что для статистически независимых случайных величин при одностороннем импульсном отклике h(t) = 0 при t<0 функция Rxz(t) также является односторонней, и равна 0 при t<0, а функция Rzx соответственно равна 0 при t>0.

Спектральные соотношения, которые характеризуют систему в целом по отношению к преобразованию случайных сигналов, это соотношения спектральных плотностей случайных сигналов (спектров мощности) на входе и выходе.

Применяя преобразование Фурье к выражениям (3.5), для спектра мощности выходного сигнала получаем:

Sz(f) = Sx(f) |H(f)|2. (3.9)

Спектр мощности случайного сигнала на выходе системы равен спектру мощности входного сигнала, умноженному на квадрат модуля частотной характеристики фильтра. С учетом четности ковариационных функций спектр мощности выходного сигнала также является четной действительной функцией и содержит только амплитудную характеристику системы.

Аналогично, для взаимного спектра мощности сигналов на основе выражений (3.7-8) имеем:

Sxz(f) = Sx(f) H(f), Szx(f) = Sx(f) H(-f). (3.10)

Взаимный спектр сигналов при одностороннем импульсном отклике является комплексным, и содержит как амплитудную, так и фазовую характеристику системы.

Отметим, что с использованием выражения (3.10) можно производить определение частотной характеристики и импульсного отклика системы:

H(f) = Sxz/Sx h(t).

Дисперсия выходного сигнала может быть определена с использованием формул (3.4, 9) по функциям ковариации:

sz2 = Kz(0) =Sx(f) |H(f)|2 df Kx(0)h2(t) dt = sx2h2(t) dt, (3.11)

Если сигнал нецентрированный и значение дисперсии входного сигнала неизвестно, то по аналогичным формулам вычисляется сначала средний квадрат выходного сигнала или так называемая средняя мощность сигнала:

== Rz(0) h2(t) dt Sx(f) |H(f)|2 df. (3.12)

Средняя мощность выходного сигнала равна средней мощности входного сигнала, умноженной на квадрат площади импульсной реакции системы (для цифровых систем - сумму квадратов коэффициентов импульсного отклика). Для центрированных случайных сигналов средняя мощность равна дисперсии сигналов. Для нецентрированных выходных сигналов:

sz 2 = - 2 (-2)h2(t) dt. (3.13)

Функция когерентности дает оценку точности принятой линейной модели системы. Когерентность входного и выходного сигналов системы оценивается по формуле:

gxz2(f) = |Sxz(f)|2/[Sx(f)Sz(f)]. (3.14)

Если функции Sx(f) и Sz(f) отличны от нуля и не содержат дельта-функций, то для всех частот f значения функции когерентности заключены в интервале:

0 gxz2(f) 1.

Для исключения дельта-функций на нулевой частоте определение функции когерентности производится по центрированным сигналам. Для линейных систем с постоянными параметрами функция когерентности равна 1, в чем нетрудно убедиться, если в формулу (3.14) подставить выражения Sxz и Sz, определенные через Sx в формулах (3.9-10). Для совершенно не связанных сигналов функция когерентности равна нулю. Промежуточные между 0 и 1 значения могут соответствовать трем ситуациям:

1. Система осуществляет преобразование x(t) z(t), но в измерениях этих сигналов или одного из них присутствует внешний шум. Так, например, в сигналах, зарегистрированных с ограничением по разрядности, появляется шум квантования (округления значений).

2. Система не является строго линейной. Это может наблюдаться, например, при определенном ограничении по разрядности вычислений в цифровых системах, при накоплении ошибки в рекурсивных системах и т.п.

3. Выходной сигнал z(t) помимо x(t) зависит еще от каких-то входных или внутренних системных процессов.

Величина 1-gxz2(f) задает долю среднего квадрата сигнала z(t) на частоте f, не связанную с сигналом x(t).

Аналогично можно вычислить функцию когерентности двух реализаций x(t) и y(t). Значения функции будут указывать на степень линейной зависимости одной реализации от другой, хотя это и не означает обязательности наличия какой-либо причинно-следственной связи между реализациями. Функция когерентности gxy сохраняется при точных однотипных линейных преобразованиях функций x(t) и y(t), что позволяет производить ее определение без измерения самих величин x(t) и y(t).

Преобразования случайных функций.

