Цифровая обработка сигналов. Регрессия
Понятие, сущность, цели и основные задачи регрессии. Линейное суммирование произвольных функций. Описание и специфика типовых функций регрессии Mathcad. Характеристика одномерной полиномиальной регрессии. Линейное суммирование произвольных функций.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 15.11.2018 |
Размер файла | 180,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Цифровая обработка сигналов. Регрессия
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ПОСТАНОВКА ЗАДАЧИ РЕГРЕССИИ
2. ЛИНЕЙНАЯ РЕГРЕССИЯ. ОБЩИЙ ПРИНЦИП. РЕАЛИЗАЦИЯ В MATHCAD
3. ПОЛИНОМИАЛЬНАЯ РЕГРЕССИЯ. ОДНОМЕРНАЯ РЕГРЕССИЯ. ЗОНАЛЬНАЯ РЕГРЕССИЯ
4. НЕЛИНЕЙНАЯ РЕГРЕССИЯ. ЛИНЕЙНОЕ СУММИРОВАНИЕ ПРОИЗВОЛЬНЫХ ФУНКЦИЙ. РЕГРЕССИЯ ОБЩЕГО ТИПА. ТИПОВЫЕ ФУНКЦИИ РЕГРЕССИИ MATHCAD
5. СГЛАЖИВАНИЕ ДАННЫХ
6. ПРЕДСКАЗАНИЕ ЗАВИСИМОСТЕЙ
ВВЕДЕНИЕ
Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.
Термин "регрессия" появился при исследовании соотношения роста родителей и их детей, в которых было установлено, что рост "регрессирует" к среднему, т.е. высокие родители имеют более низких детей, а низкие родители - более высоких.
В качестве основной математической системы для примеров будем использовать систему Mathcad.
1. ПОСТАНОВКА ЗАДАЧИ РЕГРЕССИИ
Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(xk) со случайной погрешностью sk, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, … , an), которой зависимость Y(x) отображалась бы с минимальной погрешностью. Отсюда следует условие приближения:
yk = f(xk, a0, a1, … , an) + sk.
Функцию f(xk, a0, a1, … , an) называют регрессией величины y на величину х. Регрессионный анализ предусматривает задание вида функции f(xk, a0, a1, … , an) и определение численных значений ее параметров a0, a1, … , an, обеспечивающих наименьшую погрешность приближения к множеству значений yk. Как правило, при регрессионном анализе погрешность приближения вычисляется методом наименьших квадратов (МНК). Для этого выполняется минимизация функции квадратов остаточных ошибок:
s(a0, a1, … , an) =[f(xk, a0, a1, … , an) - yk]2.
Для определения параметров a0, a1, … , an функция остаточных ошибок дифференцируется по всем параметрам, полученные уравнения частных производных приравниваются нулю и решаются в совокупности относительно всех значений параметров. Виды регрессии обычно называются по типу аппроксимирующих функций: полиномиальная, экспоненциальная, логарифмическая и т.п.
2. ЛИНЕЙНАЯ РЕГРЕССИЯ [25]
Общий принцип. Простейший способ аппроксимации по МНК произвольных данных sk - с помощью полинома первой степени, т.е. функции вида y(t) = a+bt, которую обычно называют линией регрессии. С учетом дискретности данных по точкам tk, для функции остаточных ошибок имеем:
s(a, b) =[(a+b tk) - sk]2.
Для вычисления оценок коэффициентов дифференцируем функцию остаточных ошибок по аргументам a и b, приравниваем полученные уравнения нулю и формируем два нормальных уравнения системы:
2((a+b tk)-sk) a1 + btk -sk = 0,
2((a+b tk)-sk) tk atk + btk2 - sk tk = 0,
Решение данной системы уравнений в явной форме для К-отсчетов:
b = [Ktk sk -tksk] / [Ktk2 - (tk)2] = (- ) / (- ).
a = [sk - btk] /K = - b
Полученные значения коэффициентов используем в уравнении регрессии y(t) = a+bt. Прямая (s - ) = b (t - ) называется линией регрессии s по t. Для получения линии регрессии t по s, (t - ) = b (s - ), аргумент b в этой формуле заменяется на значение b = (- ) / (- ).
По аналогичной методике вычисляются коэффициенты и любых других видов регрессии, отличаясь только громоздкостью соответствующих выражений.
Реализация в Mathcad. Линейная регрессия в системе Mathcad выполняется по векторам аргумента Х и отсчетов Y функциями:
Ш intercept(X,Y) - вычисляет параметр а, смещение линии регрессии по вертикали;
Ш slope(X,Y) - вычисляет параметр b, угловой коэффициент линии регрессии.
Расположение отсчетов по аргументу Х произвольное. Функцией corr(X,Y) дополнительно можно вычислить коэффициент корреляции Пирсона. Чем он ближе к 1, тем точнее обрабатываемые данные соответствуют линейной зависимости.
