Способ корреляционной компенсации излучения атмосферного фона

Изложение способа обнаружения тепловых объектов на коррелированном атмосферном фоне с помощью инфракрасных теплопеленгаторов с широким полем зрения. Использование отличий пространственных спектров излучения точечного теплового объекта и протяженного.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 27.02.2019
Размер файла 261,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Способ корреляционной компенсации излучения атмосферного фона

Якименко И.В.,

Жендарев М.В.

Аннотации

В данной работе изложен способ обнаружения тепловых объектов на коррелированном атмосферном фоне с помощью инфракрасных теплопеленгаторов с широким полем зрения. Предлагаемый способ основан на использовании отличий пространственных спектров излучения точечного теплового объекта и протяженного, более холодного, атмосферного фона. На основе данного способа обнаружения тепловых объектов разработан алгоритм двумерного пространственного фильтра, который может быть реализован программно в видеопроцессоре теплопеленгатора. Алгоритм позволяет автоматизировать процесс обнаружения воздушных целей (самолетов, вертолетов, крылатых ракет, беспилотных летательных аппаратов и т. д.) и обеспечить вывод их видеоизображений на монитор видеоконтрольного устройства в бинарном виде.

Ключевые слова: обнаружение тепловых объектов.

Way of CORRELATION INDEMNIFICATION of RADIATION of the BACKGROUND

Jakimenko I. V., Zhendarev M. V.

In this abstract is stated the way of the thermal objects detection on the correlated atmospheric background by means of infra-red heat direction finders with a wide field of vision. The way is based on use of differences of spatial spectra of dot thermal object radiation and extensional colder atmospheric background. On the basis of this way is developed the algorithm of the bidimentional spatial filter which can be realized programmatically in the video processor of the heat direction finder. The algorithm allows automating process of the air targets detection (planes, helicopters, cruise missiles, unpiloted aircraft, etc.) and to provide the display of their video images to the monitor of the video control device in the binary kind. тепловой атмосферный инфракрасный

Кеу words: the thermal objects detection

Рассматривается способ обнаружение точечных тепловых объектов (ТТО) на естественных атмосферных фонах (АФ), что соответствует условиям обнаружения малоразмерного объекта на больших дальностях. Под ТТО понимается малоразмерный объект, изображение которого вписывается в элементарное поле зрения (пиксель) пеленгатора.

В настоящее время для теплопеленгаторов применяется амплитудный способ обнаружения ТТО на фоноцелевом изображении (ФЦИ). Данный способ основан на зрительном разделении яркости отметок ТТО и флюктуаций атмосферного фона (АФ). Получение ФЦИ на мониторе видеоконтрольного устройства (ВКУ) проводится в соответствии с видеосигналом, полученным с выхода матричного приёмника излучения (МПИ). Каждому пикселю ФЦИ в соответствие ставят ограниченное число дискретных уровней яркости - квантов, пропорциональных энергетической яркости собственного излучения атмосферы и цели. Чем больше уровней квантования, тем выше качество изображения.

Особенностью работы оптико-электронных систем (ОЭС) с широким полем зрения, работающих в диапазоне 813 мкм, является высокие перепады яркости одновременно наблюдаемых фрагментов изображения. Например, радиационный контраст кучевого облака на фоне чистого неба как днём, так и ночью, может достигать 60 К [1]. Аналогичная ситуация возникает при визировании цели вблизи линии горизонта, когда в угловом поле прицела наблюдается часть небесной полусферы и наземный ландшафт. При чувствительности матрицы <0,1 К и наличии ограничения в выходном видеосигнале "уровнем белого" осуществляется компрессия сигналов с МПИ. Это, в свою очередь, приводит к уменьшению сигнала цели на входе ВКУ [2]. ФЦИ, полученное на мониторе ВКУ теплопеленгатора при наличие цели (отметка от цели находится в разрыве линии), представлено на рис. 1. Изображение получено в темное время суток при слоисто-кучевой облачности.