Сложение случайных функций. При сложении случайных функций, в общем случае, с произвольными постоянными коэффициентами а и b, и образовании случайной функции суммы Z(t) = aX(t) + bY(t), функция математического ожидания процесса Z(t):

mz(t)= M{Z(t)}= M{aX(t)+bY(t)}= aM{X(t)}+bM{Y(t)}= amx(t)+bmy(t). (3.15)

Корреляционная функция суммы вычисляется аналогично, и равна:

Rz(t1,t2) = M{Z(t1)Z(t2)}= M{[aX(t1)+bY(t1)][aX(t2)+bY(t2)]}=

= M{a2X(t1)X(t2)+b2Y(t1)Y(t2)+ab[X(t1)Y(t2)+Y(t1)X(t2)]} =

= a2Rx(t1,t2)+b2Ry(t1,t2)+ab[Rxy(t1,t2)+Ryx(t1,t2)]. (3.16)

Для некоррелированных функций X(t) и Y(t) функции взаимной корреляции Rxy и Ryx обнуляются. Аналогичную форму записи имеют и ковариационные функции (как частный случай корреляционных функций при центрировании случайных процессов). Выражения легко обобщаются на сумму любого числа случайных функций. В частности, для корреляционной функции стационарной случайной функции Z(t) = aiXi(t) при t2-t1 = t имеем:

Rz(t) = ai2Rxi(t) +aiajRxixj(t). (3.16')

При сложении случайной функции X(t) с неслучайной функцией y(t) математическое ожидание и корреляционная функция суммы Z(t)=X(t)+y(t) равны:

mz(t) = mx(t) + y(t), Rz(t1,t2) = Rx(t1,t2). (3.17)

При сложении случайной функции X(t) с некоррелированной случайной величиной Y математическое ожидание и корреляционная функция суммы Z(t)=X(t)+Y:

mz(t) = mx(t) + my, Rz(t1,t2) = Rx(t1,t2) + Dy. (3.18)

Произведение случайной и неслучайной функций X(t) и f(t). Математическое ожидание и корреляционная функция выходного сигнала:

mz(t) = M{Z(t)}= M{f(t)X(t)}= f(t)M{X(t)}= f(t)mx(t). (3.19)

Rz(t1,t2)=M{f(t1)X(t1) f(t2)X(t2)}= f(t1)f(t2)M{X(t1)X(t2)}=

= f(t1)f(t2)Rx(t1,t2). (3.20)

Если f(t) = const = C и Z(t) = CX(t), то соответственно имеем:

mz(t) = Сmx(t), Rz(t1,t2) = С2Rx(t1,t2). (3.21)

Производная от случайной функции Z(t) = dX(t)/dt. Если функция X(t) является непрерывной и дифференцируемой, то математическое ожидание производной:

mz(t) = M{Z(t)} = M{dX(t)/dt} = d(M{X(t)})/dt = dmx(t)/dt, (3.22)

т.е. математическое ожидание производной от случайной функции равно производной от ее математического ожидания. Для корреляционной функции имеем:

Rz(t1,t2) = M{(dX(t1)/dt1)(dX(t2)/dt2)}=M{X(t1)X(t2)}=Rx(t1,t2), (3.23)

т.е. корреляционная функция производной случайной функции равна второй смешанной частной производной от корреляционной функции исходной случайной функции.

Интеграл от случайной функции Z(t) =X(v)dv.

mz(t) = M{Z(t)} = M{X(v)dv} = M{X(v)}dv = mx(v)dv, (3.24)

т.е. математическое ожидание интеграла от случайной функции равно интегралу от ее математического ожидания. Для корреляционной функции имеем:

Rz(t1,t2) = M{X(t1)dt1X(t2)dt2} = M{X(t1)X(t2)dt1dt2} =

= M{X(t1)X(t2)}dt1dt2 = Rx(t1,t2)dt1dt2, (3.25)

т.е. корреляционная функция интеграла от случайной функции равна двойному интегралу от корреляционной функции исходной случайной функции.

Преобразования стационарных случайных функций выполняются по вышеприведенным формулам и дают следующие результаты (вместо корреляционных функций приводятся ковариационные функции, которые обычно используются на практике).

