Способы демонтажа плат и пайка деталей между собой

Определение термина "пайка", ее основные достоинства. Классификация припоев по химическому составу, температуре плавления и технологическим свойствам. Основные виды паяльных флюсов. Подготовка деталей к пайке и лужение, обработка деталей после пайки.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид отчет по практике
Язык русский
Дата добавления 18.02.2019
Размер файла 999,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство транспорта Российской Федерации

Федеральное агентство железнодорожного транспорта

Федеральное агентство бюджетного образовательного учреждения высшего образования

«Омский государственный университет путей сообщения» ОмГУПС (ОмИИТ)

Кафедра: «ИСИБ»

Отчёт по летней учебной практике

На тему: «Способы демонтажа плат и пайка деталей между собой»

Выполнил студент гр. 24 Б

Райнгард Ю.В.

Руководитель: доцент

Бондаренко К.А.

Омск, 2016

Содержание

Введение

1. Описание процесса пайки

2. Материалы для пайки

3. Виды припоев

4. Виды флюсов

5. Процесс описания и способы пайки

Вывод

Используемая литература

Введение

Целью практики было закрепление уже имеющихся знаний, а также умение обращаться с электрическими инструментами, такие как паяльник, мультиметр, электрическое сверло и другие.

По заданию преподавателя нами были демонтированы платы, от которых мы отпаивали элементы с помощью паяльника. Это были резисторы, конденсаторы, транзисторы, диоды, трансформаторы различных номиналов, форм и цветов, которые в дальнейшем мы и разложили по отдельным сопротивлениям, ёмкостям, свойствам и характеристикам.

При сортировке элементов мы использовали дополнительные ресурсы, чтобы прочитать цветную маркировку на резисторах и разложить их по номиналам в ячейки. Конденсаторы мы тоже разделяли по ёмкостям, для повторного использования в последующих схемах, которые будем мы и другие студенты в последующем году составлять и паять.

Также при невозможности определения номинала резисторов, мы использовали мультиметры для точного определения сопротивления элементов.

Практика была не сложной, но каждое действие требовало продуманных действий. В результате чего, были обновлены наши знания в исследовании элементов, умении распознавать каждый из них и умении пользоваться инструментом, находящимся под напряжением.

1. Описание процесса пайки

Пайка - это образование неразъёмного соединения с межатомными связями путем нагрева соединяемых материалов ниже температуры их плавления, смачивания их припоем, затекания припоя в зазор и последующей его кристаллизации.

Достоинства пайки:

- возможно соединение металлов с неметаллами;

- паяные соединения легко разъёмные;

- при пайке более точно выдерживается форма и размеры изделия, так как основной металл не расплавляется;

- позволяет получать соединения без значительных внутренних напряжений и без коробления изделия;

- возможна полная механизация и автоматизация процесса.

2. Материалы для пайки

Припои для пайки, заполняющие зазор в расплавленном состоянии между соединяемыми заготовками, должны отвечать следующим требованиям:

1) температура их плавления должна быть ниже температуры плавления паяемых материалов;

2) они должны хорошо смачивать паяемый материал и легко растекаться по его поверхности;

3) должны быть достаточно прочными и герметичными;

4) коэффициенты термического расширения припоя и паяемого материала не должны резко различаться;

5) иметь высокую электропроводность при паянии радиоэлектронных и токопроводящих изделий.

Припои классифицируют по следующим признакам:

- по химическому составу;

- по температуре плавления;

- по технологическим свойствам;

По химическому составу припои делятся на свинцово-оловянные, серебряные, медно-фосфорные, цинковые, титановые и др.

Все припои по температуре плавления подразделяют на низкотемпературные (tпл <500 0С), или твердые припои. Припои изготовляют в виде прутков, проволок, листов, полос, спиралей, колец, дисков, зерен и т. д., укладываемых в место соединения.

К низкотемпературным, или мягким припоям относятся оловянно-свинцовые, на основе висмута, индия, кадмия, цинка, олова, свинца. К высокотемпературным или твердым припоям относятся медные, медно-свинцовые, медно-никелевые, с благородными металлами (серебром, золотом, платиной). пайка флюс лужение деталь

По техническим свойствам делятся на самофлюсующиеся (частично удаляют окислы с поверхности металла) и композиционные (состоят из тугоплавких и легкоплавких порошков, позволяющих производить пайку с большими зазорами между деталями).

Изделия из алюминия и его сплавов паяют с припоями на алюминевой основе с кремнием, медью, оловом и другими металлами.

Магний и его сплавы паяют с припоями на основе магния с добавками алюминия, меди, марганца и цинка.

Изделия из коррозионностойких сталей и жаропрочных сплавов, работающих при высоких температурах (t >5000С), паяют с припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.

Паяльные флюсы применяют для очистки поверхности паяемого металла, а также для снижения поверхностного натяжения и улучшения растекания и смачиваемости жидкого припоя.

Флюс не должен химически взаимодействовать с припоем. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюс в расплавленном и газообразном состояниях должен способствовать смачиванию поверхности основного металла с расплавленным припоем. Флюсы могут быть твердые, пастообразные, жидкие и газообразные.

Флюсы классифицируют по признакам:

- по температурному интервалу пайки на низкотемпературные (t <4500C);

- по природе растворителя на водные и неводные;

- по природе активатора на канифольные, галогенидные, фтороборатные, анилиновые, кислотные и т.д.;

- по агрегатному состоянию на твердые, жидкие и пастообразные;

- по химическому составу.

Наиболее распространенными паяльными флюсами являются бура, борная кислота, хлористый цинк, фтористый калий и другие галоидные соли щелочных металлов.

Классификация припоев:

1) по технологическим свойствам:

- самофлюсующиеся припои - которые удаляют окислы с паяемой поверхности без участия флюса;

- композиционные припои - состоящие из смеси тугоплавких и легкоплавких элементов.

2) по содержанию активирующих компонентов, повышающих смачиваемость.

3) по температуре плавления:

- низкотемпературные (температура плавления припоя меньше 450 0С);

- высокотемпературные (температура плавления припоя больше 450 0С).

4) по сортаменту:

- пластичные припои;

- хрупкие припои.

