Эффект полного отражения в системах связи

Рассмотрение внутреннего отражения как явления отражения электромагнитных или звуковых волн от границы раздела двух сред при условии, если волна падает из среды, где скорость ее распространения меньше или угол падения превосходит некоторый критический.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 01.03.2019
Размер файла 961,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Эффект полного отражения в системах связи

Дедюлина В.А.

Научный руководитель: ГлущенкоА.Г.

Поволжский государственный университет телекоммуникаций и информатикиСамара, Россия

Полное внутреннее отражение -- явление отражения электромагнитных или звуковых волн от границы раздела двух сред при условии: 1- волна падает из среды, где скорость ее распространения меньше (в случае световых лучей это соответствует бомльшему показателю преломления), 2 - угол падения превосходит некоторый критический угол . При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

Угол полного внутреннего отражения- минимальный угол падения света, начиная с которого возникает явление полного внутреннего отражения:[1-2] звуковой волна связь электромагнитный

Пример:

Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас идёт речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект.[2-3] Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны.

Рис.1

Луч SО1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О1А1 и частично отражается назад в воду - луч О1В1. Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу. Луч SО2, чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О2А2 будет тусклее, чем луч О1А1, то есть получит меньшую долю энергии, а отраженный луч О2В2, соответственно, будет ярче, чем луч О1В1, то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 900. В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Эффект полного отражение в ВОЛС

Волоконно-оптическая линия связи (ВОЛС) - линия связывающая две электрические цепи путем перенесения информации с использованием светового сигнала внутри оптического волокна (тонкой стеклянной или пластиковой нити) Принцип работы оптического волокна основан на эффекте полного внутреннего отражения. Входной сигнал модулирует источник светового излучения, а для обратного преобразования света в электрический сигнал используют фотоприемники. Таким образом, ВОЛС включает следующие основные компоненты:

1) передатчик;

2) кабель на базе оптического волокна;

3) приемник;

4) соединители (коннекторы).

Для более сложных линий и коммуникационных сетей используются дополнительные элементы, такие как разветвители, мультиплексоры и распределительные устройства.

Наиболее ярко видно использования явления полного отражения на примере оптоволоконного кабеля. [3-4]

Оптоволоконные кабели

Оптическое волокно состоит из центральной части (ядро) и окружающей оптической оболочки, имеющей меньший показатель преломления. Распространяясь по ядру лучи света не выходят за его пределы, испытывая отражение на границе раздела ядро - оболочка. Свет, падающий на границу под углом, меньше критического, будет проникать в оптическую оболочку, и оптическая оболочка не предназначена для переноса света. Также волокна имеют дополнительное защитное покрытие. Волокна сами по себе имеют чрезвычайно малый диаметр. Свет заводится внутрь волокна под углом, больше критического, к границе “ядро/оптическая оболочка”, и испытывает полное внутреннее отражение на этой границе. Поскольку углы падения и отражения совпадают, то свет и в дальнейшем будет отражаться от границы. Таким образом, луч света будет зигзагообразно двигаться вдоль волокна.[4-5]

Рис.1

Выражение полосы пропускания через одномодовую дисперсию является сложным, его приблизительная оценка определяется соотношением:

где: Disp - дисперсия на рабочей длине волны в сек на нанометр и на километр; SW- ширина спектра источника в нм; L - длина волокна в км.

Рис.2

Затухание - это потеря оптической энергии по мере движения света по волокну, измеряется в децибелах на километр. Затухание зависит от длины волны. Существуют окна прозрачности, в которых свет распространяется вдоль волокна с малым затуханием. Следовательно, при работе источника света в этих диапазонах потери при передаче в волокне будут минимальны. На рис.2а представлена типичная кривая затухания для многомодового волокна с низкими потерями. Рис.2б представляет ту же кривую для одномодового волокна. Важнейшей особенностью затухания в оптическом волокне является его независимость от частоты модуляций внутри полосы пропускания. Затухание в волокне определяется тремя эффектами: рассеянием, поглощением и наличием микроизгибов. На рис.3 показано, что вариации границы могут приводить к отражению мод высокого порядка под углами, не допускающими дальнейших отражений.

Рис.3

Численная апертура (NA) - определяет способность волокна собирать лучи. NA зависит от свойств материалов волокна и определяется показателями преломления ядра и оптической оболочки NA волокна указывает на то, как свет вводится в волокно и распространяется по нему. Волокно с большим значением NA (т.е. подразумевает большее количество возможных световых траекторий) хорошо принимает свет, в то время, как в волокно с малым значением NA (волокна с широкой полосой пропускания) можно ввести только узконаправленный пучок света.

Также можно определить величину углов, при которых свет распространяется вдоль волокна. Эти углы образуют конус, называемый входным конусом, угловой растр которого определяет максимальный угол ввода света в волокно.

Размещено на http://www.allbest.ru/

Рис.4

Источник и приемник также имеют свои апертуры:

NAист источника определяет угловую апертуру входного света.

NAдет детектора определяет рабочий диапазон углов для приемника.

Очень важно выполнить условие: NAист = NAдет. Рассогласование NA приводит к дополнительным потерям при передаче света от устройства с меньшим значением NA к устройству с большим значением.

На эффекте полного внутреннего отражения построены современные оптические линии связи, как волоконные структуры, так и интегральные структуры. Эффект полного внутреннего отражения может быть использован для канализации других типов волновых процессов, например, передачи акустических сигналов.

Список литературы

1. https://studopedia.ru/5_43660_polnoe-vnutrennee-otrazhenie.html

2. https://mini-fizik.blogspot.ru/2016/06/blog-post_68.html

3. https://studfiles.net/preview/6717401/

4. http://extusur.net/content/3_optika/3_1_2.html

Размещено на Allbest.ru

...

