Установка компонентов на печатных платах

Снижение себестоимости сборки и монтажа печатных плат при поддержании высокого уровня качества как направление производства электронных модулей. Внешний вид чип-резистора для поверхностного монтажа. Метод пайки расплавлением дозированного припоя.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 04.12.2018
Размер файла 578,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Главным направлением при производстве электронных модулей остается снижение себестоимости сборки и монтажа печатных плат при поддержании стабильно высокого уровня качества. Операция установки компонентов на печатную плату во многом определяет экономичность и производительность этого процесса. Автоматические системы для сборки электронных модулей во все большей степени ориентируются на программное обеспечение. Это компьютеризированная техника, управляемая мощными контроллерами, способными обработать большой объем информации в реальном времени, с широким спектром функций. Безусловно, как механические, так и программные функции оборудования становятся более сложными, но задача состоит в том, чтобы обеспечить даже более простое управление, как отдельной машиной, так и комплексной линией на уровне оператора.

Производство печатных плат на стадии сборочно-монтажных операций включает в себя следующие основные этапы:

- подготовка компонентов и материалов;

- нанесение адгезива (клея) и паяльной пасты;

- установка компонентов;

- отверждение клея;

Компоненты для установки на печатных платах.

Известны два основных варианта конструкций узлов на ПП:

- с использованием монтажных отверстий на ПП для установки компонентов, имеющих выводы (традиционный монтаж),

- с установкой компонентов на поверхности ПП без применения монтажных отверстий (поверхностный монтаж).

На практике встречается несколько различных вариаций конструкций узлов, среди которых можно выделить характерные группы (рис. 1):

Тип I - на двух сторонах платы размещаются только поверхностно-монтируемые компоненты, тип пайки на обеих сторонах - оплавление дозированно нанесенной припойной пасты;

Тип II - с использованием на лицевой стороне поверхностно-монтируемых и выводных, устанавливаемых в отверстия, на обратной стороне размещаются только пассивные чип-компоненты, обратная сторона паяется волной припоя;

Тип III - на лицевой стороне только выводные компоненты, на обратной - только пассивные чип-компоненты, вся плата паяется волной припоя.

Рис. 1

В зависимости от конструкции корпуса компонента и формы выводов можно выделить три основных группы компонентов:

Поверхностно-монтируемые компоненты (surface mount component - SMC или surface mount device - SMD). К этой группе относятся пассивные компоненты (резисторы, конденсаторы, индуктивности) в корпусах, не имеющих выводов (0805, 0603, MELF), ИМ и другие полупроводниковые приборы в базовых технологических корпусах SO, PLCC, OFP, BGA, TAB, flip-chip, COB, DCA, а также компоненты, аналогичные по исполнению.

Выводные компоненты (Pin Through Hole - PTH или Through Hole Assembly - THA). Группа включает традиционные пассивные и активные компоненты с осевыми (аксиальными) и радиальными выводами, а также интегральные схемы в корпусах типа DIP (Dual in-line Package).

Нестандартные компоненты (Odd Form Component - OFC). К этой группе относятся выводные компоненты, не вошедшие во 2 группу, и включающая в себя соединители, разъемы, трансформаторы, колодки, держатели, экраны и т.д. Группа является самой динамичной, так как усилиями производителей ряд нестандартных компонентов либо становятся поверхностно-монтируемыми, либо переходят в категорию стандартных аксиально-радиальных.

Пассивные компоненты для поверхностного монтажа изготавливаются в двух модификациях: в виде цилиндра (тип MELF - Metal Electrode Face bonding) и чипа (параллелепипеда).

Рис. 2

Внешний вид чип-резистора для поверхностного монтажа приведен на рис. 2. Его конструкция представляет собой прямоугольный параллелепипед с металлизированными боковыми поверхностями, которые играют роль внешних выводов и используются для пайки. На поверхность керамической подложки наносится методами толстопленочной технологии резистивная пленка, которая и выполняет функции резистора.

Стандартное обозначение пассивных чип-компонентов состоит из 4 цифр, несущих информацию о размере компонента, например: 0402 - длина компонента 4 миллидюйма, ширина 2 миллидюйма. Для большинства пассивных компонентов принята дюймовая система обозначения их корпусов. Общемировое потребление чип-компонентов быстро растет. Основная тенденция - уменьшение размеров, однако прогресс в этом направлении постепенно замедляется из-за увеличения стоимости компонента с уменьшением его размера, а также из-за потери коэффициента воспроизводимости многих сборочных систем при переходе, к примеру, от чипов 0402 к 0201.

Керамические чип-конденсаторы представляют собой структуру из чередующихся диэлектрических слоев керамики и металлических пленок, замыкающихся на боковые выводы-электроды. Внешне они мало отличается от чип-резисторов. Из-за многослойной структуры керамические конденсаторы восприимчивы к тепловому удару, поэтому скорость предварительного нагрева при пайке не должна превышать 2 °С/сек., а разница температур между конденсатором и ванной с расплавленным припоем не должна превышать 100°С.

Примерно в таком же виде изготавливаются и другие компоненты: индуктивности, танталовые конденсаторы, а также некоторые типы диодов. Большое разнообразие видов и номиналов компонентов при небольшом различии конструкций их корпусов имеет важнейшее значение, поскольку позволяет использовать унифицированное оборудование для установки компонентов на поверхность ПП.

Интегральные компоненты.

Значительно большее разнообразие конструкций корпусов наблюдается у микросхем. Можно выделить 4 типа корпусов:

С вертикальными выводами, расположенными перпендикулярно плоскости корпуса ИМ (DIP, PGA).

С плоскими выводами, выходящими параллельно корпусу ИМ (Flat Pack - SO, PLCC, QFP, TAB).

Безвыводные корпуса (металлизация контактных площадок на боковых стенках корпуса - LCCC).

С шариковыми выводами на нижней плоскости корпуса (BGA - Ball Grid Array, flip-chip).