Пример выполнения линейной регрессии приведен на рис. 2.1.
Рис. 2.1.
3. ПОЛИНОМИАЛЬНАЯ РЕГРЕССИЯ [25]
регрессия линейное суммирование mathcad
Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов в Mathcad выполняется функциями:
Ш regress(X,Y,n) - вычисляет вектор S для функции interp(…), в составе которого находятся коэффициенты ki полинома n-й степени;
Ш interp(S,X,Y,x) - возвращает значения функции аппроксимации по координатам х.
Функция interp(…) реализует вычисления по формуле:
f(x) = k0 + k1 x1 + k2 x2 + … + kn xn ? ki xi.
Значения коэффициентов ki могут быть извлечены из вектора S функцией
submatrix(S, 3, length(S), 0, 0).
На рис. 3.1 приведен пример полиномиальной регрессии с использованием полиномов 2, 3 и 8-й степени. Степень полинома обычно устанавливают не более 4-6 с последовательным повышением степени, контролируя среднеквадратическое отклонение функции аппроксимации от фактических данных. Нетрудно заметить, что по мере повышения степени полинома функция аппроксимации приближается к фактическим данным, а при степени полинома, равной количеству отсчетов минус 1, вообще превращается в функцию интерполяции данных, что не соответствует задачам регрессии.
Рис. 3.1. Одномерная полиномиальная регрессия.
Зональная регрессия. Функция regress по всей совокупности точек создает один аппроксимирующий полином. При больших координатных интервалах с большим количеством отсчетов и достаточно сложной динамике изменения данных рекомендуется применять последовательную локальную регрессию отрезками полиномов малых степеней. В Mathcad это выполняется отрезками полиномов второй степени функцией
loess(X, Y, span),
которая формирует специальный вектор S для функции interp(S,X,Y,x).
Рис. 3.2.
Аргумент span > 0 в этой функции (порядка 0.1-2) определяет размер локальной области и подбирается с учетом характера данных и необходимой степени их сглаживания (чем больше span, тем больше степень сглаживания данных).
На рис. 3.2 приведен пример вычисления регрессии модельной кривой (отрезка синусоиды) в сумме с шумами. Вычисления выполнены для двух значений span с определением среднеквадратического приближения к базовой кривой. При моделировании каких-либо случайных процессов и сигналов на высоком уровне шумов по минимуму среднеквадратического приближения может определяться оптимальное значение параметра span.
4. НЕЛИНЕЙНАЯ РЕГРЕССИЯ [25]
Линейное суммирование произвольных функций. В Mathcad имеется возможность выполнения регрессии с приближением к функции общего вида в виде весовой суммы функций fn(x):
f(x, Kn) = K1 f1(x) + K2 f2(x) + … + KN fN(x),
при этом сами функции fn(x) могут быть любого, в том числе нелинейного типа. С одной стороны, это резко повышает возможности аналитического отображения функций регрессии. Но, с другой стороны, это требует от пользователя определенных навыков аппроксимации экспериментальных данных комбинациями достаточно простых функций.
Рис. 4.1. Обобщенная регрессия.
Реализуется обобщенная регрессия по векторам X, Y и f функцией
Ш linfit(X,Y,f),
которая вычисляет значения коэффициентов Kn. Вектор f должен содержать символьную запись функций fn(x). Координаты xk в векторе Х могут быть любыми, но расположенными в порядке возрастания значений х (с соответствующими отсчетами значений yk в векторе Y). Пример выполнения регрессии приведен на рис. 4.1. Числовые параметры функций f1-f3 подбирались по минимуму среднеквадратического отклонения.
Рис. 4.2.
Регрессия общего типа. Второй вид нелинейной регрессии реализуется путем подбора параметров ki к заданной функции аппроксимации с использованием функции
genfit(X,Y,S,F),
которая возвращает коэффициенты ki, обеспечивающие минимальную среднюю квадратическую погрешность приближения функции регрессии к входным данным (векторы Х и Y координат и отсчетов). Символьное выражение функции регрессии и символьные выражения ее производных по параметрам ki записываются в вектор F. Вектор S содержит начальные значения коэффициентов ki для решения системы нелинейных уравнений итерационным методом. Пример использования метода приведен на рис. 4.2.
Типовые функции регрессии Mathcad. Для простых типовых формул аппроксимации предусмотрен ряд функций регрессии, в которых параметры функций подбираются программой Mathcad самостоятельно. К ним относятся следующие функции:
expfit(X,Y,S) - возвращает вектор, содержащий коэффициенты a, b и c экспоненциальной функции y(x) = a·exp(b·x)+c. В вектор S вводятся начальные значения коэффициентов a, b и c первого приближения.