3. Виды припоев

Припой - это материал, применяемый при пайке для соединения заготовок и имеющий температуру плавления ниже, чем соединяемые металлы. Применяют сплавы на основе олова, свинца, кадмия, меди, никеля и другие. Существуют неметаллические припои. Срок службы припоя зависит от правильности технологии и окружающей среды в эксплуатации.

Припои бывают в виде гранул, прутков, проволоки, порошка, фольги и закладных деталей.

Пайку осуществляют или с целью создания механически прочного шва, или для получения электрического контакта с малым переходным сопротивлением. При пайке места соединения припой нагревают. Так как припой имеет температуру плавления значительно ниже, чем соединяемый металл, то он плавится, в то время как основной металл остаётся твёрдым. На границе соприкосновения расплавленного припоя и твёрдого металла происходят различные физико-химические процессы. Припой смачивает металл, растекается по нему и заполняет зазоры между соединяемыми деталями. При этом компоненты припоя диффундируют в основной металл, основной металл растворяется в припое, в результате чего образуется промежуточная прослойка, которая после застывания соединяет детали в одно целое.

Выбирают припой с учётом физико-химических свойств соединяемых металлов, требуемой механической прочности спая, его коррозионной устойчивости и стоимости. При пайке токоведущих частей необходимо учитывать удельную проводимость припоя. Жидкотекучесть низкотемпературных припоев даёт возможность паять изделия сложной формы.

Классификация припоев

Вид припоев

Температура плавления Тпл, 0С

Предел прочности при растяжении, МПа

Сплавы

Мягкие

До 300

16-100

Оловянно-свинцовые, оловянно-свинцово-камдиевые, оловянно-цинковые, сурьмянистые, бессвинцовые

Твёрдые

Свыше 300

100-500

медно-цинковые, медно-никелевые, медно-фосфористые, серебряные

Припои принято делить на две группы:

- мягкие;

- твёрдые.

К мягким относятся припои с температурой плавления до 300 °C, к твёрдым - выше 300 °C. Кроме того, припои существенно различаются по механической прочности. Мягкие припои имеют предел прочности при растяжении 16--100 МПа, а твёрдые -- 100--500 МПа.

Мягкими припоями являются оловянно-свинцовые сплавы (ПОС) с содержанием олова от 10 (ПОС 10) до 90 % (ПОС 90), остальное свинец. Проводимость этих припоев составляет 9-15 % чистой меди. Плавление этих припоев начинается при температуре 183 °C.

Припои ПОС 61 и ПОС 63 плавятся при постоянной температуре 183 °C, так как их состав практически совпадает с составом эвтектики олово-свинец. Кроме этих составов в качестве мягких припоев используются также:

- сурьмянистые припои (ПОССу), применяемые при пайке оцинкованных и цинковых изделий и повышенных требованиях к прочности паяного соединения;

- оловянно-свинцово-кадмиевые (ПОСК) для пайки деталей, чувствительных к перегреву и пайки выводов к конденсаторам и пьезокерамике;

- оловянно-цинковые (ОЦ) для пайки алюминия;

- бессвинцовые припои, содержащие наряду с оловом медь, серебро, висмут и другие металлы.

Наиболее распространёнными твёрдыми припоями является медно-цинковые (ПМЦ) и серебряные (ПСр) с различными добавками:

Припой, марка

Состав

Температура плавления, °С

Плотность, Мг/м3

Медно-цинковый, ПМЦ-36

36 % Сu; 64 % Zn

825--950

7,7

Медно-цинковый, ПМЦ-54

54 % Cu; 46 % Zn

860--970

8,3

Серебряный, ПСр-15

15 % Ag; остальное Сu и Zn

635--810

8,3

Серебряный, ПСр-45

45 % Ag; остальное Сu и Zn

600-725

9,1

ПМТ-45

0,7-0,1 % Si; 45-49,3 % Ti

955

6,02

Широкое распространение получили припои медно-фосфористые. К медно-фосфористым припоям относятся сплавы меди, фосфора, олова. Данные припои применяются при пайке меди, медных сплавов, серебра, чугуна, твердых сплавов.

Температуры плавления медно-фосфористых припоев:

П81 -- 660 °С

П14 -- 680 °С

МФ7 -- 820 °С

П47 -- 810 °С

Серебряные припои имеют температуру плавления от 183 до 1133 0С и представляют собой сплав: серебро-свинец-олово; серебро-свинец; серебро-медь; серебро-медь-цинк; серебро-медь-цинк-кадмий; и т.д.

Серебряные припои имеют достаточно широкую область применения:

- лужение и пайка меди, медно-никелевых сплавов, никеля, ковара, нейзильберта, латуней и бронз;

- пайка железоникелевых сплавов с посеребренными деталями из стали;

- пайка стали с медью, никелем, медными и медно-никелевыми сплавами;

- пайка меди с никелированным вольфрамом;

- пайка титана и титановых сплавов с нержавеющей сталью;

- пайка меди и медных сплавов с жаропрочными сплавами и нержавеющими сталями;

- пайка меди и латуни с коваром, никелем, с нержавеющими сталями и жаропрочными сплавами, пайка свинцово-оловянистых бронз;

- пайка и лужение меди, никеля, медных и медно-никелевых сплавов с посеребренной керамикой, пайка посеребренных деталей;

- пайка меди и никеля со стеклоэмалью и керамикой;

- пайка и лужение ювелирных изделий;

- пайка меди с бронзой, меди с медью, бронзы с бронзой;

- пайка меди, медных сплавов и сталей по свеженанесенному медному гальваническому покрытию не менее 10 мкм;

- пайка и лужение цветных металлов и сталей;

- пайка и лужение серебряных деталей.

Появление гибридной технологии для создания электронных плат обусловило появление нового типа припоев: так называемых паяльных паст, пригодных как для обычной, так и трафаретной пайки элементов гибридных схем. Паяльные пасты представляют собою сложную дисперсию, в которой дисперсной фазой являются микро- и наноразмерные частицы припоя и, возможно, твёрдых компонентов флюса, а дисперсной средой являются жидкие компоненты флюса и летучие растворители.

