Цифровое имитационное моделирование способа определения пороговых значений признака классификации воздушных целей
Рассмотрение недостатков в алгоритмах классификации радиолокационных станций, ограничивающих их функциональное применение. Использование двухчастотного способа классификации воздушных целей и определение пороговых значений признака классификации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2019 |
Размер файла | 494,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Математическая морфология.
Электронный математический и медико-биологический журнал.
Том 12. Вып. 4. 2013.
ЦИФРОВОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ СПОСОБА ОПРЕДЕЛЕНИЯ ПОРОГОВЫХ ЗНАЧЕНИЙ ПРИЗНАКА КЛАССИФИКАЦИИ ВОЗДУШНЫХ ЦЕЛЕЙ
Романенко А.В., Лапшин И.А.
Аннотация
воздушный цель радиолокационный двухчастотный
В настоящее время существует ряд недостатков в алгоритмах классификации радиолокационных станций, которые ограничивают их функциональное применение. В статье рассмотрен вопрос применения двухчастотного способа классификации воздушных целей и определение пороговых значений признака классификации для определения принадлежности цели к соответствующему классу. Предложен алгоритм расчета порогового значения признака классификации воздушной цели.
Ключевые слова: признак классификации, радиальный размер, двухчастотный способ классификации, критерий Колмогорова-Смирнова.
Annotation
DIGITAL IMITATING MODELLING OF THE WAY OF DETERMINATION OF THRESHOLD VALUES OF THE SIGN OF CLASSIFICATION OF AIR TARGETS
Romanenko A., Lapshin I.
At present exists the row a defect in system of the classification radar station, which limit their functional using. In article is considered question using two-frequency of the way of the classification air integer and determination threshold values of the sign of the classification for determination accessories to purposes to corresponding to class. Offered algorithm, calculation threshold values of the sign of the classification of the class to air purpose.
Key words: sign of the classification, radial size, two frequency ways of the classification, criterion Kolmogorova-Smirnova.
Основная часть
В настоящее время все более привлекательным становится метровый диапазон РЛС, предназначенных для обнаружения воздушных целей (ВЦ) на больших дальностях. К достоинствам метрового диапазона длин волн можно отнести:
более высокие рубежи обнаружения и завязки трасс современных и перспективных воздушных целей за счет их большей эффективной поверхности рассеяния (ЭПР), в особенности малоразмерных целей (ракет, боеголовок) и малозаметных («Стелс»);
возможность использования антенных решеток большой площади при малом числе антенных элементов и каналов приемного тракта, что позволяет достичь больших размеров зоны обнаружения целей при сравнительно небольших аппаратурных затратах;
малая интенсивность отражений от гидрометеообразований, что, практически, исключает зависимость характеристик РЛС от погодных условий;
трудности создания противолокационных снарядов и средств постановки помех в данном диапазоне.
Одним из основных требований, предъявляемых к РЛС, является осуществление процедуры классификации ВЦ с вероятностью не ниже заданной. Однако к настоящему времени применительно к существующим и перспективным РЛС метрового диапазона волн проработаны и исследованы только траекторные признаки классификации. Наряду со значительным перекрытием областей распределения этих признаков для ряда классов воздушных целей, траекторные признаки не позволяют селектировать реальные цели на фоне ложных, имитирующих скорость и высоту полета реальных целей. В то же время использование в системе классификации сигнальных признаков, определяемых радиальными размерами радиолокационных объектов, способно самостоятельно или в совокупности с другими признаками обеспечить решение поставленных перед РЛС задач (табл. 1).
Одним из сигнальных признаков, способных повысить качество радиолокационной информации, является признак оценки радиальных размеров целей корреляционным двухчастотным способом (КДЧС) [2]. Способ основан на различном характере флюктуаций ЭПР цели различной протяженности при перестройке частоты сигнала РЛС.