Математическое ожидание выходного сигнала Z(t) входной стационарной случайной функции X(t) по (3.2):

mz = h(t) * mx = mxh(t) dt, (3.26)

Отсюда следует, что математическое ожидание выходных сигналов системы равно математическому ожиданию входных сигналов, умноженному на площадь (или сумму коэффициентов) импульсного отклика системы, т.е. на коэффициент усиления системой постоянной составляющей. Если система не пропускает постоянную составляющую сигналов (площадь или сумма коэффициентов импульсного отклика системы равна нулю), то случайный выходной сигнал всегда будет иметь нулевое математическое ожидание.

Сумма двух стационарных случайных функций X(t) и Y(t) дает стационарную случайную функцию Z(t), при этом:

mz = mx + my, Dz = Dx + Dy + 2Kxy(0). (3.27)

Kz(t1,t2) = Kz(t) = Kx(t) + Ky(t) + Kxy(t) + Kyx(t). (3.28)

Сумма стационарной случайной и неслучайной функций X(t) и y(t) нестационарна по математическому ожиданию:

mz(t) = mx + y(t), Kz(t) = Kx(t). (3.29)

Произведение стационарной случайной и неслучайной функций X(t) и y(t) - нестационарная случайная функция, так как:

mz(t) = y(t)mx, Dz(t) = y2(t)Dx. (3.30)

Kz(t,t) = y(t)y(t+t)Kx(t). (3.31)

Производная от стационарной случайной функции - стационарная случайная функция с математическим ожиданием mz = 0 и ковариационными функциями:

Kz(t1,t2) = Kx(t1-t2) = -Kx(t) = Kz(t). (3.32)

Kzx(t) = d(Kx(t))/dt, Kxz(t) = -d(Kx(t))/dt.------------------------------------------ (9.3.33)

Из выражения (3.32) следует также, что для дифференцируемости X(t) необходимо, чтобы ее ковариационная функция была дважды дифференцируемой по t.

Интеграл от стационарной случайной функции - нестационарная случайная функция с математическим ожиданием mz(t) =mx(t)dt и функцией ковариации:

Kz(t1,t2) = Kx(u1-u2) du1du2. (3.34)

Модели случайных сигналов и помех

Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовый случайный процесс, гауссовый шум.

Рис. 4.1. Телеграфный сигнал.

Телеграфный сигнал - это случайный процесс xk(t), представляющий собой последовательность прямоугольных положительных и отрицательных импульсов со случайными длительностями и детерминированными

значениями амплитуд c и -с, причем перемены знака внутри любого интервала (t, t+t) происходят с интенсивностью a в случайные моменты времени, и не зависят от процессов в смежных интервалах времени. Если считать случайной величиной телеграфного сигнала значение n - количество перемен знака внутри интервала t,--то распределение вероятностей значений n будет описываться законом Пуассона

P(n) = (a|t|)2 exp(-a|t|)/n! (4.1)

При вычислении корреляционной функции телеграфного сигнала каждое отдельное произведение xk(t)xk(t+t) равно либо с2, либо -с2 в зависимости от совпадения или несовпадения знаков xk(t) и xk(t+t), причем вероятность с2 равна сумме вероятностей Р(0)+Р(2)+Р(4)+..., а вероятность -с2 определяется соответственно суммой вероятностей Р(1)+Р(3)+Р(5)+... .

Следовательно:

Rx(t)= c2(-1)nP(n)= c2 exp(-a|t|)(-1)n(a|t)n/n! = c2 exp(-2a|t|). (4.2)

Параметр a полностью определяет ковариационные и спектральные свойства телеграфного сигнала. При a-- 0 характеристики сигнала приближаются к характеристикам постоянной составляющей, при a - к характеристикам белого шума.

Интервал ковариации сигнала:

Tk = 2(Rx(t)/c2) dt = 2/a. (4.3)

Рис. 4.3. Спектр сигнала.

Отсюда следует, что чем больше a, тем меньше время ковариации процесса. При a 0 Tk и процесс вырождается в детерминированный (стремится к постоянной составляющей). При a Tk 0 и процесс вырождается в белый шум с некоррелированными отсчетами даже на соседних временных точках.

Двусторонняя спектральная плотность сигнала:

Sx(w)=Rx(t) exp(-jwt) dt= ac2/(a2+w2). (4.4)

Односторонняя спектральная плотность:

Gx(w)= 2ac2/(a2+w2). (4.5)

Ширина спектра телеграфного сигнала:

Bk--=Gx(w) dw/Gx(0) Sx(w) dw/Sx(0) = ap. (4.6)

Отсюда следует, что спектр случайного процесса тем шире, чем меньше интервал ковариации процесса.