4. Виды флюсов

Флюс -- вещества (чаще смесь) органического и неорганического происхождения, предназначенные для удаления оксидов с поверхности под пайку, снижения поверхностного натяжения, улучшения растекания жидкого припоя и защиты от действия окружающей среды.

Флюсы:

1) способствуют лучшему смачиванию припаиваемых деталей;

2) способствуют лучшему растеканию припоя по шву;

3) предохраняют нагретый при пайке металл от окисления.

Паяльный флюс не должен взаимодействовать с припоем, кроме флюсов для реактивно-флюсовой пайки. В зависимости от технологии, флюс может использоваться в виде жидкости, пасты или порошка. Существуют также паяльные пасты, содержащие частицы припоя вместе с флюсом; иногда трубка из припоя содержит внутри флюс-заполнитель.

Примерами флюсов могут служить:

- канифоль -- смесь смоляных кислот и их изомеров;

- нашатырь (хлорид аммония, NH4Cl);

- соли, например, бура (тетраборат натрия, Na2B4O7).

- ортофосфорная кислота -- раствор кислоты в воде, от 85 % и менее с добавками присадок

- ацетилсалициловая кислота -- применяется как активный кислотный флюс.

Согласно ГОСТ 19250-73 «Флюсы паяльные. Классификация», паяльные флюсы подразделяются по следующим признакам:

1) по температурному интервалу активности:

1.1) низкотемпературные (до 450 °C);

1.2) высокотемпературные (свыше 450 °C);

2) по природе растворителя:

2.1) водные;

2.2) неводные;

3) по природе активатора определяющего действия:

3.1) низкотемпературные:

3.1.1) канифольные;

3.1.2) кислотные;

3.1.3) галогенидные;

3.1.4) гидразиновые;

3.1.5) фторборатные;

3.1.6) анилиновые;

3.1.7) стеариновые;

3.2) высокотемпературные:

3.2.1) галогенидные;

3.2.2) боридно-углекислые;

4) по механизму действия:

4.1) защитные;

4.2) химического действия;

4.3) электрохимического действия;

4.4) реактивные;

5) по агрегатному состоянию:

5.1) твёрдые;

5.2) жидкие;

5.3) пастообразные.

Флюсы для пайки чёрных металлов:

1) сильнокислые флюсы («активные флюсы»), хлорид цинка;

2) флюсы средней и малой активности, хлорид аммония.

Флюсы для электротехники:

Основные требования к таким флюсам -- низкий ток утечки и низкая коррозионная активность.

Простейшие флюсы такого типа создают на основе канифоли -- например, растворы канифоли в спирте - этаноле либо других спиртах или спирто-бензиновой смеси. Также часто применяются кислотные флюсы - разнообразные кислоты и их соли, но в связи с большой кислотностью, необходимо промывать место пайки. Даже такой флюс как глицерин, необходимо отмывать от печатной платы, так как он обладает хорошей гигроскопичностью, вследствие чего место пайки быстро окисляется. Исключением является канифоль и её спиртовые растворы из-за того, что она покрывает поверхность и является своеобразным нейтральным защитным покрытием.

Флюсы для алюминиевых сплавов:

Хотя алюминиевые сплавы можно паять свинцово-оловянными припоями, лучшие результаты достигаются с многокомпонентными припоями, содержащими цинк, кадмий, висмут и другие металлы.

Применяется «бинарный» флюс: концентрированная ортофосфорная кислота - до побеления, затем 20%-я эвтектика NaOH - KOH в глицерине.

Флюсы для пайки нержавеющих сталей:

1) ортофосфорная кислота

Флюсы для высокотемпературной пайки:

1) борная кислота, бура, их смеси, иногда и борный ангидрид используются при пайке преимущественно железа и низкоуглеродистой стали медью, медно-цинковыми и серебряными припоями, а также меди, бронз, томпака, латуней с высокой температурой плавления - медноцинковыми и серебряными припоями при температурах 800-1150єC.

5. Процесс описания и способы пайки

Пайка - процесс соединения металлов или неметаллических материалов посредством расплавленного присадочного металла, называемого припоем и имеющего температуру плавления ниже температуры плавления основного металла. Процесс пайки применяется либо для получения отдельных деталей, либо для сборки узлов или окончательной сборки приборов. В процессе пайки происходят взаимное растворение и диффузия припоя и основного металла, чем и обеспечиваются прочность, герметичность, электропроводность и теплопроводность паяного соединения. При пайке не происходит расплавления металла спаиваемых деталей, благодаря чему резко снижается степень коробления и окисления металла.

Для получения качественного соединения температура нагрева спаиваемых деталей в зоне шва должна быть на 50-100° С выше температуры плавления припоя. Спаиваемые детали нагревают в печах, в пламени газовой горелки, токами высокой частоты, паяльниками. Прочное соединение припоя с основным металлом можно образовать лишь в том случае, если поверхности спаиваемых деталей свободны от окислов и загрязнений. Для запиты поверхностей спаиваемых деталей от интенсивного окисления в результате нагрева место пайки покрывают флюсом, который образует жидкую и газообразную преграды между поверхностями спаиваемых деталей и окружающим воздухом.

Процесс пайки заключается в следующем: при нагревании припой расплавляется и, соприкасаясь с нагретым, но свободным от окисной пленки основным металлом, смачивает его, и растекается по его поверхности. Способность припоя заполнять швы зависит от степени смачивания припоем основного металла, его капиллярных свойств и шероховатости поверхности спаиваемых деталей.

Припои для пайки. К припоям предъявляются следующие требования: высокая механическая прочность припоев в условиях нормальных, высоких и низких температур, хорошие электропроводность и теплопроводность, герметичность, стойкость против коррозии, жидкотекучесть при температуре пайки, хорошее смачивание основного металла, определенные для данного припоя температура плавления и величина температурного интервала кристаллизации. В зависимости от температуры плавления и прочности применяемых припоев различают пайку мягкими припоями и пайку твердыми припоями.