Сущность способа заключается в нахождении взаимосвязи амплитуды или мощности сигналов разнесенных по частоте на оптимальную величину, выбираемую из интервала частотной корреляции наибольшей из классифицируемой цели. Аналитическое описание способа классификации имеет вид (1), из которого видно влияние на значение признака классификации оптимального разноса частот ДСЧ и расстояния между блестящими точками цели. При оптимальном разносе частот, чем больше размер цели, тем больше значение признака классификации (рис. 1).
Таблица 1
Перечень признаков классификации и классифицируемые СВН в существующих и разрабатываемых РЛС
Изделие |
Перечень признаков классификации |
Перечень классифицируемых целей |
|
1Л13 «Небо-СВ» |
Классификация не реализована |
||
1Л13М «Небо-СВМ» |
Максимальная амплитуда отраженного сигнала. Высота цели. Модуль вектора скорости. Модуль вектора путевой скорости. Сглаженное приращение азимута. Сглаженная оценка ракурса. |
аэродинамическая цель, баллистическая цель, противорадиолокационная ракета. |
|
1Л119 «Небо-СВУ» |
Траекторные признаки |
баллистическая цель, самолет, вертолет. |
|
35Н6 |
Классификация не реализована |
||
39Н6 |
Классификация не реализована |
||
РЛК (М.Д.) |
Траекторные и сигнальные признаки |
самолет СА, самолет ТА, аэродинамический аппарат, баллистическая ракета, аэродинамическая ракета, гиперзвуковая крылатая вертолет, ложная цель. |
, (1)
где i(j) - ЭПР блестящих элементов, не зависящие от изменения частоты в ограниченном диапазоне; ri(j) - смещение i(j)-го блестящего элемента вдоль линии визирования РЛС относительно первого элемента; N - число блестящих элементов на «освещенной» поверхности цели; с - скорость распространения электромагнитных волн.
Определение радиального размера цели может быть полезным для решения целого ряда задач:
1. Классификация реальных и ложных направлений полета и селекция реальных целей на фоне ложных.
2. Расстановка целей в приоритетный ряд;
3. Определение состава групповой сосредоточенной цели.
Рис. 1 Зависимость признака классификации от разноса частот двухчастотного зондирующего сигнала
Исходя из геометрических размеров типовых представителей классов целей (рис. 2.), подлежащих классификации РЛС (при этом баллистические цели из рассмотрения выведены), предлагается разделить их по признаку «радиальная протяженность» на три класса: крупноразмерные - 24-75 м; среднеразмерные - 10-24 м; малоразмерные - менее 10 м.
Таким образом, классификацию целей необходимо проводить по совокупности признаков, причем по признаку «радиальная протяженность» не требуется градации более чем на три класса.
Для получения пороговых значений признака распознавания класса воздушной цели, необходимо смоделировать работу РЛС и получить значения признака для типовых представителей каждого класса воздушных целей.
Обобщенная структурная схема цифровой имитационной математической модели системы классификации радиолокационных целей приведена на рис. 3.
Функционирование имитационной модели начинается с выбора реализуемого метода классификации его характеристик (количества обзоров N и частот М), а также количества циклов для набора статистики Nстат. Исходные данные для процесса моделирования задаются с помощью окна InitialWindow, описанного в модуле RS_Initial (класс TInitialForm). В этом же модуле хранятся используемые по умолчанию значения всех параметров моделирования.
Управление процессом вычислений (запуск и приостановка) осуществляется через органы управления, расположенные в окне мониторинга (класс TMonitorForm__, описанный в модуле Monitor__), кроме того, в данном окне отображаются текущие результаты моделирования рис. 4.
Процесс вычислений программно реализован в виде отдельного потока вычислений (класс TProcess__=class(TThread), описанный в модуле UnitProcess__) и осуществляется в следующем порядке. Из заданных диапазонов координат, скоростей, углов тангажа и рыскания случайным образом формируются характеристики траекторий цели. Координаты и параметры движения цели в зависимости от типа маневра и начальных установок рассчитываются на каждом интервале временной дискретизации модели в блоке движения цели (метод TTarget.Outy класса TTarget, описанного в модуле UnitTarget).