Белый шум является стационарным случайным процессом q(t), у которого автокорреляционная функция описывается дельта - функцией Дирака и, соответственно, спектральная плотность мощности не зависит от частоты и имеет постоянное значение Wq(f) = s2, равное дисперсии значений q(t). Другими словами, все спектральные составляющие белого шума имеют одинаковую мощность (как белый цвет содержит все цвета видимого спектра). По существу, это идеализированный случайный процесс с бесконечной энергией. Но в случае постоянства спектральной плотности мощности случайного процесса в конечном диапазоне частот введение такой идеализации позволяет разрабатывать достаточно легко реализуемые оптимальные методы фильтрации. Многие помехи в радиотехнике, в технике связи и в других отраслях, в том числе в информатике, рассматривают как белый шум, если эффективная ширина спектра сигналов Bs много меньше эффективной ширины спектра шумов Bq

Bs/Bq << 1,

и спектральная плотность мощности шумов слабо изменяется в интервале спектра сигнала. Понятие "белый шум" определяет только спектральную характеристику случайного процесса, а, следовательно, под это понятие подпадают любые случайные процессы, имеющие равномерный энергетический спектр и различные законы распределения.

Если частотный диапазон спектра, на котором рассматриваются сигналы и помехи, равен 0-В, то спектральная плотность шума задается в виде:

Wq(f)=s2, 0 f B; Wq(f)=0, f > B, (4.7)

при этом корреляционная функция шума определяется выражением:

Rq(t)= s2 Bsin(2pBt)/2pBt. (4.8)

Эффективный интервал корреляции:

Tk = 2|Rq(t)|dt /Rq(0). (4.9)

Рис. 4.4. Функции корреляции белого

шума в частотном интервале 0-В.

Реальный интервал корреляции целесообразно определять по ширине главного максимума функции Rq(t) (значения t при первых пересечениях нулевой линии), в котором сосредоточена основная часть энергии шумов, при этом Tk = 1/В и BTk = 1 > 1/2, т.е. соотношение неопределенности выполняется.

Как следует из всех этих выражений и наглядно видно на рис. 4.4, при ограничении частотного диапазона в шумах появляется определенная корреляция между значениями, и, чем меньше частотный диапазон шумов, тем больше их радиус корреляции. По существу, ограничение шумов определенным частотным диапазоном эквивалентно фильтрации белого шума частотным фильтром с соответствующей шириной полосы пропускания, при этом, корреляционная функция импульсного отклика фильтра свертывается с дельта - функцией белого шума.

Модель белого шума q(t) можно формировать как случайную по времени (аргументу) последовательность дельта - импульсов d(ti) со случайными амплитудными значениями ai:

q(t) = Si ai d(t-ti), (4.10)

которая удовлетворяет условиям статистической однородности: постоянное среднее число импульсов в единицу времени и статистическая независимость появления каждого импульса от предыдущих. Такой поток импульсов, который называют пуассоновским, является некоррелированным и имеет равномерный спектр плотности мощности:

Wq(w) = c2 = Nsa2,

где N - число импульсов на интервале Т реализации случайного процесса, sa2 -дисперсия амплитуд импульсов.

Спектральное описание белого шума оказывается удобным при учете влияния на него амплитудно-частотных характеристик различных устройств. Если на входе фильтра с импульсным откликом h(t) действует белый шум q(t), то сигнал на выходе фильтра:

g(t) = h(t) ? q(t) = h(t) ? Si ai d(t-ti) =Si ai h(t-ti), (4.11)

т.е. выходной сигнал будет представлять собой последовательность сигналов импульсной реакции фильтра h(t) с амплитудой ai, при этом автокорреляционная функция и спектр мощности выходного потока также становятся подобными ФАК и спектру мощности импульсной реакции фильтра, и в первом приближении определяются выражениями:

Rg(t)N sa2 Rh(t) = c2 Rh(t), -- (4.12)

Wg(w) N sa2 |H(w)|2 = c2 |H(w)|2. (4.13)

Этот результат известен как теорема Кэмпбелла.