Подобные документы

  • Составление m-файла, позволяющего вычислять модули и фазы коэффициентов отражения от границы раздела при произвольных параметрах границы сред. Общая характеристика полного внутреннего отражения. Особенности зависимостей при отражении от частоты сигнала.

    контрольная работа [528,3 K], добавлен 24.01.2011

  • Феноменологическая модель рассеяния электромагнитных волн протяженной поверхностью. Дискретное представление и динамическая импульсная характеристика отражения поверхности. Анализ простого импульсного и оптимально согласованного с поверхностью сигналов.

    курсовая работа [5,1 M], добавлен 16.08.2015

  • Физика явления полного внутреннего отражения. Принцип формирования канала утечки. Места усиления действия акустических волн на волоконно-оптических сетях. Методы регистрации утечки. Оценка защищенности от утечки. Оптический рефлектометр "FOD-7003".

    курсовая работа [1,3 M], добавлен 05.01.2013

  • Предпосылки и этапы проведения измерения параметров по длине кабеля, его количественное измерение с помощью коэффициента отражения. Сущность принципа импульсных измерений. Расчет скорости распределения электромагнитных волн в кабеле прибором Р5-15.

    лабораторная работа [117,8 K], добавлен 04.06.2009

  • Локация как область техники, использующая явления отражения и излучения электромагнитных волн различными объектами для обнаружения этих объектов. Структурная схема радиолокатора. Основные цели и задачи определения трех групп навигационных параметров.

    контрольная работа [1,5 M], добавлен 21.08.2015

  • Падение плоской волны на границу раздела двух сред, соотношение волновых сопротивлений и компонентов поля. Распространение поляризованных волн в металлическом световоде, расчет глубины их проникновения. Определение поля внутри диэлектрического световода.

    курсовая работа [633,8 K], добавлен 07.06.2011

  • Спектр электромагнитных волн. Дальность действия ультракоротких волн. Повышение эффективности систем связи. Применение направленных приемных антенн в радиоастрономии. Возможность фокусирования высокочастотных радиоволн. Поглощение сигнала атмосферой.

    лекция [279,9 K], добавлен 15.04.2014

  • Волоконный световод - тонкая кварцевая нить, по которой может распространяться свет за счет полного внутреннего отражения. Принципиальная схема волоконно-оптической системы связи со спектральным уплотнением каналов. Характеристика хроматической дисперсии.

    курсовая работа [272,6 K], добавлен 05.05.2011

  • Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат [195,9 K], добавлен 26.03.2019

  • Структура электромагнитного поля основной волны. Распространение электромагнитных волн в полом прямоугольном металлическом волноводе. Резонансная частота колебаний. Влияние параметров реальных сред на процесс распространения электромагнитных волн.

    лабораторная работа [710,2 K], добавлен 29.06.2012

  • Оптические явления на границе раздела двух сред. Полное внутреннее отражение. Оптические волноводы. Особенности волноводного распространения. Нормированная переменная. Прямоугольные волноводы. Модовая дисперсия. Системы волоконно-оптической связи.

    контрольная работа [65,3 K], добавлен 23.09.2011

  • Качественные частотные зависимости модуля и аргумента характеристического полного сопротивления в длинной линии. Переходное затухание на ближнем конце. Особенности отражения импульса в канале. Расчет потерь ввода и переходного затухания на дальнем конце.

    контрольная работа [1,0 M], добавлен 16.01.2014

  • Определение однослойного, двухслойного, трехслойного и многослойного просветляющего покрытия с минимальным коэффициентом отражения для данной длины волны. Оптические толщины, материалы напыляемых покрытий. Спектральные зависимости коэффициента отражения.

    курсовая работа [329,1 K], добавлен 18.03.2013

  • Понятие о длинных линиях. Эквивалентная схема бесконечно малого отрезка длинной линии. Определение коэффициента отражения волн. Использование витой пары и коаксиального кабеля в качестве соединительных кабелей. Выбор типов согласующих резисторов.

    курсовая работа [2,8 M], добавлен 24.07.2014

  • Первые устройства для приема электромагнитных волн и начальный этап развития беспроволочного телеграфа. Передача радиотелеграфных сигналов волнами различной длины, суть гетеродинного метода. Использование электронной лампы как усилительного элемента.

    реферат [811,4 K], добавлен 10.03.2011

  • Экспериментальное исследование поляризационных явлений плоских электромагнитных волн. Методы формирования заданных поляризационных характеристик волн. Расчет коэффициентов эллиптичности для горизонтальной, вертикальной и диагональной поляризации.

    лабораторная работа [224,6 K], добавлен 13.01.2015

  • Особенности распространения волн. Технология MIMO: принцип работы и основные цели. Пропускная способность и варианты реализации MIMO. Повышение скорости передачи данных. Основные сложности в реализации MIMO. Описание линейной MIMO-модели в MATLAB.

    курсовая работа [2,6 M], добавлен 29.09.2014

  • Типы волноводных систем. Поведение электромагнитных волн в кольцевых системах. Разработка устройства для изменения электрической длины кольцевой резонаторной системы, апробирование установки. Измерение коэффициента передачи, устройство для его реализации.

    дипломная работа [936,6 K], добавлен 18.12.2015

  • История развития радиолокации и радаров. Сущность явления отражения радиоволн от различных объектов. Использование для радиолокации антенны в виде параболических металлических зеркал. Определение расстояния и скорости цели, расчет ее траектории.

    презентация [2,6 M], добавлен 30.03.2015

  • История исследования электромагнитных волн различной длины, их общая характеристика и свойства. Особенности распространения волн коротковолнового диапазона, поверхностных и пространственных радиоволн. Сверхдлинные, длинные, средние и короткие волны.

    реферат [1,6 M], добавлен 17.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.