В цифровой имитационной модели используются фацетные модели воздушных целей. При создании фацетной модели цели в работе [3, 4] использовалась система автоматизированного проектирования 3D Studio Max. Эта система позволяет синтезировать виртуальную геометрическую модель любого сложного объекта и представлять внешнюю его поверхность в виде совокупности однотипных и пристыкованных друг к другу плоских элементов. В соответствии с фацетным представлением геометрической модели объект описывается путем задания локальных рассеивающих элементов, совокупность которых образует поверхность, а совокупность поверхностей образует объект. Описание локальных элементов осуществляется с использованием объектно-ориентированных структур - «треугольник», «ребро» и «точка».
Рис. 2 Классификация целей по признаку «радиальная протяженность»
Рис. 3 Обобщенная структурная схема цифровой имитационной математической модели системы классификации радиолокационных целей
В цифровой имитационной модели используются фацетные модели воздушных целей. При создании фацетной модели цели в работе [3, 4] использовалась система автоматизированного проектирования 3D Studio Max. Эта система позволяет синтезировать виртуальную геометрическую модель любого сложного объекта и представлять внешнюю его поверхность в виде совокупности однотипных и пристыкованных друг к другу плоских элементов. В соответствии с фацетным представлением геометрической модели объект описывается путем задания локальных рассеивающих элементов, совокупность которых образует поверхность, а совокупность поверхностей образует объект. Описание локальных элементов осуществляется с использованием объектно-ориентированных структур - «треугольник», «ребро» и «точка».
Рис. 4 Вид окна управления процессом вычислений цифровой имитационной математической модели системы классификации радиолокационных целей
В настоящее время запрограммированы описания целей следующих типов: бомбардировщики Boeing B-52 Stratofortress, Rockwell B-1 Lancer, Northrop B-2 Spirit, транспортный самолет Lockheed C-130 Hercules, самолет ДРЛО Boeing E-3 Sentry, самолеты истребители F-16 Fighting Falcon, F-22 Raptor, F-15 Eagle, F/A-18 Hornet, Sepecat Jaguar, ПРР AGM-88 HARM, УР Maverick AGM-65d, КР Тоmahawk, БПЛА ADM-160 Mald. Модели целей, основанные на фацетном представлении объектов, используются в цифровых имитационных математических моделях системы классификации РЛЦ
В процессе моделирования происходит расчет признака классификации цели амплитудным корреляционным двухчастотным способом, описываемого выражением (2), которое пропорционально аналитическому описанию (1) и запись его в текстовый файл.
, (2)
где - комплексные амплитуды сигналов на двух частотах; m - номер контакта с целью; М - количество контактов с целью (обзоров РЛС); 0,5 - нормирующий множитель.
На рис. 5 представлены гистограммы распределения признака классификации трех видов целей.
Рис. 5 Гистограммы распределения признака классификации ВЦ
Пороговые значения классов воздушных целей вычислим по объединенным значениям признака классификации каждого типа воздушной цели (рис. 12). Пороговые значения определим с помощью эмпирического метода обработки данных, а именно с помощью метода Колмогорова-Смирнова (критерий однородности двух выборок)[5].
Пороговое значение признака классификации ВЦ рассчитывается по следующему алгоритму:
Исходные данные:
Имеем наблюдений и .
Допущения:
1. Все N наблюдений X и Y независимы.
2. Все эти X извлечены из одной непрерывной совокупности П1.
3. Все эти Y извлечены из одной непрерывной совокупности П2.
Метод:
Рассмотрим гипотезу о том, что совокупность П1 и П2.идентичны, т.е. о том, что обе выборки извлечены из одной и той же совокупности. Ее можно записать так:
для всех а. (3)
Для проверки гипотезы надо выполнить следующие операции:
Переупорядочить объединенную выборку из N наблюдений , для получения набора из тех же N наблюдений, но упорядоченных по возрастанию. Обозначить эти упорядоченные значения через
(4)
1. Ввести переменные , положив
(5)
2. Допустить, что d - общий наибольший делитель m и n.