Гауссовый шум возникает при суммировании статистически независимых белых шумов и имеет следующую функцию корреляции:

Rx(t) = a exp(-2ps2t2). (4.14)

Спектральная плотность шумов:

Sx(f) = (a/s) exp(-f2/2s2), - < f < . (4.15)

Эффективные шумовые ширина спектра и время ковариации:

Bk = s/2 = 1.25s, Tk = 1/s= 0.4/s. (4.16)

случайный шум сигнал спектр

Соотношение неопределенности превращается в равенство: BkTk = 1/2.

Гауссовые случайные процессы преобладают в практических задачах. Случайный процесс x(t) называется гауссовым, если для любого набора фиксированных моментов времени tn случайные величины x(tn) подчиняются многомерному нормальному распределению. Плотность вероятностей мгновенных значений x(t) эргодического гауссового процесса определяется выражением:

p(x) = (sx)-1 exp(-(x-mx)2/2s2). (4.17)

Среднее значение и его оценка по достаточно большому интервалу Т:

mx =x p(x) dx, mx (1/T)x(t) dt.

При нулевом среднем (или при центрировании функции x(t) для упрощения расчетов) дисперсия не зависит от переменной t, и равна:

sx2 =x2 p(x) dx.

Оценка дисперсии при больших значениях Т:

sx2 (1/T)x2(t) dt =Sx(f) df =Gx(f) df. (4.18)

Следовательно, плотность вероятностей гауссового процесса полностью характеризуется спектральной плотностью, по которой можно определить значение дисперсии процесса. На вид спектральных плотностей и соответствующих им ковариационных функций никаких ограничений не накладывается.

Литература

Баскаков С.И. Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.- 448 с.

Бендат Дж., Пирсол А. Прикладной анализ случайных данных. - М.: Мир, 198 - 540 с.

Сергиенко А.Б. Цифровая обработка сигналов. - СПб.: Питер, 2003. - 608 с.

Вероятностные методы в вычислительной технике: Учебное пособие для вузов./ А.В.Крайников и др. - М.: Высшая школа, 1986. - 312 с.

Вероятностные методы в вычислительной технике: Учебное пособие для вузов./ А.В.Крайников и др. - М.: Высшая школа, 1986. - 312 с.

Гурский Е.И. Теория вероятностей с элементами математической статистики: Учебное пособие для вузов. - М.: Высшая школа, 1971.- 328 с.

Игнатов В.А. Теория информации и передачи сигналов. - М.: Советское рад

Ю.М. Яневич. Задачи приема сигналов и определения их параметров на фоне шумов: Курс лекций. / СПбУ.

Размещено на Allbest.ru

...

Подобные документы

  • Случайные процессы с нормальным законом распределения, которые определяются математическим ожиданием и корреляционной функцией. Определение статистических характеристик случайных процессов в линейных системах. Эквивалентная шумовая полоса следящих систем.

    реферат [207,5 K], добавлен 21.01.2009

  • Вычисление математического ожидания и дисперсии, плотности распределения случайных величин. Реализация квазидетерминированного случайного процесса. Помехоустойчивость сигналов при когерентном приеме. Вероятности ложной тревоги и пропуска сигнала.

    контрольная работа [257,4 K], добавлен 20.03.2015

  • Характеристики векторного пространства. Прием дискретных сигналов с неопределенной фазой. Их преобразование в электрические. Эффективная ширина спектра импульса. Спектры фазомодулированных и частотно-модулированных колебаний. Гармонический синтез функции.

    контрольная работа [899,3 K], добавлен 02.07.2013

  • Процесс приема сигналов на вход приемного устройства. Модели сигналов и помех. Вероятностные характеристики случайных процессов. Энергетические характеристики случайных процессов. Временные характеристики и особенности нестационарных случайных процессов.

    дипломная работа [3,3 M], добавлен 30.03.2011

  • Определение спектральной плотности заданного непериодического сигнала, спектра периодической последовательности заданных видеоимпульсов. Определение функции корреляции заданного видеосигнала. Спектральный метод анализа процессов в линейных цепях.

    курсовая работа [1013,1 K], добавлен 23.02.2012

  • Характеристика видов и цифровых методов измерений. Анализ спектра сигналов с использованием оконных функций. Выбор оконных функций при цифровой обработке сигналов. Исследование спектра сигналов различной формы с помощью цифрового анализатора LESO4.