Проблемы видения возникают вследствие потенциально слабой контрастности ФЦИ, низкого уровня заметности целей и возможного появления пассивных и активных видов противодействия (маскировка, ложные тепловые цели (ЛТЦ), прожекторы и т. п.). Шумовые компоненты сигнала, образующиеся вследствие особенностей применяемых датчиков и искажении сигнала передачи данных приводят к ухудшению изображения ТТО на мониторе ВКУ. С целью улучшения качества изображений были созданы различные способы цифровой фильтрации и обработки двухмерного изображения. Обработка изображений проводится в реальном масштабе времени, без прореживания пиксельного потока видеоданных и без пропуска кадров. Основными способами обработки изображений являются алгоритмы цифровой коррекции неоднородностей, сглаживание шумов, повышение контрастов, подчеркивание границ, высокочастотная коррекция, коррекция дефектных пикселей и т. д., реализованных программно в видеопроцессоре теплопеленгатора. Отметим, что перечисленные способы обработки изображений косвенно улучшают характеристики теплопеленгаторов за счет улучшения визуального восприятия изображения оператором.

Рис. 1. Исходное изображение, полученное на мониторе ВКУ

Окончательной оценкой эффективности улучшения качества видеоизображений должно служить субъективно оцениваемое качество изображения, поскольку конечным потребителем воспроизводимого изображения является оператор. Зрительные возможности у разных операторов различны, и на неравномерном изображении облачного АФ трудно выделить ТТО. Ещё сложнее селектировать несколько отметок, поэтому при использовании зрительного обнаружения повышается вероятность ошибок принятия решений.

Таким образом, необходимы новые способы обнаружения воздушных целей, которые способны выделять отметки ТТО на изображении АФ без участия оператора. На конечном этапе обнаружения оператор на мониторе ВКУ должен увидеть изображение, для которого характерно максимально контрастное представление отметок ТТО на скомпенсированном равномерном АФ. Для получения такого изображения достаточно двух уровней квантования. Полученные на экране монитора бинарные изображения ТТО позволяют определять их угловые координаты и количественный состав (рис. 2).

Рис. 2. Изображение на мониторе ВКУ, полученное после фильтрации

Такое выделение ТТО на изображении АФ можно отнести к пространственной фильтрации. Пространственный фильтр предлагается реализовать программно в видеопроцессоре. Структурная схема теплопеленгатора, реализующая предлагаемую пространственную фильтрацию, представлена на рис. 3.

Сущность разработанного авторами способа обнаружения тепловых объектов на атмосферном фоне заключается в том, что предлагается использовать отличия пространственных спектров излучения точечных объектов и протяженного, более холодного, атмосферного фона. Пространственный спектральный анализ атмосферного фона содержит расчет нормированных пространственных спектральных плотностей мощности флуктуаций излучения. Он связан с методическими и вычислительными сложностями, которые касаются оптимизации выбора корреляционного окна.

Согласно теореме Винера Хинчина, пространственная спектральная плотность мощности преобразованием Фурье связана с взаимной корреляционной функцией, поэтому предлагается оценивать спектральную плотность мощности излучения на основе анализа нормированных коэффициентов взаимной корреляции для соседних строк (столбцов) цифрового массива ФЦИ . Математическое выражение, используемое для расчетов нормированных коэффициентов взаимной корреляции для соседних строк (столбцов) цифрового массива изображения, приведено в работе. Эта формула используется для обработки экспериментальных данных при изучении пространственных корреляционных связей флуктуаций излучения атмосферных фонов. Принято считать: если коэффициент взаимной корреляции второй диагонали корреляционной матрицы стремится к единице, то корреляционные связи сильны или устойчивы, а если меньше 0,5, то корреляционные связи слабы или отсутствуют [1].

Рис. 3. Структурная схема теплопеленгатора, построенного с использованием способа корреляционной компенсации фона

В ходе исследования корреляционных связей фонового излучения облачной атмосферы установлено, что нормированные коэффициенты взаимной корреляции соседних строк, столбцов массива изображения, находящиеся во вторых диагоналях корреляционных матриц, принимают значения в интервале [0,650,99]. При проведении предварительного математического моделирования по обнаружению теплового объекта на атмосферном фоне установлено, что присутствие теплового объекта в элементе массива изображения приведет к ослаблению корреляционных связей. При этом нормированные коэффициенты взаимной корреляции соседних строк, столбцов массива изображения, в которых находится изображение цели, находящиеся во вторых диагоналях корреляционных матриц, снижаются по сравнению со значениями для строк, столбцов, в которых его нет. Это явление предлагается считать признаком строк и столбцов, в которых находится отметка теплового объекта.