Конструкция корпусов ИМ первой группы характерна для традиционного монтажа, поскольку требует наличия на плате установочных отверстий, в которые микросхема запаивается, или так называемых «кроваток» - установочных панелей, в которые микросхема вставляется без пайки.

Рис. 3

Корпуса DIP изготавливаются с шагом выводов 2,5 мм, количество выводов от 16 до 64, масса от 1 до 12 г. Корпуса PGA применяются для микропроцессоров и ИМ высокой степени интеграции. Как правило, они весьма дороги и устанавливаются в «кроватки» (socket). Шаг между выводами не менее 2,5 мм, количество выводов от 68 до 387. На корпусе могут располагаться пассивные чип-компоненты для развязки электрических цепей. Корпуса PGA изготавливаются из керамики или пластмассы и используются, как правило, с принудительным охлаждением (вентилятор на верхней крышке). При большом количестве выводов микросхемы имеют существенные массо-габаритные показатели (масса до 84 г, размеры до 66х66 мм).

Рис. 4

Вторая группа корпусов (рис. 4) - самая распространенная, имеет много подвидов. Отметим две разновидности группы.

Собственно FP - прямоугольная или квадратная плоская упаковка (QFP). Выводы расположены с двух или четырех сторон, количество выводов - от 6 до 304, шаг выводов - от 1,27 мм до 0,25 мм, габариты корпуса на плате (длина и ширина) - от 5х5 мм (32 вывода при шаге 0,5 мм) до 40х40 мм (304 вывода, шаг 0,5 мм).

Для QFP процесс нанесения припойных паст методами трафаретной печати на контактные площадки ПП остается самым критическим процессом, вызывающим снижение коэффициентов воспроизводимости сборочной системы. Это приводит к усложнению относительно простых автоматических станков для трафаретной печати, поскольку в таких автоматах не обойтись без автоматического оптического контроля количества и качества нанесения припойной пасты. Особое внимание для этих корпусов уделяется аккуратному обращению при формовке его выводов, тестировании и транспортировке на сборку: для шагов выводов 0,635 мм и менее толщина выводов небольшая и они легко деформируются.

TAB (Tape Automated Bonding, или ТСР - Tape Carrier Package) - в технологии TAB кремниевые кристаллы крепятся к полимерной ленте, на которую нанесены металлические пленочные проводники, формирующие внутренние соединения выводов кристалла. Присоединение выводов чипа к сборке следующего уровня (печатной плате) достигается при помощи внешних выводов полимерной ленты. Для соединения внешних выводов TAB с подложкой обычно используются методы контактной пайки, пайки горячим газом или лазерной микросварки. Сборка очень компактна, высота не превышает 0,75 мм. 320-выводной корпус с шагом выводов 0,25 мм весит не более 0,5 г и имеет габариты 24х24 мм. Для сравнения: 296-выводной пластиковый QFP корпус весит 9,45 г. Технология TAB освоена ограниченным кругом ведущих технологических фирм мира.

Рис. 5

Третий тип корпусов - LCCC (безвыводные керамические или пластиковые кристаллоносители, рис. 5). Выполняется корпус из пластика или керамики. Количество выводов - от 5 до 84. Шаг выводов от 1,27 мм до 0,5 мм. Отсутствие выводов позволяет увеличить плотность компоновки узлов. Несколько более затруднен контроль паяных соединений корпуса с контактными площадками ПП, поскольку часть паяного соединения находится под корпусом микросхемы. Кроме того, для корпусов больших размеров актуальными становятся дефекты паяных соединений, вызванные усталостным разрушением металла припоя из-за термоциклирования в процессе эксплуатации изделия.

Рис. 6

Четвертый тип корпусов для ИМ (рис. 6) - компоненты BGA (Ball Grid Array - шариковые выводы с матричным расположением) и технология CSP (Chip-Scale Packages), флип-чип (flip chip). Отличительной чертой корпусов является наличие контактов на нижней плоскости корпуса в виде шариковых выводов. Такая конструкция корпуса позволила увеличить шаг выводов, и для большинства корпусов он составляет 1,0 или 1,27 мм, что упрощает разводку проводников на ПП. Количество выводов корпуса от 36 до 2401, при этом габариты от 7х7 до 50х50 мм. Высота корпуса не превышает 3,5 мм. Кроме того, шариковые выводы на основе SnPb сплава дали удивительное послабление технологам при выполнении операций установки корпуса на плату: неточность попадания выводов на контактную площадку ПП может составлять до 50%! Все дело в том, что при оплавлении припойной пасты на контактных площадках во время пайки за счет сил поверхностного натяжения расплавленного припоя происходит самоцентрирование корпуса микросхемы.

Недостатком корпусов типа BGA является затрудненный контроль операции пайки и ремонт узлов. Для контроля соединений BGA в узле используются чаще всего рентгеновское оборудование. В последние годы инфраструктура BGA развивалась стремительно, и сейчас известно много видов этого типоразмера, включая пластиковые, керамические, металлические, и другие, а также микро-BGA, напоминающие собой открытые кристаллы. BGA предпочтительнее там, где количество каналов ввода/вывода ИС превышает 25 CSP обычно определяется как компонент, размером не более чем на 20 % превышающий размер самого кристалла (рис. 7). Первоочередными областями применения этих компонентов являются микросхемы памяти (особенно флэш), аналого-цифровые преобразователи, процессоры цифровой обработки сигнала, а также микросхемы специального применения (ASIC) и микропроцессоры.

Рис. 7

Технология флип-чип представляет собой Si-кристалл, непосредственно устанавливаемый на коммутационную подложку узла (например, ПП) лицевой стороной вниз, на которой выполнены внешние контакты в виде припойных шариков из более тугоплавкого сплава, чем SnPb. Из-за того, что выводы формируются на кремниевом кристалле микросхемы, шаг выводов является очень малым и составляет 0,152 мм, что приводит к усложнению ПП. Преимущества технологии:

- экономия места на ПП;

- малые габариты и вес узла с такими компонентами;

- снижение стоимости материалов (у кристалла нет корпуса);

- сокращение длины электрических соединений, что обеспечивает лучшие электрические параметры;

- меньшее количество соединений, что сокращает количество потенциальных точек отказа и обеспечивает более эффективный отвод тепла.