Флюсы, применяемые для пайки должны удовлетворять следующим требованиям:

1) температура плавления флюса и его удельный вес должны быть ниже температуры плавления и удельного веса припоя;

2) флюс должен полностью расплавляться и иметь хорошую жидкотекучесть при температуре пайки, но в то же время не должен быть слишком текучим, чтобы не «уходить» от места пайки;

3) флюс должен своевременно и полностью растворять окислы основного металла, причем флюс должен действовать при температуре на несколько градусов ниже температуры плавления припоя;

4) флюс не должен образовывать соединений с основным металлом и припоем, а также поглощаться ими;

5) флюс должен равномерным слоем покрывать поверхность основного металла у места пайки, предохраняя его от окисления в продолжение всего процесса пайки. Однако для того, чтобы припой мог сплошным слоем покрывать поверхность основного металла, необходимо, чтобы адгезия флюса к основному металлу (т. е. силы сцепления между флюсом и основным металлом) была слабее, чем адгезия припоя (т. е. силы сцепления между припоем и основным металлом);

6) флюс не должен испаряться и выгорать при температуре пайки, а продукты его разложения и окислы должны вытесняться припоем, легко удаляться после пайки и не вызывать коррозии.

Для пайки мягкими припоями применяют кислотные или активные, антикоррозийные, бескислотные, активизированные флюсы. Кислотные или активные флюсы - на основе хлористых соединений - интенсивно растворяют окисные пленки на поверхности основного металла и тем самым обеспечивают хорошую адгезию и, следовательно, высокую механическую прочность соединения.

Остаток флюса после пайки вызывает интенсивную коррозию соединения и основного металла, а потому после пайки место пайки нужно тщательно промывать. Для пайки проводников при монтаже электрорадиоприборов применять кислотные флюсы категорически запрещается.

Подготовка деталей к пайке, лужение. Перед пайкой поверхности деталей очищают от пыли, жира, краски, ржавчины, окалины и окисной пленки. В процессе зачистки получают шероховатую поверхность с целью увеличения смачивания основного металла. Зачистку производят напильником, наждачной шкуркой, металлическими щетками (крацевание) и др.

Обезжиривание деталей перед пайкой производят в бензине или четыреххлористом углероде или подвергают травлению с последующей промывкой в воде и просушиванием в сушильном шкафу во избежание коррозии. Очищенные детали следует хранить в условиях, исключающих попадание на них жира, грязи и возникновение коррозии. В большинстве случаев детали перед пайкой лудят, что облегчает последующую пайку.

Схема процесса лужения показана на рис. 1. Место пайки покрывают флюсом, затем при помощи паяльника наносится расплавленный припой. Температура деталей в зоне пайки поддерживается паяльником и должна быть на 50-100° С выше температуры плавления припоя. Если одна из поверхностей будет нагрета выше температуры плавления припоя, а вторая ниже, происходит нарушение процесса пайки, нагретую поверхность припой смачивает, а на второй он застывает и не затекает в зазоры.

Рис. 1 Схема лужения паяльником: 1 - паяльник, 2 - припой, 3 - газообразный флюс, 4 - растворенный окисел, 5 - поверхностный слой окисла, 6 - флюс, 7 - зона сплавления припоя с основным металлом, 8 - основной металл

Рис. 2 Схема лужения вибрационным паяльником

Лужение производят также в ванночке с расплавленным припоем, при этом детали сначала погружают в сосуд с флюсом, а затем в расплавленный припой.

При пайке алюминия с помощью ультразвука лужение поверхностей производится или паяльниками, вибрирующими с ультразвуковой частотой, или в специальных ультразвуковых ванночках с расплавленным припоем.

Схема процесса лужения вибрационным паяльником показана на рис. 2. Для возбуждения продольных колебаний рабочего стержня у паяльника применяют магнитострикционные вибраторы, представляющие собой магнитопровод 9 с обмоткой возбуждения 10, питаемой переменным током от лампового генератора 11 при частоте от 20 до 25 КГц и создающей переменное электромагнитное поле.

Магнитопровод 9, соединенный с рабочим стержнем ультразвукового паяльника, создает интенсивные колебания, способные вызвать кавитацию (нарушение сплошности) расплавленного припоя в зоне пайки. Нагрев рабочего стержня 1 паяльника осуществляется нагревательной обмоткой 5, питаемой переменным током от понижающего трансформатора 12. Применяются ультразвуковые паяльники и без нагревательного элемента. В этом случае нагрев детали, подлежащей лужению, до 260-300?С осуществляется от постороннего источника тепла - газовой горелки или электроплитки.

Лужение основного металла при помощи ультразвукового паяльника происходит в непосредственной близости от колеблющегося конца рабочего стержня 1 паяльника, который излучает знакопеременные волновые давления, вызывающие растяжение и сжатие частиц жидкого припоя 2. В местах наибольшей интенсивности облучения растяжения влекут за собой кавитацию жидкого припоя и между его частицами появляются разрывы, которые мгновенно заполняются воздухом или газом, имеющимися в припое, образуя мельчайшие, размером в несколько микрометров, пузырьки 3. За растяжением наступает сжатие частиц расплавленного припоя, и пузырьки немедленно после образования сжимаются, а затем захлопываются. Сжатие пузырьков вызывает повышение в них давления до сотен атмосфер, а их захлопывание сопровождается весьма большими ударными импульсами на окружающий их жидкий припой, а также на поверхность алюминиевых деталей, вызывая разрушение окисной пленки 4. Раздробленные частицы окисной пленки, обладающие меньшим удельным весом, всплывают на поверхность припоя, который беспрепятственно облуживает очищенную поверхность основного металла.

Таким образом, под действием кавитации происходит эрозия окисной пленки 4 под слоем расплавленного припоя 2, сплавление припоя с обнаженным основным металлом 5 и образование слоя 6 сплава припоя с основным металлом. На поверхности затвердевшего слоя припоя остается слой 7 шлака, который представляет собой частицы тонко измельченной окиси алюминия. Постепенно перемещая паяльник, покрывают припоем всю поверхность соединения.

Рабочий стержень 1 паяльника, подвергающийся во время пайки воздействию эрозии, изготовляется из серебряно-никелевого сплава, обладающего высокой кавитационной стойкостью.