Для ориентировки по форме аппроксимационных функций и задания соответствующих начальных значений коэффициентов на рисунках слева приводится вид функций при постоянных значениях коэффициентов a и c.
lgsfit(X,Y,S) - то же, для выражения y(x) = a/(1+c·exp(b·x)).
pwrfit(X,Y,S) - то же, для выражения y(x) = a·xb+c.
sinfit(X,Y,S) - то же, для выражения y(x) = a·sin(x+b)+c. Подбирает коэффициенты для синусоидальной функции регрессии. Рисунок синусоиды общеизвестен.
logfit(X,Y) - то же, для выражения y(x)=a ln(x+b)+c. Задания начального приближения не требуется.
medfit(X,Y) - то же, для выражения y(x) = a+b·x, т.е. для функции линейной регрессии. Задания начального приближения также не требуется. График - прямая линия.
Рис. 4.3.
На рис. 4.3 приведен пример реализации синусоидальной регрессии модельного массива данных по базовой синусоиде в сопоставлении с зональной регрессией полиномом второй степени. Как можно видеть из сопоставления методов по средним квадратическим приближениям к базовой кривой и к исходным данным, известность функции математического ожидания для статистических данных с ее использованием в качестве базовой для функции регрессии дает возможность с более высокой точностью определять параметры регрессии в целом по всей совокупности данных, хотя при этом кривая регрессии не отражает локальных особенностей фактических отсчетов данной реализации. Это имеет место и для всех других методов с заданием функций регрессии.
5. СГЛАЖИВАНИЕ ДАННЫХ [25]
Сглаживание данных, как искаженных помехами, так и статистических по своей природе, можно считать частным случаем регрессии без определения символьной формы ее функции. В Mathcad для сглаживания применяются следующие функции:
Ш supsmooth(X,Y) - возвращает вектор линейно сглаженных данных Y, метод наименьших квадратов по k отсчетам с адаптивным выбором значения k с учетом динамики изменения данных. Значения вектора Х должны идти в порядке возрастания.
Ш ksmooth(X,Y,b) - вычисляет вектор сглаженных данных на основе распределения Гаусса. Параметр b задает ширину окна сглаживания и должен быть в несколько раз больше интервала между отсчетами по оси х.
Ш medsmooth(Y,b) - вычисляет вектор сглаженных данных по методу скользящей медианы с шириной окна b, которое должно быть нечетным числом.
Рис. 5.1.
Сопоставление методов сглаживания приведено на рис. 5.1. Как можно видеть на этом рисунке, качество сглаживания функциями supsmooth(X,Y) и ksmooth(X,Y,b) практически идентично (при соответствующем выборе параметра b). Медианный способ уступает по своим возможностям двум другим. Можно заметить также, что на концевых точках интервала задания данных качество сглаживания ухудшается, особенно в медианном способе, который вообще не может выполнять свои функции на концевых интервалах длиной b/2.
6. ПРЕДСКАЗАНИЕ ЗАВИСИМОСТЕЙ [25]
Рис. 6.1.
Функция Mathcad predict(Y,n,K),
где n - степень полинома аппроксимации вектора равномерно распределенных данных Y, позволяет вычислить вектор К точек предсказания (экстраполяции) поведения произвольного сигнала за пределами его задания (по возрастанию координат х). Предсказание тем точнее, чем более гладкую форму имеет заданный сигнал.
Пример использования функции приведен на рис. 6.1 для гладкой и статистически зашумленной сигнальной кривой. Степень аппроксимирующего полинома определяет глубину использования входных данных и может быть достаточно небольшой для гладких и монотонных сигналов. Ошибка прогнозирования увеличивается по мере удаления от заданных данных.
Литература
1. Дьяконов В.П. Вейвлеты. От теории к практике. - М.: СОЛОН-Р, 2002. - 448 с.
2. Корн Г., Корн Е. Справочник по математике для научных работников и инженеров. - М.: Наука, 1984.
Размещено на Allbest.ru
...Подобные документы
Правила разложения произвольных и непрерывных сигналов в ряд Уолша. Ознакомление с формулами представления кусочно-постоянных функций Радемахера. Диадно-упорядочненная система функций Уолша. Принципы упорядочения четных и нечетных функций по Хармуту.
презентация [73,6 K], добавлен 19.08.2013Сигналы и их характеристики. Линейная дискретная обработка, ее сущность. Построение графиков для периодических сигналов. Расчет энергии и средней мощности сигналов. Определение корреляционных функций сигналов и построение соответствующих диаграмм.
курсовая работа [731,0 K], добавлен 16.01.2015Характеристика видов и цифровых методов измерений. Анализ спектра сигналов с использованием оконных функций. Выбор оконных функций при цифровой обработке сигналов. Исследование спектра сигналов различной формы с помощью цифрового анализатора LESO4.