Технология популярна в последние годы, но имеет и свои недостатки:

- дороговизна технологии формирования шариковых выводов у кристалла;

- чрезвычайно плотная разводка платы под посадочное место для флип-чипа, что приводит к повышению расходов на изготовление платы;

- больший объем работы технологов по оптимальному выбору флюсующих веществ и адгезивов в зависимости от вида флип-чипа, подложки и процесса;

- трудности контроля качества в технологии флип-чипов, а также ремонта плат с их применением.

Нестандартные и выводные компоненты.

Автоматизация сборки на платы нестандартных компонентов весьма дорога из-за их малого количества на плате и большого разнообразия типов конструкций. Однако последние годы автоматизация процессов, связанных с нестандартными компонентами, развивается весьма активно, что приносит производителям электронных модулей существенные преимущества. Быстро развивается инфраструктура поддержки данного направления технологии. Разрабатываются новые типы корпусов, близкие по формам к стандартным, которые способны выдерживать высокие температуры при пайке оплавлением припойных паст. В последнее время электронная промышленность мира быстро движется к установлению единых стандартов сборочно-монтажных технологий при использовании нестандартных компонентов.

Сборочно-монтажные технологические процессы с применением традиционных выводных компонентов стояли у истоков автоматизации сборки узлов РЭА. В свою очередь, зарождение технологии монтажа на поверхность и ее бурный рост в 80-90-е годы породили мнение о том, что компоненты с традиционными выводами доживают свой век. Однако технология сборки выводных компонентов выжила перед лицом монтажа на поверхность, показав себя достаточно конкурентоспособной по ряду важнейших факторов.

Инфраструктура технологии монтажа в отверстия гораздо проще и эффективнее, чем технологии монтажа на поверхность. Это приводит к тому, что в развивающемся производстве отраслевого технического обеспечения сборочные процессы всегда начинают с технологии выводных компонентов, что выгодно и по экономическим причинам, поскольку электронные изделия специального назначения в лучшем случае являются малосерийными с подавляющим применением выводных компонентов.

В современной технологии сборки выводных компонентов можно отметить следующие тенденции:

- она развивается в тех отраслях, где ощущается недостаток инвестиций, где низка стоимость рабочей силы, и где квалификация операторов, обслуживающего персонала и технологов находится в состоянии развития;

- в ряде случаев полностью отсутствуют компоненты в поверхностно-монтируемом виде либо они слишком дороги. Это силовые устройства (регуляторы напряжения, транзисторы, диоды, резисторы), а также ряд электролитических конденсаторов, потенциометров, индуктивностей, реле и оптоэлектронных устройств.

Ведущие производители оборудования для сборочно-монтажных процессов в технологии выводных компонентов видят своей главной задачей в ближайшем будущем значительное улучшение технологии сборки и разработки машин и систем нового поколения. Поддержка и инвестиции этого направления гарантированы, поскольку даже сейчас технология монтажа в отверстия обеспечивает наиболее низкую стоимость и наиболее высокую производительность (в пересчете на 1 м2 занимаемой площади), а потому имеет весьма прочные позиции в значительном количестве сборочных производств.

Сборка модулей на печатных платах.

Конструкции электронных средств состоят из множества деталей. Объединение этих деталей в единую конструкцию осуществляется на этапе монтажа. Перед созданием электрических соединений компоненты устанавливаются на печатную плату в определенной последовательности с заданной ориентацией выводов.

Установка компонентов на ПП является наиболее важной и сложной операцией в технологическом цикле. Производительность установки компонентов на плату определяет общую производительность монтажного участка.

Для установки на печатную плату (ПП) широко используются элементы поверхностного монтажа. Они позволяют увеличить плотность монтажа. При монтаже компоненты устанавливаются на контактные площадки, покрытые припойной пастой. При пайке плата с компонентами нагревается до температуры оплавления припоя. Нагрев осуществляется ИК - излучением или потоком горячего воздуха.

Для плат невысокой сложности используются компоненты, монтируемые в отверстия - резисторы, электролитические конденсаторы, переключатели, соединители, микросхемы в корпусах с торцовыми выводами. Проволочные выводы этих компонентов вставляются в металлизированные отверстия платы.

Сборка состоит из подачи компонентов к месту установки, ориентации выводов относительно монтажных отверстий или контактных площадок, сопряжения со сборочными элементами и фиксации в требуемом положении.

В зависимости от типа производства компоненты устанавливаются вручную в единичном, механизировано в серийном и автоматизировано в массовом производстве.

Ручная сборка.

Наиболее простой, но малопроизводительный метод установки компонентов - ручной, при помощи соответствующего инструмента. В этом случае большую роль играют субъективные факторы, уровень профессионализма и опыт оператора. Установка сложных и мелких компонентов отнимает у оператора много времени, а для установки компонентов в корпусах BGA необходимо специальное оборудование. Уменьшение шага компонентов и размеров контактных площадок приводит к повышению требуемой точности установки компонента на плату. Если для DIP компонента с шагом 2,5 мм достаточна точность ±0,25 мм, то для шага 0,63 мм она возрастает до ±0,05 мм, а для шага 0,5 и менее ±25 мкм. Выдерживать и сохранять такую точность в течение рабочей смены оператору крайне сложно, поэтому для поверхностного монтажа более характерна полуавтоматическая или автоматическая сборка.

Применение ручной сборки экономически выгодно при производстве не более 16 тысяч плат в год партиями по 100 штук. Существенным достоинством ручной сборки является возможность постоянного визуального контроля. При объеме выпуска 0,5 - 5 млн. эл/год и плотностью каждой до 500 элементов, применяют оборудование с пантографами, оснащенное механизированными укладочными головками. Если объем выпуска более 5 млн. штук в год, целесообразно использовать автоматизированное оборудование с управлением от ЭВМ.