Форму или размеры конца рабочего стержня паяльника для выполнения конкретной операции изменяют путем замены рабочей части стержня специальным приспособлением, которое должно иметь строго определенные размеры для соблюдения резонансных характеристик системы.

Ультразвуковой метод лужения обеспечивает высокую производительность, повышает механическую прочность и коррозиционную стойкость соединений.

Способы пайки. Пайку мягкими припоями можно применять, почти для всех металлов, в разнообразных сочетаниях, включая такие легкоплавкие металлы, как олово, свинец, цинк и их сплавы. Нагрев при пайке мягкими припоями производят паяльниками, газовыми горелками, электрическим током, плавлением припоя в ваннах и т.д. В большинстве случаев для пайки мягкими припоями применяют паяльники из красной меди.

Размеры паяльника должны соответствовать размерам детали, чтобы паяльник, не охлаждаясь значительно, мог нагреть кромки детали до необходимой температуры. При монтаже электрорадиоприборов, как правило, применяют электрические паяльники непрерывного действия.

Высокопроизводительным способом пайки мягкими припоями является последовательное погружение деталей в раствор флюса, а затем в ванну с большим количеством расплавленного припоя, который применяется в данном случае не только как заполнитель зазоров, но и как источник тепла, быстро и одновременно нагревающий все соединяемые детали. Таким способом за одно погружение деталей в течение 1-2 мин можно спаять между собой сотни, а иногда и тысячи деталей. Прочность мягких припоев незначительна, поэтому рабочие соединения, подвергающейся большой нагрузке, рекомендуется до пайки прочно скреплять точечной сваркой, заклепками, развальцовкой, шпильками и т. д., используя припой как средство уплотнения шва для герметичности.

В зависимости от характера нагрева изделия при пайке твердыми припоями различают:

- газовую пайку;

- пайку погружением в металлические ванны;

- пайку с погружением в соляные ванны;

- дуговую пайку;

- индукционную пайку;

- контактную пайку и другие.

Газовая пайка. При газовой пайке нагрев осуществляется пламенем газовой горелки. В качестве горючего газа используют смеси различных газообразных или жидких углеводородов и водород, которые при сгорании в смеси с кислородом дают высокотемпературное пламя. При пайке крупных деталей горючие газы и жидкости применяют в смеси с кислородом, при пайке мелких деталей в смеси с воздухом. При газовой пайке применяют как газообразные флюсы на основе метилбората, так и твердые флюсы - различные соли и их смеси, которые обычно используют в виде водных растворов.

Пайка погружением в металлические ванны. Расплавленный припой в ванне покрывают слоем флюса. Подготовленная к пайке деталь погружается в расплавленный припой, который также является источником тепла. Для металлических ванн обычно используют медно-цинковые и серебряные припои.

Пайка погружением в соляные ванны. Состав ванны выбирают в зависимости от температуры пайки, которая должна соответствовать рекомендуемой температуре ванны при работе на смеси определенного состава. Ванна состоит их хлористых солей натрия, калия, бария и др. Этот метод не требует применения флюсов и защитной атмосферы, так как состав ванны подбирают таким, что он вполне обеспечивает растворение окислов, очищает паяемые поверхности и защищает их от окисления при нагреве, т. е. является флюсом.

Детали подготавливают к пайке, на шов в нужных местах укладывают припой, после чего опускают в ванну с расплавленными солями, являющимися флюсом и источником тепла, где припой расплавляется и заполняет шов. Для обеспечения хорошего заполнения припоем швов между соединяемыми деталями в соляные ванны добавляют 4-5% буры, а также производят раскисление ванны ферросилицием или ферромарганцем, которые вводят в ванну в количестве 1 % от веса соли. Для соляных ванн используют медные, медноцинковые, серебряные и другие припои, а для деталей из алюминия - припои из силумина.

Дуговая пайка. При дуговой пайке нагрев осуществляется дугой прямого действия, горящей между деталями и электродом или дугой косвенного действия, горящей между двумя угольными электродами.

При использовании дуги прямого действия обычно применяют угольный электрод, реже - металлический электрод, которым служит сам стержень припоя. Угольную дугу направляют на конец стержня припоя, касающегося основного металла так, чтобы не расплавлять кромок детали. Металлическую дугу применяют при токах, достаточных для расплавления припоя и очень незначительно оплавляющих кромки основного металла. Для пайки дугой прямого действия пригодны тугоплавкие припои, не содержащие цинка. При помощи угольной дуги косвенного действия можно выполнять процесс пайки твердыми припоями всех типов. Ток к электродам подается от машины для дуговой сварки. Дуговые горелки менее удобны для пайки, чем газовые, поэтому их применяют обычно при небольшом объеме работ по пайке.

Индукционная пайка (пайка токами высокой частоты). При индукционной пайке детали нагреваются индуктируемыми в них вихревыми токами. Индукторы (рис. 3) изготовляются из медных трубок, преимущественно прямоугольного или квадратного сечения в зависимости от конфигурации деталей, подлежащих пайке.

Рис. 3. Петлевые индукторы для нагрева наружной (а) и внутренней (б) поверхности

При индукционной пайке быстрый нагрев детали до температуры пайки обеспечивается использованием энергии высокой концентрации. Для предохранения индуктора от перегрева и расплавления применяют водяное охлаждение. Для защиты поверхности деталей от окисления и окалины применяют твердые флюсы. Для этой же цели индукционную пайку проводят в вакууме или в восстановительной, или нейтральной средах.

Индукционную пайку можно производить твердыми припоями почти всех типов, но медь и медноцинковые припои для пайки деталей из меди и ее сплавов не рекомендуются. Для флюсования применяют буру, её смесь с борным ангидридом и т. д. В качестве источников питания при высокочастотной пайке применяют ламповые генераторы, а также установки с машинными генераторами повышенной частоты.

Контактная пайка (пайка сопротивлением). При этом способе пайки электрический ток низкого напряжения (от 4 до 12 В), но сравнительно большой силы (2000-3000 А) пропускают через электроды и за короткое время нагревают их до высокой температуры; детали нагреваются как за счет теплопроводности от нагретых электродов, так и за счет тепла, выделяемого током при его прохождении в самих деталях. Схемы установок для пайки с электроконтактным нагревом показаны на рис. 4.