3. Положить
(6)
и ввести
(7)
4. Двусторонний критерий уровня б для (3) против любой альтернативы о том, что не верна, а именно
, таков:
(8)
Таким образом, вычислив значение критерия Колмогорова-Смирнова, мы получим значение порога между классами соответствующих воздушных целей.
По полученным значениям признака классификации воздушных целей были определены значения порогов классов целей с использование метода Колмогорова-Смирнова. Порог между МРЦ и СРЦ целями составил 0,1855, между СРЦ и КРЦ - 0,312, т.е. эффективность двухчастотного способа классификации МРЦ и СРЦ составила 100%, СРЦ и КРЦ - 96,55%.
Практическая ценность результатов работы заключается в возможности определять принадлежность воздушной цели к определенному классу, что позволит расставить цели в приоритетный ряд, определить состав групповых целей. Осуществить такую классификацию возможно, зашив пороговые значения признака классификации в систему классификации целей существующих и перспективных РЛС.
Литература
1. Чижов А. А., Юдин В.А., Панов Д. В., Васильченко О. В., Мурашкин А. В. Цифровая имитационная модель системы распознавания классов воздушных целей РЛС обнаружения метрового диапазона длин волн. Свидетельство о регистрации электронного ресурса № 50200900358 от 12.02.2009.
2. Юдин В. А. Сравнительный анализ признаков распознавания классов воздушных целей двух- и многочастотными способами и их экспериментальное исследование в радиолокационной станции дежурного режима// Конкурс молодых ученых: Материалы конференции. Смоленск, «Универсум», 2003. С. 135-138.
3. Панов Д. Н., Юдин В. А., Абраменков В. В., Чижов А. А. Математическая модель амплитудного двухчастотного признака распознавания классов РЛЦ при когерентном накоплении сигнала// Научные труды академии, Вып. 14. Смоленск, ВА ВПВО ВС РФ, 2006.
4. Панов Д. В., Юдин В. А., Краснов П. В., Горбачев А. В. Математическая модель амплитудного двухчастотного признака распознавания классов ВЦ и результаты натурного эксперимента при когерентном накоплении сигнала. ЦВНИ МО РФ. М., 2006. Деп. в ЦСИФ, сер. А.
5. М. Холлендер, Д. Вулф, Непараметрические методы статистики. М., «Финансы и статистика», 1983.
Размещено на Allbest.ru
...Подобные документы
Понятие и применение нейронных сетей, особенности классификации искусственных нейронных сетей по Терехову. Решение задачи классификации римских цифр на основе нейронной сети. Составление блок-схемы алгоритма обучения нейронной сети и анализ ее качества.
дипломная работа [603,9 K], добавлен 14.10.2010Природа возникновения и источники аномальных значений. Сбой в работе аппаратуры, отказ оборудования, кратковременное внешнее воздействие на измерительный элемент, "залипание" цифрового счетчика, атмосферные воздействия при передаче радиосигналов.
курсовая работа [993,7 K], добавлен 15.04.2011Безопасность и регулярность полетов воздушных судов, радиотехнические средства обеспечения полетов. Аналитический обзор аэродромных радиолокационных станций (РЛС): назначение, размещение, особенности и принципы работы. Расчет технических параметров РЛС.
курсовая работа [432,7 K], добавлен 14.11.2010Основные теоретические принципы работы устройств оперативного контроля достоверности передачи информации. Оборудование и методика расчета достоверности приема информации о снижении цифровых систем передачи ниже пороговых значений для систем сигнализации.
контрольная работа [90,5 K], добавлен 30.10.2016Классификация радиолокационной станции управления воздушным движением и воздушных объектов и их краткая характеристика. Особенности построения трассовых радиолокационных станций. Система синхронизации и формирования меток азимута трассовой станции.
дипломная работа [2,5 M], добавлен 28.11.2022- Исследование принципов построения и путей совершенствования многопозиционных радиолокационных систем
Теоретический обзор и систематизация методов построения многопозиционных радиолокационных систем. Обоснование практической необходимости использования РЛС. Определение общих технических преимуществ и недостатков многопозиционных радиолокационных систем.