На ручную сборку компоненты целесообразно подавать подготовленными, уложенными по номиналам в технологические кассеты или магазины. Основная задача сборщика состоит в оперативной и правильной установке требуемого элемента на место. На ПП со стороны установки компонентов способом шелкографии наносится номер элемента и направление установки. Кассеты для компонентов имеют такие же обозначения и располагаются вокруг места сборщика на удобном расстоянии. ПП устанавливаются в держателе при помощи быстрозажимных фиксаторов. Повышение производительности достигается использованием многопозиционного держателя, в котором параллельно друг другу располагается несколько ПП.

При сборке интегральных микросхем (ИС) используются специальные механические держатели, обеспечивающие заданное положение всех выводов, или вакуумные захваты.

Фиксация компонентов на поверхности ПП осуществляется различными способами: подгибкой выводов, двумя диагонально расположенными выводами ИС со штыревыми выводами, приклеиванием к плате флюсом, клеем, липкой лентой или путем установки в специальные держатели на плате. В оснастку сборки также входят пинцеты, лупы и др.

Производительность и качество ручной сборки повышается при использовании сборочных столов с индексацией адреса установки компонентов (рис. 8). Каждое рабочее место комплектуется кассетницей элеваторного или тарельчатого типа, связанной с устройством индексации. Предварительно из пластмассы создается сборочная матрица, в которой в соответствии с чертежом ПП располагаются светодиоды с шагом 2,5 мм, и программируется последовательность подачи сигналов на светодиоды. Параллельно с этим при помощи ламп маркируются кассеты.

Подготовленная матрица укрепляется на рабочем столе, на нее укладывается ПП и фиксируется по базовым штырям. При подключении сборочного стола к сети загорается первая пара светодиодов в матрице и лампочка на кассете (или кассетница поворачивается нужной позицией к окошку в сборочном столе). После установки элемента автоматически осуществляется переход к установке следующего. Знак полярных элементов или первый вывод многоконтактных элементов указывается мигающим светодиодом.

Заканчивается сборка проверкой качества установки: на матрице не должен гореть ни один светодиод. Технологические возможности расширяются с применением записи программы последовательности на диске. Индикация места установки компонента на плате производится сверху сфокусированным лучем света, который управляется сигналами с диска. Очередность установки отражается на экране дисплея. При помощи такого стола за смену можно установить до 6000 компонентов.

Рис. 8. Установка ручной сборки компонентов на печатную плату

Механизированная сборка.

Механизированная сборка с пантографом состоит из монтажного стола с двух координатным перемещением. Компоненты поступают на сборку вклеенными в ленту в заданной последовательности, а призматические компоненты подаются из вертикально расположенных магазинов. ПП устанавливается в держатель по базовым штифтам. Ее позиционирование производится вручную штифтами базовой плиты, которые попадают в соответствующие отверстия в ПП. Копирный щуп пантографа вводят в отверстие шаблона и, обеспечивает блокировку платы.

С помощью копирного щупа пантографа можно позиционировать одновременно несколько держателей ПП, что повышает производительность.

Плата закрывается с помощью маски так, что остаются открытыми только отверстия, необходимые для сборки. После позиционирования установочная головка захватывает элемент и выполняет ряд операций: а) вырезка ЭРЭ из ленты, б) загибка выводов, в) вставление выводов в отверстия, г) обрезка выводов, д) фиксация выводов.

Производительность сборочных установок с пантографом достигает 2 - 2,5 тыс. компонентов в час. Фиксация компонентов происходит подгибкой выводов со стороны пайки. Базовая плата имеет окно, которое позволяет печатной плате смещаться на несколько мм во все стороны по краю. Это окно необходимо для работы гибочного инструмента. Для крупносерийного и массового производства используется установка параллельной сборки, которая имеет неподвижный держатель ПП и до 10 установочных головок, расположенных вокруг ПП.

Автоматическая сборка.

Наиболее сложным, дорогим и высокопроизводительным оборудованием являются автоматические установщики. Принцип их работы состоит в следующем. Файлы САПР транслируются в исполнительные программы, посредством которых монтажная головка устройства автоматически перемещает компонент из накопителя на место его монтирования на плате. Производительность автоматических установщиков компонентов может доходить до 100 тыс. компонентов в час. Номенклатура устанавливаемых компонентов от ограниченного числа чипов и микросхем, наиболее простых для установки, до сложных компонентов, таких как чипы 0402 и 0201, ИМ с шагом выводов менее 0,6 мм и корпусов с шариковыми выводами (BGA). Наиболее дорогостоящее оборудование позволяет монтировать и некоторые выводные компоненты. Максимальная величина формата плат может достигать значения 457x508 мм. Формат головок для захвата и установки компонентов диктует ограничения на максимальную плотность монтажа платы. Ограничения на размещение компонентов (зазор между соседними корпусами, высота рядом расположенных корпусов) налагают также установки оптического контроля качества нанесения паяльной пасты и пайки.

В автоматах установщиках большое значение имеет используемое ПО. Желательно, чтобы оно имело следующие возможности:

– оптимизации исполнительной программы установки компонентов с точки зрения наиболее короткого перемещения головки;

– моделирование работы оборудования, позволяющее вычислять время сборки продукта без реального запуска автомата;

– сбор статистической информации о параметрах работы оборудования;

– возможность отбраковки помеченных бракованных плат;

– защита от несанкционированного или неквалифицированного доступа.

Выбор оборудования необходимо проводить исходя из особенностей конструкции платы и производительности участка. При лабораторном производстве оптимально использование полуавтоматов. При больших объемах производства необходимо использование автоматов, которые помимо увеличения производительности повышают качество изделия и снижают вероятность ошибок.

В автоматических станках позиционирование сборочного стола осуществляется с высокой скоростью и точностью при помощи безинерционных шаговых двигателей, управляемых от ЭВМ. Одновременно автоматизируется весь комплекс работ по установке и фиксации компонентов на плате, включая контроль. Высокая гибкость управления сборочным оборудованием и высокая производительность (18 - 24 тыс. эл/час) позволяет использовать их как в условиях серийного, так и массового производства. Однако стоимость такого оборудования в 5 - 7 раз выше, чем стоимость станков с пантографами. Повышаются требования к жесткости станка и точности выполнения рисунка.