Основой алгоритма пространственной фильтрации является расчет диагональной корреляционной матрицы по строкам и матрицы по столбцам для массива ФЦИ. Первая (центральная) диагональ каждой корреляционной матрицы содержит элементы, равные единице, поскольку они получены путем вычисления коэффициентов корреляции строки (столбца) с самим собой. Вторая диагональ матрицы показывает, каков коэффициент взаимной корреляции первой строки со второй, второй с третьей и т. д. Из элементов вторых диагоналей корреляционных диагональных матриц и получают векторы и .

Далее, в соответствии с решающим правилом, из векторов и формируют бинарные вектора и . После сравнения с адаптивным порогом , в элемент вектора записывается 0, если в соответствующем элементе массива . В элемент записывается 1, если в соответствующем элементе массива . Аналогично, после сравнения с адаптивным порогом , в элемент вектора записывается 0, если в соответствующем элементе массива . В элемент записывается 1, если в соответствующем элементе массива .

Вектора , используются для формирования бинарных массивов . В каждый элемент, которого записывался результат умножения в соответствии с формулой , где и величины n-го и m-го элементов бинарных векторов и соответственно. Таким образом, окончательно формируется массив . Массив используется для создания бинарного изображения на мониторе ВКУ. По номерам строк и столбцов элементов, в которых находятся единичные значения, определяется пространственное положение цели в сегменте полусферы поиска. Изображение на мониторе с отфильтрованной точечной тепловой целью представлено на рис. 2.

С целью проверки эффективности предлагаемого алгоритма двумерной пространственной фильтрации ТТО было проведено математическое моделирование с использованием моделей излучения воздушных целей и фона. Модели построены на основе оцифрованных, при помощи специальной программы [3], кадров видеосигнала, полученных с видеовыхода теплопеленгатора. Примерный вид кадра видеосигнала, из которого получили массив представлен на рис. 1. Каждый элемент массива содержит информацию о дискретных уровнях квантования, пропорциональных яркости излучения АФ, снятого с ячейки многоэлементного приемника в n-й строке на m-м шаге. Сигнал в каждом пикселе квантован в 16777162 уровней яркости и занимает 24 бита. Характеристики теплопеленгатора приведены в работе [4].

Модели фона представляли собой цифровые массивы изображений , в каждом элементе которых записаны энергетические яркости собственного излучения атмосферного фона без ТТО. Модели излучения ТТО представлены средними контрастами излучения воздушных целей, полученных на различных по типу облачности, фонах и дальности [5]. Средний контраст излучения ТТО рассчитывался по формуле

, (4)

где среднее значение собственного излучения тепловой цели; среднее значение собственного излучения фона, на котором наблюдается тепловая цель.

Для проведения математического моделирования обнаружения теплового объекта на атмосферном фоне из имеющейся базы кадров фона были отобраны около 400 массивов изображений , полученных в спектральных диапазонах 8-13 мкм, размером 320Ч240 пикселей. В набор массивов кадров включены результаты ночных измерений в летний и осенний сезоны для следующих типов облачности: ясно, кучевая, слоистая, перистая.

С целью определения вероятности обнаружения, реализуемой при использовании предлагаемого способа, проведено моделирование процесса обнаружения теплового объекта на исследуемых фоновых кадрах. Были взяты по 100 кадров для названных типов облачности.

В качестве полезного сигнала (изображение теплового объекта) использовалась величина среднего контраста излучения вертолета, который вычислен по формуле (4). Размер изображения ТТО умещался в одном элемент (пиксель) изображения атмосферного фона , что соответствует при линейном размере цели 4 м удалению 12 15 км. На выбранные массивы изображения атмосферного фона "накладывался" сигнал от тепловых объектов. "Наложение", т. е. имитация появления изображения воздушной цели в выбранном пикселе массива, проводилось в соответствии с формулой

,где средний контраст излучения цели и фона. [5]. В результате моделирования, изображение теплового объекта наблюдалось, затеняя участок атмосферного фона находящегося за ним. При каждом "наложении" в случайно выбранный пиксель массива изображения фона создавалось отношение сигнал/шум

,

где пиковое значение квантованной яркости в дисперсия флуктуаций излучения атмосферного фона [5].