дипломная работа [2,5 M], добавлен 03.05.2018Моделирование функций заданных математическим выражением и объектов, описанных дифференциальными уравнениями. Параметры блока "Генератор импульсов". Построение графиков для каждой модели периодических сигналов с различными временными интервалами.
курсовая работа [329,1 K], добавлен 19.12.2016Канал передачи дискретных сообщений. Межсигнальная интерференция сигналов в канале. Решение с помощью системы Mathcad. Решение системы уравнений по формуле Крамера. Максимальный модуль разности между ожидаемым и полученным сигналом.
контрольная работа [67,4 K], добавлен 26.01.2007Использование дифференциальных уравнений, передаточных функций, переходной и весовой функций, частотных передаточных функций. Устойчивые и неустойчивые системы. Комплексный коэффициент передачи. Обратное преобразование. Гармоническое входное воздействие.
реферат [67,1 K], добавлен 21.01.2009Понятие случайных процессов, их математическое описание; показатели Ляпунова. Измерение вероятностных характеристик стационарных эргодических сигналов. Анализ распределения вероятностей методом дискретных выборок. Измерение корреляционных функций.
доклад [150,8 K], добавлен 20.05.2015Описание булевой алгеброй переключательных функций узлов цифровых устройств. Доказательство теорем перебором по идемпотентным, коммутативным, ассоциативным, дистрибутивным, отрицающим законам двойственности, двойного отрицания и операции склеивания.
реферат [48,5 K], добавлен 12.06.2009Исследование внутреннего устройства и архитектуры современных модемов. Распределение функций между составными частями модема. Анализ функций аналоговых и цифровых модемов, связанных с обработкой сигналов. Метод преобразования аналоговых данных в цифровые.
курсовая работа [335,9 K], добавлен 09.11.2014Характеристика и область применения сигналов в системах цифровой обработки. Специализированный процессор цифровой обработки сигналов СПФ СМ: разработчики и история, структура и характеристики, область применения, алгоритмы и программное обеспечение.
курсовая работа [224,9 K], добавлен 06.12.2010Замена симметричных переменных с использованием элементарных симметричных функций. Анализ совместной реализации системы функций. Раздельная минимизация системы функций алгебры логики. Факторизация системы логических уравнений. Выбор элементной базы.
дипломная работа [1,0 M], добавлен 22.11.2012Изучение основ построения математических моделей сигналов с использованием программного пакета MathCad. Исследование моделей гармонических, периодических и импульсных радиотехнических сигналов, а также сигналов с амплитудной и частотной модуляцией.
отчет по практике [727,6 K], добавлен 19.12.2015Понятие, сущность, размерность, виды, классификация, особенности преобразования и спектральное представление сигналов, их математическое описание и модели. Общая характеристика и графическое изображение аналогового, дискретного и цифрового сигналов.
реферат [605,8 K], добавлен 29.04.2010Методы статистической обработки измерений информационных систем для задач с условиями сингулярных помех в радиотехнике. Адекватность моделей задачи оценивания, приближение и дифференцирование полезных сигналов в классе функций с финитным спектром.
дипломная работа [953,3 K], добавлен 11.06.2012Расчет временных и спектральных моделей сигналов с нелинейной модуляцией, применяемых в радиолокации и радионавигации. Анализ корреляционных и спектральных характеристик детерминированных сигналов (автокорреляционных функций, энергетических спектров).
курсовая работа [1,6 M], добавлен 07.02.2013Принципы определения производительности источника дискретных сообщений. Анализ пропускной способности двоичного симметричного канала связи с помехами, а также непрерывных каналов связи с нормальным белым шумом и при произвольных спектрах сигналов и помех.
реферат [251,3 K], добавлен 14.11.2010Основные инструменты анализа и синтеза цифровых устройств. Синтез комбинационного устройства, реализующего заданную функцию. Минимизация переключательных функций с помощью карт Карно. Общие правила минимизации функций. Дешифратор базиса Шеффера.
контрольная работа [540,0 K], добавлен 09.01.2014Виды автоматизированного регулирования оптических дисковых систем. Передаточные функции звеньев. Характеристика сигнала расфокусировки, полученного методом ножа Фуко. Расчёты передаточных функций звеньев и функций замкнутой и разомкнутой системы.
курсовая работа [126,8 K], добавлен 25.01.2011Обзор особенностей речевых сигналов, спектрального анализа и способов его применения при обработке цифровых речевых сигналов. Рассмотрение встроенных функций и расширений Matlab по спектральному анализу. Реализация спектрального анализа в среде Matlab.
курсовая работа [2,2 M], добавлен 25.05.2015Расчет и анализ показателей устойчивости системы при использовании типовых регуляторов пропорционального, интегрального и пропорционально интегрального типа. Описание процесса нахождения передаточных функций, построение графиков переходных процессов.
курсовая работа [4,7 M], добавлен 17.07.2015