Сборочные машины для компонентов с планарными выводами выполняют монтажные операции сразу после сопряжения элементов.

Автоматы снабжаются системами оперативного контроля ИС (модуль С1-1800 фирмы Northeastern США), модулями загрузки и выгрузки на основе программируемых роботов, модулями сборки нестандартных элементов (теплоотводов, переключателей и др.)

Автоматические сборочные линии состоят из отдельных сборочных агрегатов, устройства подачи ПП, транспортной системы и накопителя готовых изделий, объединенных централизованным управлением от мини - ЭВМ. Одна линия с 50 станками фирмы Dyna/Pert (США) обеспечивает установку 500 тыс. эл. в день. Большое значение имеет определение оптимальной длины линии. Чтобы исключить вероятность отказов линии, целесообразно использовать линию с меньшим числом сборочных агрегатов, а плату собирать за несколько переходов.

При изготовлении небольших партий РЭА используются универсальные сборочные машины (рис. 9), которые легко переналаживаются. Информация, необходимая для управления машиной подается из носителя данных (в осн. перфоленты), поэтому переналадка на другой тип плат при достаточно большом числе магазинов означает только замену одного носителя данных на другой.

Универсальные сборочные машины автоматически позиционируют печатные платы, выбирают компонент из магазинов ЭРЭ, управляют сборочной головкой, фиксируют выводы. Печатная плата базируется на позиционном столе, при этом точную фиксацию обеспечивают отверстия, просверленные по диагонали ПП - базовые отверстия. Этими базовыми отверстиями ПП насаживается на направляющие штифты стола. Высокую точность расположения базовых отверстий получают совместным сверлением базовых и монтажных отверстий.

Точность фиксации стола составляет ±0,025 мм.

Позиционирование стола производится шаговым двигателем. Параллельно во времени при позиционировании ПП происходит выборка компонентов и их транспортировка к сборочной головке. Число магазинов должно быть достаточно большим (20 - 40). Когда заканчивается подача компонента и позиционирование ПП происходит установка компонента сборочной головкой. После этого выводы фиксируются посредством деформации под платой. Если компоненты имеют много выводов, то достаточно деформировать несколько из них. Для установки компонентов с планарными выводами сборочные головки снабжаются U - образным электродом для оплавления припоя.

Рис. 9. Универсальная сборочная машина

Аспекты применения различных видов сборки.

Применение механизированной сборки принимается во внимание уже при конструировании ПП. По краю ПП предусматривается поверхность для базирования на устройстве позиционирования (20 - 30 мм). Компоненты на ПП располагают построчно и столбцами, их длинные оси должны иметь одинаковое направление, края компонентов желательно, чтобы образовывали прямую линию.

Машинная сборка требует относительно больших подготовительных затрат для программирования компонентов, высока и стоимость устройств. Поэтому необходимо заботится о полной загруженности устройства.

Параллельная сборка в виде ударного монтажа годится только для специального применения. Величина партии должна быть очень большой из-за обширного времени подготовки машин.

Автоматические линии пригодны только для очень большого количества изделий, чтобы оправдать чрезвычайно высокие капиталовложения. Ручная сборка применяется там, где спектр ЭРЭ на ПП очень большой и где невозможна стандартизация рабочего места, а также где исполнение выводов и ИС не допускает надежной механизированной сборки. Большая плотность упаковки требует также ручной сборки.

Рис. 10

Способы позиционирования.

В технологии поверхностного монтажа компонентов различают четыре способа позиционирования компонентов:

* Конвейерное позиционирование ("поточно-последовательное"). Плата движется по конвейеру вдоль нескольких модулей позиционирования. Каждый модуль осуществляет размещение одного типа корпусов (рис. 10).

Рис. 11

* Последовательное единичное либо групповое позиционирование. Одна или две управляемые от ЭВМ монтажные головки выбирают компоненты из питателей и устанавливают их на плате. В некоторых автоматах подвижная головка перемещается в двух направлениях (X и Y). Более частот применяются автоматы, где под неподвижную головку подводится подвижный стол для позиционирования компонентов (рис. 11).

Рис. 12

* Последовательно-параллельное позиционирование. Последовательно-параллельное позиционирование называют также синхронно - последовательным, поскольку оно осуществляется в несколько приемов, причем за один прием устанавливается сразу несколько компонентов в корпусах различной сложности. В этом случае автоматы имеют координатный столик, на котором крепится плата и последовательно расположенные монтажные многозахватные головки. Столик по программе может перемещаться по осям X-Y. Каждая головка устанавливает свой тип компонента либо последовательно, либо одновременно (рис. 12).

Рис. 13

* Массовое или поточно-параллельное позиционирование. Многозахватные головки за один прием устанавливают на плату большой набор компонентов. За одну операцию ими заселяется часть или вся плата (рис. 13).

Метод массового размещения более всего применим к очень высоким объемам выпускаемой продукции с низкой степенью смешанности компонентов для различных типов монтажа. Автоматы-укладчики, использующие метод последовательного группового размещения, могут обеспечить высокий уровень гибкости производства, но с более низкой скоростью позиционирования. Они применяются в случае низкого или среднего объема производства изделий с высокой степенью смешанности монтажа. Последовательно - параллельные автоматы наилучшим образом приспособлены для средних и высоких объемов работ при низкой степени смешанности монтажа. В некоторых автоматах предусмотрена возможность смены монтажных головок и захватов. Это увеличивает гибкость производственных линий, хотя и снижает производительность.

Системы подачи компонентов.

При разработке автоматов-укладчиков используют принцип произвольного доступа, заключающийся в том, что компонент выбирается из питателя непосредственно перед позиционированием. Существует несколько способов подачи компонента в монтажную головку:

§ Компонент переносится из питателя на место установки с помощью поворотной башенной головки.