Рис. 4. Схемы установок для пайки с электроконтактным нагревом

При косвенном нагреве (рис. 4, а) электрический ток течет по электроду 1 и нагревает его, а детали 2 и 3 нагреваются от электрода за счет теплопроводности.

При прямом нагреве (рис. 4, б) детали 2 и 3 непосредственно включены в электрическую цепь и по ним протекает ток. Они нагреваются за счет тепла, выделяемого проходящим по ним электрическим током, и за счет теплопроводности от электрода 1. Расход электроэнергии при прямом нагреве, примерно, в два раза меньше, чем при косвенном нагреве. При прохождении электрического тока паяемое соединение нагревается до температуры плавления припоя, и расплавленный припой заполняет шов.

Контактную пайку производят или на специальных установках, обеспечивающих питание током большой силы и малого напряжения, или на обычных машинах для контактной сварки. Во всех установках ток подводится к паяемым деталям через электроды, которые изготовляют из меди, графита и сплавов. При контактной пайке применяют твердые припои: медь, латуни, серебряные припои и т. д. В ряде случаев необходимо применять флюс (в основном буру или ее водный раствор).

Пайка в печах. Для пайки используются электрические печи и реже - пламенные печи. Нагрев деталей под пайку производят в обычной, восстановительной или обладающей защитными свойствами средах. Пайку твердыми припоями в печах с обычной средой производят с применением флюсов. При пайке в печах с контролируемой средой подлежащие пайке детали соединяют с возможно малым зазором, затем на шов накладывают твердый припой в виде проволоки, кусочков или специально штампованных фасонных колец. Собранные таким образом паяемые узлы помещают в печь, разогретую до температуры, несколько превышающей температуру плавления припоя.

Пайку в печах иногда заменяют пайкой в специальных герметических контейнерах, продуваемых восстановительным газом и устанавливаемых в печь после загрузки в них деталей. Пайка в восстановительной среде обеспечивает соединения высокой прочности, предохраняет соединяемые детали от окисления и обезуглероживания и обеспечивает высокую производительность, так как допускает групповую обработку деталей. При пайке в восстановительной среде деталей из конструкционных сталей применять флюсы не следует, что значительно упрощает технологию. В качестве восстановительной среды применяют диссоциированный аммиак-азото-водородную смесь (2NН3-N2 + 3Н2).

Для предохранения деталей от обезуглероживания иногда применяют среду на основе окиси углерода. В качестве восстановительных и слабовосстановительных сред применяют еще генераторный древесный угольный газ и продукты сгорания природного газа после удаления СО2 и Н2О. К защитным средам относятся нейтральные газы (аргон, гелий). Газовую восстановительную и защитную среды применяют для пайки сталей, чугуна, меди и ее сплавов с оловом и никелем, а также для пайки никеля и его сплавов.

Ступенчатая пайка. Ступенчатой пайкой называют процесс, применяемый для соединения нескольких деталей в один узел припоями с различной температурой плавления. При этом способе сначала паяют часть узла припоя с более высокой температурой плавления, а затем производят пайку припоем с более низкой температурой плавления. Можно применять также ступенчатую пайку с тремя последовательными процессами.

Пайка соединений металлов с неметаллическими материалами. Пайкой можно получить соединения металлов со стеклом, кварцем, фарфором, керамикой, графитом, полупроводниками и другими неметаллическими материалами.

Ввиду различия в физико-химических свойствах металлов и неметаллических материалов природа связи в паяных швах будет иной, чем в соединениях между металлами. При пайке металлов основным условием образования прочного паяного соединения является удаление с поверхности соединяемых металлов и припоя слоя окислов. При пайке же металлов с неметаллическими материалами, такими, как стекло, кварц и др., состоящими из окислов, образование паяного соединения будет происходить между металлом и окислами элементов. При пайке металлов с графитом и полупроводниками соединение создается между еще более различными по природе материалами. Ввиду резкого различия коэффициентов термического расширения и других свойств металлов и неметаллических материалов технологические процессы пайки последних разработаны в меньшей степени, чем для металлов.

Соединение металлов с неметаллами с применением металлических связок производят серебряными припоями, содержащими значительное количество титана и циркония, которые обладают способностью одновременно смачивать поверхность металлов и неметаллических материалов. Основные трудности при пайке кварца с металлами вызываются большим различием коэффициентов линейного расширения соединяемых пар. Соединение металлов с неметаллическими материалами в результате совместного смачивания их расплавленным припоем образуется также при пайке металлов с графитом. И в этом случае применяют припои, содержащие титан и цирконий, которые являются сильными карбидообразователямй и хорошо смачивают графит. Однако эти припои имеют низкую коррозийную стойкость в расплавах солей, в которых могут работать паяные соединения металла с графитом. Перспективным является припой, состоящий из 35% Аu, 35% Ni и 30% Мо, который пригоден для пайки молибдена с графитом и графита с графитом и дает соединения, устойчивые в среде расплавленных солей.

Соединение металлов с неметаллами осуществляется также путем применения переходных слоев из стекла, глазури и эмали. В спаях металла со стеклом, получаемых с применением легкоплавких промежуточных стекол, опасность образования трещин уменьшается, так как напряжения в контакте металл-стекло оказываются значительно ниже, чем в спаях без переходного стекла. Этот способ позволяет производить предварительное покрытие металла стеклом при строго определенных режимах, а последующее соединение элементов изделия сводится к простому сплавлению стекла со стеклом. Применение предварительного покрытия металла более легкоплавким стеклом рекомендуется также в тех случаях, когда соединяемый металл не смачивается стеклом, с которым он должен быть соединен.

Третья группа технологических процессов соединения металлов с неметаллами, когда на неметаллический материал перед пайкой наносится пленка металла, характерна для пайки металлов со стеклом и керамикой и наиболее распространена в приборостроении. В этом случае перед пайкой на поверхность стекла или керамики путем вжигания металлизацией, восстановлением окислов или другими способами наносят слой металла. После этого пайка принципиально ничем не отличается от обычной, применяемой при соединении металлов.