Обнаружение осуществлялось по адаптивному порогу p для коэффициента взаимной корреляции по строкам и столбцам массивов изображений . Диапазон изменения адаптивного порога находится в интервале [0,1 - 0,6]. Значение порога зависит от типа атмосферного фона, которому присуще свое значение радиуса корреляции, и от величины контраста цели на фоне атмосферных помех.

Анализ результатов математического моделирования подтвердил работоспособность предлагаемого способа пространственной фильтрации в инфракрасном диапазоне 8 13 мкм. Вероятности обнаружения теплового объекта на атмосферном фоне при отношении сигнал/шум, равном 2, представлены в таблице 1.

Таблица 1.

Вероятности обнаружения теплового объекта на атмосферном фоне

Диапазон

длин волн

Тип облачности

Ясно

Кучевая

Слоистая

Перистая

8 13 мкм

0,89

0,81

0,87

0,86

Как видно из сравнения видеоизображений, показанных на рисунках 1 и 2, при использовании предлагаемого способа отметка теплового объекта (целей), ввиду отсутствия фона на бинарном изображении, видна контрастно. Поэтому оценить их пространственное положение в сегменте полусферы поиска легко. Полученные на экране монитора бинарные изображения тепловых объектов позволяют определять их угловые координаты, количественный состав и другие характеристики без предварительной подготовки оператора, что приводит к увеличению информационной способности и простоте эксплуатации теплопеленгатора.

Литература

1. Алленов М.И. и др. Стохастическая структура излучения облачности. СПб.: Гидрометеоиздат, 2000. 175 с.

2. Якушенков Ю.Г., Тарасов В.В. Инфракрасные системы "смотрящего" типа. М.: "Логос", 2004. 430 с.

3. Якименко И.В., Коваль С.Н., и др. Цифровая обработка сигналов тепловизионных устройств перспективных образцов вооружений // Программа ЭВМ. Зарегистрирована ФГУП "Всероссийский научно-технический центр" Инв. Номер 50200900390

4. Чупраков А.М., Хитрик А.С. Тепловизионный прицел на основе матричного болометрического приемника. //Оптико-электронные системы визуализации и обработки оптических изображений.// Вып. 2. М.: ЦНИИ "Циклон". 2007. С. 60-71.

5. Левшин В.Л. Пространственная фильтрация в оптических системах пеленгации. М.: "Советское радио", 1971. 199 с.

Размещено на Allbest.ru

...

Подобные документы

  • Создание и проекционный перенос изображения с помощью пучка электронов. Характеристики рассеяния электронов в слое электронорезиста. Рентгеношаблон. Использование синхротронного излучения в рентгенолитографии. Источник рентгеновского излучения.

    реферат [826,6 K], добавлен 14.01.2009

  • Исследование зависимости вероятности обнаружения малоразмерной цели оптико-электронным пеленгатором с фокальным матричным приёмником излучения. Оценка дальности действия пеленгатора при обнаружении объекта по критерию максимального правдоподобия.

    контрольная работа [296,1 K], добавлен 06.06.2013

  • Назначение разрабатываемого устройства (детектора высокочастотного излучения) для оперативного обнаружения радиоизлучающих подслушивающих устройств промышленного шпионажа. Технические требования к устройству, его патентной чистоте и условиям эксплуатации.

    дипломная работа [643,0 K], добавлен 12.12.2010

  • Основные виды и методы обработки видеосигналов пространственных объектов при наличии коррелированных помех и шумов. Фильтрация видеоизображений на основе теории порядковых статистик и на основе использования порядковой статистики минимального ранга.

    курсовая работа [1,1 M], добавлен 05.05.2015

  • Использование радиолокационных и оптических тепловых пеленгационных систем. Борьба за дальность обнаружения при разработке теплопеленгационных систем и их применение для обнаружения объектов по излучению выхлопных газов их двигателей и нагретых частей.

    курсовая работа [997,5 K], добавлен 24.11.2010

  • Характеристики полупроводниковых материалов. Классификация источников излучения. Светоизлучающие диоды. Лазер как прибор, генерирующий оптическое когерентное излучение на основе эффекта вынужденного или стимулированного излучения, его применение.