§ Монтажная головка сама захватывает компонент непосредственно из питателя и размещает его на плате.

§ Питатели устанавливаются на каретку, управляемую ЭВМ, которая в нужный момент подает на сборку требуемый компонент.

От метода подачи компонентов зависит конструкция питающих механизмов. Применение поворотных башенных головок и подвижных кареток ограничено конструкцией и типоразмерами корпусов, поставляемых на лентах - носителях. Питатели этого типа позволяют производить высокоскоростную сборку. Автоматы с такими системами питания, как ленты-носители компонентов, магазины-шины и ячеистые магазины, производят захват каждого компонента отдельно и имеют низкую производительность, но они обладают большой гибкостью применительно к разным типам конструкций компонентов.

Производительность автоматов-укладчиков компонентов может составлять от 500 до более чем 100000 компонентов в час. Автоматы сильно отличаются друг от друга по своей гибкости, методам позиционирования, уровню конструктивной сложности, и подразделяются на четыре группы:

§ Автоматы с производительностью менее 4000 компонентов в час. Предназначены для выпуска небольших партий изделий в научно-исследовательских лабораториях или опытных партий на этапе освоения техники поверхностного монтажа. Их конструкция разрабатывается с учетом удобства работы в период обучения специалистов. Сюда также входят высокопрецизионные автоматы для позиционирования PLCC.

§ Автоматы со средней производительностью 4000-6000 компонентов в час. Большая часть этих машин обладает способностью к гибкой перенастройке.

§ Высокопроизводительные автоматы: 9000-20000 компонентов в час. Предназначены для позиционирования чип-компонентов в прямоугольном корпусе или в корпусе типа MELF, а также компонентов в корпусе типа SO.

§ Автоматы для массового производства: более 100000 компонентов в час. Они могут устанавливать только простые чип-компоненты.

§ Производительность и уровень гибкости автомата - укладчика обусловливают потенциальные возможности его применения. Гибкость укладчика определяется количеством типоразмеров корпусов компонентов и конструкций питателей, с которыми он в состоянии работать. Малопроизводительные укладчики, обладающие высокой гибкостью, могут работать со всеми форматами упаковки поставляемых компонентов (лента-носитель, магазин-шина, ячеистый магазин). Гибкость оборудования связана со следующими факторами:

§ Ограниченным количеством входов загружаемых компонентов различных типоразмеров, обычно менее 60 (увеличение числа типоразмеров корпусов компонентов, с которыми может работать технологическая линия, требует совместного использования нескольких сборочных модулей).

§ Высокоточным позиционированием с использованием системы технического зрения, рекомендуемой для установки компонентов с малым шагом выводов (менее 0,635мм).

Перспективной концепцией для монтажных автоматов является концепция, где каждая единица оборудования решает как можно более широкий круг задач, а применение отдельного станка для каждой отдельной задачи будет неэкономичным.

Пайка на печатных платах.

Производство печатных плат на заключительной стадии сборочно-монтажных операций включает в себя следующие основные этапы: оплавление припоя с помощью печей или в машинах; отмывка плат; выходной контроль; ремонт дефектных плат, если он возможен; влагозащита плат; упаковка.

Для монтажа компонентов контактные площадки платы должны быть покрыты припоем. Остальная поверхность платы покрывается защитной маской из фоторезиста.

В платах с краевыми соединителями контактные площадки покрываются пленками золота, палладия или родия. Минимальное стабильное сопротивление, высокая износостойкость таких контактов обеспечивается гальваническим осаждением этих пленок в специальных гальванических ваннах.

Технологический процесс монтажа состоит из следующих операций:

Нанесение и сушка флюса.

Предварительный нагрев платы и компонентов.

Пайка.

Очистка.

Пайка представляет собой распространенный способ монтажа компонентов в производстве радиоэлектронных узлов. При этом обеспечивается и механическое крепление выводов компонентов, и электрическое контактирование в соответствии с электрической принципиальной схемой. При пайке две металлические детали (или детали с металлическим покрытием) соединяются при помощи припоя - третьего металла или сплава. Соединяемые детали не расплавляются сами, расплавляется только припой. Поэтому пайка имеет более щадящий тепловой режим для деталей, чем сварка. Для получения качественного паяного соединения, обладающего хорошими электропроводящими и прочностными свойствами, необходимо обеспечить несколько условий:

Получить чистые металлические поверхности у соединяемых деталей (удалить загрязнения и пленки окислов) с помощью технологического флюса;

Нагреть припой выше точки плавления;

Обеспечить вытеснение флюса с помощью наступающего припоя;

Обеспечить растекание жидкого припоя по металлической поверхности;

Обеспечить диффузию атомов из твердой металлической фазы в жидкий припой и наоборот - образование сплавных зон.

Среди припоев в радиоэлектронике наиболее широкое распространение получили припои на основе композиции олова и свинца (ПОС). Сплав имеет особую точку, называемую точкой эвтектики. В этой точке температура кристаллизации припоя составляет 183 °С, что значительно ниже точек плавления Sn и Pb (232 °С и 327 °С).

Флюс является материалом, под воздействием которого происходит быстрое и совершенное смачивание металлической поверхности соединяемых деталей расплавленным припоем благодаря влиянию сил поверхностного натяжения. Кроме того, флюс обладает свойством растворения и удаления окисных слоев на контактируемых металлах и защиты очищенной поверхности от нового окисления. Остатки флюса должны легко удаляться, быть не изменять электрические параметры исходного материала и не вызывать коррозии. Распространены флюсы на основе органических кислот из смол хвойных пород деревьев (канифоль). Известно и большое количество синтетических материалов.

Рис. 14

Смачивание, как решающий фактор процесса пайки, может улучшаться посредством поверхностно-активных веществ флюсов. Качество смачивания можно определить по краевому углу смачивания (рис. 14). Уменьшение поверхностного натяжения припоя в расплавленном состоянии приводит к уменьшению угла смачивания. Именно в процессе смачивания создаются условия (наряду с высокой температурой) для создания диффузионных сплавных зон на границах раздела припоя и соединяемых металлов, которые определяют прочностные характеристики паяного соединения. Зачастую прочность диффузионных сплавных зон превышает прочность соединяемых металлов.