Способ вжигания основан на проникновении металлического серебра в поверхностные слои керамики, стекла, слюды и кварца. К такому слою серебра можно припаивать металл. Сущность вжигания состоит в том, что серебро, содержащееся в виде химических соединений в составе пасты, при нагревании до определенной температуры восстанавливается в металлическое серебро и прочно сцепляется с поверхностными слоями керамики, стекла, слюды и кварца, чему способствует плавень, добавляемый в пасту.

Обработка деталей после пайки. После окончания пайки и охлаждения паяного шва остатки флюсов необходимо удалять. Если при пайке мягкими припоями используются бескислотные канифолевые флюсы, то остатки их не опасны в отношении коррозии и в доступных местах их удаляют механическим путем, обычно протиркой соединений хлопчатобумажным лоскутом, смоченным спиртом или другим растворителем.

Для удаления остатков флюсов, вызывающих коррозию паяного соединения, применяют промывку в горячей или холодной воде, в 5%-ном растворе кальцинированной соды, бензине и в 1-3%-ном растворе натриевого хромпика, а также протирку мягкой тряпкой или бязью, смоченной спиртом, ацетоном и другими растворителями, и пескоструйную обработку.

Некоторые особенности конструирования узлов с паяными соединениями. Типовые паяные соединения показаны на рис. 5. Паяные швы отличаются от сварных швов по конструктивной форме и образованию. В отличие от сварного шва (рис. 6, а) у лаяного соединения (рис. 6, б) на участке 2-3 гальтель припоя имеет вогнутую форму с очень плавными переходами от припоя к поверхности основного металла.

Рис. 5. Типовые паяные соединения

Зазор по всей ширине нахлестки на участке 1-2 полностью заполнен припоем. Основной металл не оплавляется, геометрические формы кромок и поверхностей соединяемых деталей сохраняются. прочность паяного соединения почти не зависит от размеров галтелей припоя, но сильно изменяется при изменении размера участка 1-2, определяющего величину нахлестки, которая обеспечит прочность паяного шва, равную или превосходящую предел прочности основного металла. Кроме того, сварка идет при последовательном наложении сначала верхнего шва 2 - 5, а затем нижнего, а в процессе пайки образование обеих галтелей и заполнение припоем зазора по ширине нахлестки на участке 1 - 2 происходят почти мгновенно.

Рис. 6. Форма и элементы сварного (а) и паяного (б) швов при соединении внахлестку

Тип паяного соединения выбирают с учетом эксплуатационных требований, предъявляемых к узлу, и технологичности узла в отношении пайки. Наиболее распространенным видом соединения является пайка внахлестку. В узлах, работающих при значительных нагрузках, где, кроме прочности шва, необходима герметичность, детали следует соединять только внахлестку. Швы внахлестку обеспечивают прочное соединение, удобны при выполнении и не требуют проведения подгоночных операций, как это имеет место при пайке встык или в ус.

Стыковые соединения обычно применяют для деталей, которые нерационально изготовлять из целого куска металла, а также в тех случаях, когда нежелательно удваивать толщину металла. Их можно применять для малонагруженных узлов, где не требуется герметичность. Механическая прочность припоя обычно бывает ниже прочности соединяемого металла; для того чтобы обеспечить равнопрочность паяного изделия, прибегают к увеличению площади спая путем косого среза или ступенчатого шва; часто с этой целью применяют комбинацию стыкового соединения с нахлесткой. Качество и прочность пайки в значительной степени зависит от применяемого припоя. При выборе припоя необходимо учитывать следующие факторы: материал соединяемых деталей, необходимую чистоту и прочность шва, последующую после пайки обработку и условия эксплуатации.

Наличие и величина зазоров между поверхностями деталей, соединяемых пайкой, имеют решающее значение. При больших зазорах или при отсутствии их пайка невозможна. При проектировании паяных соединений величину зазоров необходимо выбирать с учетом материала деталей и типа припоя.

Величина зазоров меньше всего зависит от способа нагрева, так как решающими при пайке являются жидкотекучесть используемых припоев, явление капиллярности, коэффициент линейного расширения материала деталей, соединяемых пайкой, а также направление распространения нагрева во время пайки.

При пайке стальных деталей твердыми припоями зазоры в соединениях обычно выбирают в пределах 0,04-0,05 мм, но допускаются зазоры и больших размеров до 0,25 мм. При пайке меди и ее сплавов твердыми припоями зазоры задают в пределах 0,076-0,38 мм. Для серебряных припоев рекомендуется зазор 0,05-0,08 мм, для пайки медью в среде защитного газа - не более 0,012 мм. Зазоры между деталями при сборке под пайку мягкими припоями задают в пределах 0,05-0,2 мм. В этих же пределах нужно выдерживать зазоры при пайке твердыми и мягкими припоями магниевых, иногда до 0,3 мм и алюминиевых сплавов. Увеличение размера зазора между соединяемыми поверхностями обычно приводят к ухудшению всасывания жидкого припоя под действием капиллярных сил, к понижению прочности соединения и к излишнему расходу припоя.

Высокие требования в отношении величины зазора заставляют производить достаточно чистую механическую обработку соединяемых поверхностей, что необходимо также для более плотного их прилегания друг к другу. Эти поверхности обрабатывают до 4-6-го класса чистоты; более высокий класс чистоты ухудшает смачиваемость припоем соединяемых поверхностей.

Вывод

Данный отчёт раскрывает все теоретические знания, которые были использованы при практических действиях. Мы повторили и вспомнили работу с электрическим оборудованием, способами демонтажа плат и пайки деталей между собой. Также вспоминали и раскладывали по номиналам различные элементы такие, как резисторы, конденсаторы, диоды и другие с использованием приборов для точного определения значения - мультиметры.

Используемая литература

1)http://zvar.narod.ru/payka.html

2)https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D0%BF%D0%BE%D0%B9

3)https://ru.wikipedia.org/wiki/%D0%A4%D0%BB%D1%8E%D1%81_%28%D0%BF%D0%B0%D0%B9%D0%BA%D0%B0%29

4)http://www.welding.su/articles/tech/tech_227.html

Размещено на Allbest.ru

...