    курсовая работа [551,5 K], добавлен 19.05.2011

  • Распространение оптических сигналов. Когерентность светового луча. Анализ источников некогерентного излучения. Энергия лазерного излучения. Тепловые и фотоэлектрические приемники излучения. Волоконно-оптическая сеть. Развитие оптических коммуникаций.

    презентация [1,6 M], добавлен 20.10.2014

  • Источники излучения и промежуточная среда. Физическая природа излучения источника, собственное и отраженное излучение. Функции оптической системы. Приемники излучения (определение и классификация). Усилитель и другие элементы электронного тракта.

    реферат [662,9 K], добавлен 10.12.2008

  • Использование громкоговорителя прямого излучения для преобразования механических колебаний в акустические. Особенности устройства диффузора. Излучение пульсирующей сферы. Формула звукового давления. Зависимость коэффициента направленности от угла.

    контрольная работа [285,2 K], добавлен 16.11.2010

  • Локация как область техники, использующая явления отражения и излучения электромагнитных волн различными объектами для обнаружения этих объектов. Структурная схема радиолокатора. Основные цели и задачи определения трех групп навигационных параметров.

    контрольная работа [1,5 M], добавлен 21.08.2015

  • Сущность и характеристика излучения, его разновидности и вычисления. Основные особенности пространственной структуры излучения. Проекции волновых векторов на координатные оси. Фазочная и амплитудно-частотная характеристика свободного пространства.

    реферат [297,6 K], добавлен 28.01.2009

  • В работе рассмотрена тема характера воздействия помех на работу систем и принципов их защиты. Разделение помех на группы: шумы, мешающие излучения и мешающие отражения. Помехи и их классификация. Спектр шумов. Теория обнаружения. Функции времени.

    реферат [1,9 M], добавлен 21.01.2009

  • Расчет температуры корпуса и пакета плат одноблочной ЭВМ. Схема соединения тепловых сопротивлений. Способ монтажа микросхем на плате. Определение теплового сопротивления при передаче тепловой энергии (теплоты) кондукцией для микросхемы, способы улучшения.

    лабораторная работа [695,1 K], добавлен 08.11.2012

  • Характеристика полупроводниковых источников излучения. Изучение принципов работы светоизлучающих диодов. Расчет квантового выхода, частоты излучения. Строение лазеров, электролюминесцентных и плёночных излучателей. Описание внутреннего фотоэффекта.

    курсовая работа [330,7 K], добавлен 21.08.2015

  • Суть физического явления электронного парамагнитного резонанса (ЭПР). Ядерный магнитный резонанс: открытие, сущность, применение. Основные элементы спектрометров. Характеристики спектров поглощения электромагнитного излучения; оптическая спектроскопия.

    презентация [1,4 M], добавлен 22.05.2014

  • Передающие оптоэлектронные модули, их применение. Построение зависимости выходной мощности источника оптического излучения от величины электрического тока. Определение зависимости чувствительности фотодетектора от длины волны оптического излучения.

    контрольная работа [231,3 K], добавлен 05.05.2014

  • Инжекционный механизм накачки. Величина смещающего напряжения. Основные характеристики полупроводниковых лазеров и их группы. Типичный спектр излучения полупроводникового лазера. Величины пороговых токов. Мощность излучения лазера в импульсном режиме.

    презентация [103,2 K], добавлен 19.02.2014

  • Методы достижения кратковременного состояния невесомости. Единицы измерения поглощенной дозы радиоактивного излучения, его источники. Радиационная стойкость конденсаторов. Устройство гетерогенного ядерного реактора. Защитные устройства от гамма-излучения.

    реферат [1,3 M], добавлен 25.01.2009

  • Проверка в вычислительных экспериментах схемы модельного синтеза дифракционных антенн с заданными электродинамическими характеристиками. Исследование физических особенностей в процессах излучения импульсных и монохроматических волн такими антеннами.

    презентация [464,9 K], добавлен 09.10.2015

  • Понятие и виды ионизирующего излучения. Приборы, измеряющие радиационное излучение, и принцип работы счётчика Гейгера. Основные узлы и структурная схема прибора. Выбор и обоснование элементной базы. Проектирование принципиальной схемы в САПР OrCAD.

    дипломная работа [1,5 M], добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.