В последнее время набирает силу движение за исключение свинца как токсичного металла из электронных сборок. В поисках сплавов на замену традиционной композиции SnPb исследовано большое количество материалов, однако абсолютно равноценной замены пока не найдено. ПОС обладает практически оптимальными свойствами для РЭА: хорошей смачиваемостью, прочностью, пластичностью, удобной точкой плавления, коррозионной стойкостью, усталостной прочностью, и, наконец, стоимостью.

Появление на ПП поверхностно монтируемых компонентов существенно изменило технологию пайки. Пайка волной припоя была внедрена в середине прошлого века и до настоящего времени является единственным групповым методом пайки компонентов, устанавливаемых в отверстия ПП. Она выполняется чаще всего погружением обратной стороны платы с выступающими выводами в ванну с припоем. Для пайки плат со смешанным монтажом (компоненты, монтируемые в отверстия с одной стороны платы и простые, монтируемые на поверхность с другой) был разработан метод пайки двойной волной припоя.

Для пайки поверхностно монтируемых компонентов была разработана технология оплавления дозированного припоя. Методами трафаретной печати припой в виде пасты наносится на контактные площадки ПП, затем на него устанавливаются компоненты. В ряде случаев припойную пасту просушивают после нанесения с целью удаления из ее состава летучих ингредиентов или предотвращения смещения компонентов непосредственно перед пайкой. Оплавление припоя и получение паяных соединений происходит в нагревательном устройстве.

В 1973 г. появилась пайка в парогазовой фазе (ПГФ), когда фирма DuPont разработала и запатентовала специальные жидкие материалы, имеющие температуру кипения 215 °С. С 1983 г. основным конкурентом пайки в ПГФ стала пайка расплавлением дозированного припоя с помощью инфракрасного нагрева (ИК-пайка). Примерно с этого же времени развивается пайка в конвекционных печах. В Японии пайка компонентов, устанавливаемых на поверхность недорогих плат с низкой плотностью монтажа, производится с применением нагретого инструмента. Для чувствительных к тепловому воздействию и сложных микросборок с поверхностным монтажом ведущими японскими компаниями была разработана лазерная пайка. Ведущие поставщики сборочно-монтажного оборудования обычно включают установки для пайки в состав выпускаемых производственных линий.

Пайка в парогазовой среде (ПГФ) с расплавлением дозированного припоя применима только к сборкам с поверхностным монтажом. Суть процесса: специальная жидкость нагревается до кипения, затем ее пары конденсируются на ПП, отдавая скрытую теплоту парообразования открытым участкам сборки. При этом припойная паста расплавляется и образуется паяное соединение между выводом компонента и контактной площадкой платы. Когда температура платы достигает температуры жидкости, процесс конденсации прекращается, тем самым заканчивается и нагрев пасты. Повышение температуры платы от ее начальной температуры до температуры расплавления припоя осуществляется очень быстро и не поддается регулированию. Поэтому необходим предварительный подогрев платы с компонентами для уменьшения термических напряжений в компонентах и местах их контактов с платой. Температура расплавления припоя также не регулируется и равна температуре кипения используемой при пайке жидкости. Такой жидкостью является инертный фторуглерод (например, FC-70).

печатный плата резистор пайка

Рис. 15

В первых установках для пайки в ПГФ применялись две рабочих жидкости. С целью предотвращения утечки паров дорогого фторуглерода и припоя поверх основной технологической среды из инертного фторуглерода создавалась дополнительная технологическая среда из более дешевого фреона. Основной недостаток этих установок состоял в том, что на границе двух технологических сред происходило образование различных кислот и для защиты ПП требовались системы их нейтрализации. Затем стали выпускаться установки для пайки в ПГФ конвейерного типа, встраиваемые в технологические сборочно-монтажные линии. Такие установки имеют относительно небольшие входное и выходное отверстия, позволяющие реализовать систему с одной технологической средой (рис. 15).

Метод пайки расплавлением дозированного припоя с помощью нагретого приспособления разработан в Японии применительно к изделиям бытовой электроники с невысокой плотностью монтажа. ПП с компонентами помещается на теплопроводящий транспортер, содержащий набор специальных пластин, температура которых контролируется. Пластины подбираются по габаритам компонента, прижимают выводы к контактным площадкам и передают тепло для оплавления припоя. Метод рекомендован к применению для пайки ТАВ корпусов и flat-pack, имеющих весьма тонкие выводы, подверженные изгибанию. Во время прижима осуществляется разогрев соединения до точки оплавления припоя по запланированному графику, а затем идет процесс охлаждения паяного контакта, и только затем убирается инструмент. Процесс последовательный, достаточно медленный, однако обеспечивает надежную пайку для ответственных и дорогих деталей.

Пайка расплавлением дозированного припоя с помощью лазерного излучения также является последовательным процессом. Для нагрева соединений применяются твердотельные либо газовые лазеры. Главное достоинство лазерной пайки заключается в том, что пучок лазерной энергии хорошо фокусируется. Метод особенно эффективен для пайки термочувствительных компонентов и компонентов с малым шагом выводов. Некоторые из наиболее сложных сборок на платах (например, центральные процессоры вычислительных машин) размером 254x305 мм могут иметь до 10000ч15000 паяных соединений. Главным здесь является качество и надежность паяных соединений, а не производительность установки.

На качество паяных соединений узла влияет множество факторов, в том числе и выбранный конструктором вариант размещения компонентов. Корпуса для больших и сверхбольших интегральных микросхем изготавливаются из материалов, которые должны обеспечивать хороший теплоотвод от корпуса ИМ в процессе эксплуатации. Низкое тепловое сопротивление корпуса, большая масса и теплоемкость крупных корпусов не позволяют получить одинаковую температуру в области выводов при пайке малых и больших корпусов, расположенных на плате в непосредственной близости. Такой эффект необходимо иметь в виду и технологу, и конструктору.