Подобные документы

  • Виды поражения электрическим током. Оказание первой помощи. Правила личной гигиены электромонтажника. Безопасные приёмы труда при выполнении монтажных работ. Инструменты и химические вещества, применяемые при пайке, правила и способы пайки деталей.

    методичка [109,4 K], добавлен 13.01.2008

  • Составление описания схемы электрической принципиальной. Характеристика требований к проектированию печатной платы, к формовке выводов, лужению и пайке. Определение электрических параметров печатных проводников, технологичности и надежности конструкции.

    курсовая работа [244,3 K], добавлен 16.06.2011

  • Основные типы SMT-сборок. Технологический процесс сборки ПП на основе THT-технологии. Формовка круглых выводов элементов. Ручная и полуавтоматическая установка компонентов. Пайка волной припоя, селективная и ручная пайка. Технология монтажа в отверстия.

    курсовая работа [2,0 M], добавлен 10.12.2011

  • Механические напряжения в материале при гибке. Технологичность деталей, получаемых вытяжкой, основные требования. Материалы для штампованных деталей. Экранирование проводов, кабелей. Фильтрующие цепи. Устранение паразитной взаимоиндукции между дросселями.

    реферат [127,4 K], добавлен 21.11.2008

  • Технологический процесс механической обработки оптических деталей. Сущность процессов обработки оптических деталей. Шлифование свободным абразивом и закрепленным абразивом. Полирование оптических деталей. Припуски операционные. Понятие о припуске.

    реферат [1,2 M], добавлен 25.11.2008

  • Компоненты узлов оптических систем и их соединение. Сборка и юстировка оптических приборов. Материалы, применяемые для соединения. Оптические клеи и бальзамы. Технология соединения оптических деталей. Подготовка, сортировка и комплектация деталей.

    реферат [24,2 K], добавлен 23.11.2008

  • Материалы для изготовления оптических деталей, их оптические характеристики. Обработка деталей оптических приборов. Нормируемые показатели качества оптического стекла. Пороки стекла. Цветное оптическое стекло, его типы. Кварцевое оптическое стекло.

    реферат [52,5 K], добавлен 22.11.2008

  • Рассмотрение конструкторско-технологической характеристики и типового технологического процесса (литье под давлением, зачистка отливки от облоя, фрезерная обработка) корпусных деталей, обрабатываемых в гибких производственных линиях модели АЛП-3-2.

    контрольная работа [82,7 K], добавлен 23.05.2010

  • Проведение испытания на способность к пайке. Испытание на теплостойкость при пайке. Испытание прочности выводов и их креплений. Испытание выводных концов на воздействие растягивающей силы. Испытание гибких проволочных выводов на скручивание и изгиб.

    реферат [347,0 K], добавлен 25.01.2009

  • Обоснование выбора программируемого логического контроллера и разработка автоматизированной системы контроля процесса пайки топливных коллекторов с помощью логического процессора фирмы "ОВЕН". Программное обеспечение датчиковой аппаратуры системы.

    дипломная работа [3,5 M], добавлен 02.06.2014

  • Оптических система. Оптические характеристики приборов и деталей: вершинные фокусные расстояния, фокусные расстояния, рабочие расстояния. Обработка деталей оптических приборов. Определение фотографической разрешающей силы. Окуляр-микрометр. Коллиматор.

    реферат [248,3 K], добавлен 22.11.2008

  • Сверлильные станки с ЧПУ для производительной координатной обработки деталей без предварительной разметки и применения кондукторов. Основные компоновочные варианты фрезерных станков с ЧПУ. Горизонтальные многоцелевые (многооперационные) станки с ЧПУ.

    контрольная работа [1,9 M], добавлен 22.05.2010

  • Заготовки оптических деталей из оптического стекла. Глубина залегания дефектов на поверхности прессованной заготовки. Процесс обработки оптических деталей. Шлифование свободным абразивом. Шлифование закрепленным абразивом. Полирование. Припуски операционн

    реферат [1,2 M], добавлен 29.11.2008

  • Промывка механических деталей. Чистка оптических деталей и узлов. Сборка неподвижных зеркал и призм. Методы центрировки зеркала или призмы в оправе. Сборка вращающихся призм. Выравнивание изображения. Юстировка призмы методом половинных поправок.

    реферат [1,5 M], добавлен 29.11.2008

  • Принципиальная и функциональная схемы и программа функционирования микропроцессорной системы, выполненной на базе однокристального микроконтроллера серии МК51, осуществляющего подсчет и индикацию количества деталей разного размера на конвейере.

    курсовая работа [272,2 K], добавлен 28.07.2009

  • Выявление деталей с поверхностными и подповерхностными трещинами по вихретоковому методу контроля деталей. Приборы (дефектоскопы) для выявления поверхностных дефектов, их технические данные, устройство и работа, составные части, порог чувствительности.

    лабораторная работа [1,9 M], добавлен 09.01.2011

  • Вивчення етапів виготовлення виводів методом зварювання: термокомпресорне, конденсаторне, контактне, ультразвукове зварювання електроконтактів, зварювання тиском з непрямим імпульсним нагрівом. Особливості виготовлення виводів методом пайки та склеювання.

    курсовая работа [1019,0 K], добавлен 09.05.2010

  • Проверка действия устройства контроля схода и волочения деталей подвижного состава (УКСПС), схемы контроля датчиков и речевых информаторов, измерение напряжения на контрольном реле. Проверка состояния УКСПС электромехаником совместно с бригадиром пути.

    отчет по практике [59,8 K], добавлен 19.06.2015

  • Изучение основных соединений проводников на печатной плате. Этапы сборки и монтажа отдельных сборочных единиц радиоэлектронной аппаратуры. Сущность печатного монтажа и подготовки к нему. Пайка волнового припоя. Разъединители (клеммы) электрических цепей.

    реферат [258,9 K], добавлен 13.09.2019

  • Особенности применения: автоколлимационной трубы, динаметров, прибора Юдина, апертометра Аббе. Широкоугольные коллиматоры. Параметры гониометра. Ошибки изготовления оптических деталей приборов и их влияние на отклонение параметров оптических систем.

    реферат [3,5 M], добавлен 12.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.