    дипломная работа [2,5 M], добавлен 03.05.2018

  • Понятие случайных процессов, их математическое описание; показатели Ляпунова. Измерение вероятностных характеристик стационарных эргодических сигналов. Анализ распределения вероятностей методом дискретных выборок. Измерение корреляционных функций.

    доклад [150,8 K], добавлен 20.05.2015

  • Расчет спектральной плотности экспоненциального импульса цифрового устройства с помощью формулы прямого преобразования Фурье. Построение АЧХ и ФЧХ спектральной плотности. Построение амплитудного спектра периодического дискретизированного сигнала.

    контрольная работа [197,1 K], добавлен 23.04.2014

  • Анализ прохождения белого шума через колебательный контур. Расчет плотности вероятности стационарного случайного сигнала на выходе электрической цепи; правила его нормализации. Исследование линейных преобразований случайных процессов с помощью LabVIEW.

    реферат [5,6 M], добавлен 31.03.2011

  • Расчет спектральной плотности непериодических сигналов. Спектральный анализ непериодических сигналов. Определение ширины спектра по заданному уровню энергии. Расчет автокорреляционной функции сигнала и корреляционных функций импульсных видеосигналов.

    контрольная работа [96,4 K], добавлен 29.06.2010

  • Принцип действия и устройство решетчатых фильтров, назначение и достоинства. Синтез решетчатого фильтра. Генерация случайных процессов на основе фильтра с решетчатой структурой. Система уравнений, описывающая фильтр с долговременным предсказанием.

    реферат [196,4 K], добавлен 10.11.2010

  • Структура канала связи. Расчет спектральных характеристик модулированного сигнала, ширины спектра, интервала дискретизации сигнала и разрядности кода, функции автокорреляции, энергетического спектра, вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1,7 M], добавлен 07.02.2013

  • Вероятностные характеристики случайных сигналов. Измерение среднего значения средней мощности и дисперсии. Анализ распределения вероятностей. Корреляционные функции. Метод дискретных выборок. Анализ распределения вероятностей методом дискретных выборок.

    реферат [74,7 K], добавлен 23.01.2009

  • Вычисление и изображение на спектральной диаграмме спектра периодического процесса с заданной амплитудой и частотой. Спектральная плотность одиночного прямоугольного импульса. Расчет спектра амплитудно-манипулированного и фазоманипулированного сигнала.

    контрольная работа [473,7 K], добавлен 11.07.2013

  • Формирование растра на экране кинескопа и фотомишени передающей трубки. Параметры развёртки вещательной телевизионной системы. Ширина и микроструктура спектра видеосигнала, смешение цветов. Скорость движения электронного луча на экране кинескопа.

    курсовая работа [1,6 M], добавлен 22.04.2014

  • Основные характеристики и принцип работы связного радиопередающего устройства, использующего частотную модуляцию. Варикапы для регулировки частоты генератора по диапазону. Девиация частоты на выходе автогенератора и ширина спектра радиочастот сигнала.

    курсовая работа [422,8 K], добавлен 28.09.2010

  • Преобразование изображаемого объекта в электрический сигнал. Электронные системы телевидения. Разделение строчных и кадровых синхроимпульсов. Четкость телевизионного изображения, ширина спектра телевизионного сигнала. Полоса частот для передачи сигнала.

    реферат [3,0 M], добавлен 18.03.2011

  • Расчет амплитудно-частотной и фазочастотной характеристики спектральной плотности одиночного прямоугольного видеоимпульса. Определение эффективной ширины спектра импульса, уровней гармонических составляющих и коэффициента передачи согласованного фильтра.

    контрольная работа [791,6 K], добавлен 04.04.2013

  • Определение корреляционной функции входного сигнала, расчет его амплитудного и фазового спектра. Характеристики цепи: амплитудно-частотная, фазо-частотная, переходная, импульсная. Вычисление спектральной плотности и построение графика выходного сигнала.

    курсовая работа [986,4 K], добавлен 18.12.2013

  • Структурная схема системы электросвязи, назначение ее отдельных элементов. Рассчет интервала корреляции, спектра плотности мощности и начальной энергетической ширины спектра сообщения. Потери при фильтрации. Средняя квадратичная погрешность фильтрации.

    курсовая работа [2,9 M], добавлен 20.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.