Припойная паста.

Для нанесения методом трафаретной печати через металлический трафарет или для нанесения дозатором разрабатываются различные варианты паяльных паст. Характеристики припойных паст в первую очередь определяются их составом.

Припойные пасты представляют собой смесь мелкодисперсного порошка материала припоя со связующей жидкой основой, в которую входит флюс. Содержание порошка припоя составляет приблизительно 88% от веса пасты. Состав паст выражают через соотношение ингредиентов материала припоя. Так, например, 63/37 означает содержание в составе материала припоя 63% олова и 37% свинца.

Характеристики частиц материала припоя в пасте оказывают существенное влияние на качество паяного соединения. Наиболее важным параметром является размер частиц припоя. Если припойная паста наносится на ПП через сеточный трафарет, рекомендуется применять припойную пасту, у которой максимальный размер частиц припоя составляет половину размера ячейки трафарета. Форма частиц материала припоя также оказывает влияние на процесс трафаретной печати. Частицы припоя сферической формы облегчают процесс трафаретной печати и позволяют получать хорошую воспроизводимость технологического процесса от одной партии изделий к другой при формировании рисунка припойной пасты. Наличие в пасте частиц другой формы может способствовать появлению загрязнений, затрудняющих процесс печати, и ускорению процессов окисления материалов припоя. Пульверизация расплавленного припоя, с помощью которой наиболее просто получить порошкообразные припои, образует частицы преимущественно сферической формы.

Флюс в составе припойных паст служит не только для активации металлических поверхностей, удаления с них окислов и предотвращения окисления припоя в процессе пайки, но и обеспечивает требуемую растекаемость и изменение вязкости со временем при нанесении припойной пасты на ПП. Если состав припойной пасты имеет недостаточную вязкость, она будет растекаться, что приведет к потере точности рисунка. Для уменьшения растекания пасты можно увеличить процентное содержание в ней порошка припоя или изменить химический состав флюса путем введения в него специальных вяжущих добавок (загустителей). Но здесь нужно соблюдать меру, ибо в противном случае может произойти закупорка сопла дозатора или ячеек трафарета.

Флюс должен удалять окислы с контактируемых металлических поверхностей при пайке. Для эффективного протекания этого процесса очень важно правильно выбрать необходимый температурно-временной режим пайки (температурный профиль). Если во время разогрева платы температура повышается слишком быстро, то растворитель, входящий в припойную пасту в составе флюса, быстро испаряется, что приводит к потере активности флюса, неравномерному расплавлению припоя, разложению или выгоранию его компонентов. Если же нагревательный цикл завершен преждевременно, то окислы в местах паяных соединений могут быть не полностью удалены.

Для избегания окисления припоя формирование слоя припойной пасты рекомендуется производить в химически инертной атмосфере. Хранение пасты рекомендуется осуществлять в прохладном месте с температурой от +5 до +10 °С. Минимальный срок хранения паяльной пасты с флюсом при такой температуре составляет 6 месяцев с даты производства. Перед применением емкость с пастой необходимо выдержать при комнатной температуре до полной стабилизации в течение 2ч8 часов. Не рекомендуется открывать холодную емкость, это может вызвать конденсацию влаги и ухудшение параметров паяльной пасты. Категорически не допускается подогрев пасты нагревательными приборами.

Как правило, паяльные пасты с флюсом полностью готовы к применению и не требуют дополнительных разбавителей. Паяльная паста, которая не была использована в течение рабочей смены, не должна смешиваться со свежей пастой. Остатки пасты рекомендуется складывать в отдельную тару и использовать в начале следующей смены. Не рекомендуется использовать пасту, которая находилась на трафарете две рабочих смены. Если устройство трафаретной печати не использовалось в течение четырех часов, рекомендуется произвести полную очистку трафарета от остатков паяльной пасты.

Распространенными материалами выводов и внешних контактов электронных компонентов являются золото, серебро, палладий-серебро, медь, луженая медь, и припойная паста должна выбираться таким образом, чтобы исключить выщелачивание этих материалов. Большинство паяльных паст с флюсом обладают хорошими клеящими свойствами, достаточными для удержания компонентов после установки до пайки в течение до 8 часов. Клеящие свойства пасты зависят от температуры и влажности, поэтому рекомендуется произвести испытания для определения максимального времени удержания пастой компонентов в условиях реального производства. Печатные платы могут быть запаяны в течение 24 часов после нанесения паяльной пасты без ухудшения качества пайки, высокая температура и влажность могут сокращать это время.

Рекомендуемые режимы процесса пайки для наиболее популярных сплавов Sn63/Pb37 и Sn62/Pb36/Ag2, входящих в состав паст, таковы:

1. стадия предварительного нагрева от 20 до 140 °С, скорость нагрева 1 °С/сек;

2. стадия предварительной сушки от 140°С до 160°С, скорость нагрева 0,5 °С/сек;

3. стадия пайки от 160 до 215 °С, скорость нагрева 2 °С/сек.

Более длительное время стадии пайки может улучшить качество паяного соединения, уменьшить количество и сделать более инертными остатки флюса после пайки. Более короткое время пайки может также дать хорошие результаты, однако в этом случае возможно увеличение количества остатков флюса после пайки. Рекомендуется обеспечить время выдержки выше температуры плавления (+183 °С) в пределах от 30 до 60 сек. Минимальная пиковая температура в зоне пайки должна быть не менее 210 °С в течение 5 сек. Увеличение скорости повышения температуры на стадии предварительного нагрева может привести к увеличению остатков флюса после пайки и ухудшению внешнего вида паяного соединения. Этот косметический дефект полностью устраняется при отмывке остатков флюса.

Вышеуказанные рекомендации служат для первоначальной установки режимов пайки. Конкретные режимы пайки определяются технологом исходя из конструкции печатной платы и оборудования для пайки.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.