курсовая работа [702,1 K], добавлен 18.07.2014 Построение и обоснование компьютерной модели поведения обедненной области пространственного заряда МДП-транзистора в зависимости от напряжения, приложенного к стоку. Изучение классификации и принципа действия полевых транзисторов с индуцированным каналом.
курсовая работа [737,3 K], добавлен 08.06.2011Основные свойства математической, аналитической, имитационной моделей преобразователя частоты. Измерение интермодуляционной и амплитудной характеристик, параметров блокирования; зависимость от значений амплитуды колебаний гетеродина преобразователя Аг.
курсовая работа [331,7 K], добавлен 01.12.2011Основные признаки классификации электронных индикаторов, (конструктивные особенности, способы управления, назначение). Применение единичных, сегментных, шкальных и электронно-механических индикаторов. Формирование изображения в матричном индикаторе.
презентация [2,0 M], добавлен 14.12.2015Работа радиолокационных станций в условиях помех и действия малоразмерных целей. Расчет параметров входного устройства транзисторного усилителя. Расчет функции передачи и элементов согласующей цепи. Синтез схемы входного устройств малошумящего усилителя.
дипломная работа [8,6 M], добавлен 04.12.2013Основные признаки классификации триггеров. Использование последовательных регистров для сжатия считываемой информации. Свойства счетного триггера. Назначение и работа регистров. Статические и динамические классы оперативных запоминающих устройств.
лабораторная работа [215,1 K], добавлен 30.04.2014Приведение заданной нагрузки к виду, удобному для расчета данных. Определение значения коэффициента использования для приемника. Расчет значений активной и сменной мощности, их сумма. Определение коэффициентов максимальных значений нужных параметров.
контрольная работа [185,4 K], добавлен 04.04.2013Патентно-аналитический обзор по датчикам измерения скорости, основания их классификации. Принцип действия и технические характеристики электромагнитных датчиков скорости. Использование эффекта Холла для конструирования датчика скорости автомобиля.
курсовая работа [607,5 K], добавлен 13.01.2015Рассмотрение классификации компоновочных схем гибких производственных модулей в зависимости от серийности производства (с промежуточным накопителем), типовой технологии, взаиморасположения рабочих зон и зон обслуживания (фронтальная, дипольная, угловая).
контрольная работа [2,2 M], добавлен 23.05.2010Сущность и использование Wi-Fi, этапы его создания. Прицип работы беспроводной сети. Скорость передачи данных по Wi-Fi. Особенности преимуществ и недостатков данного способа, использование в игровой индустрии. Способы настройки и работа в Интернет.
презентация [824,3 K], добавлен 07.06.2011Анализ существующих радиолокационных систем слежения. Огибающие радиоимпульсов, параметры сигнала. Временная и спектральная диаграммы сигнала на выходе линейной части РПрУ. Радиотехническое обеспечение полетов воздушных судов в районе аэродрома.
контрольная работа [90,5 K], добавлен 28.01.2012Зависимость коэффициента поглощения энергии от длины волны. Удельная отражающая площадь дождя. Энергетический баланс радиолокационной станции. Зависимость коэффициента шума от частоты принимаемого сигнала. Импульсное излучение, методы обзора пространства.
контрольная работа [635,1 K], добавлен 17.11.2012Рассмотрение принципов организации Deep Packet Inspection в телекоммуникации. Проведение исследований нейронных сетей. Выбор оптимальной модели для решения задач классификации мультимедийного трафика. Изучение вопросов безопасности жизнедеятельности.
дипломная работа [1,0 M], добавлен 22.06.2015Определение назначения, описание принципа действия и изучение классификации мультимедийных проекторов как цифровых устройств, проецирующих изображение на экран. Компьютерный сигнал и состав LCD и CRT технологий. Технические характеристики 3D-проекторов.
презентация [744,1 K], добавлен 10.08.2013Обзор классификации волоконно-оптических кабелей, электронных компонентов систем оптической связи. Характеристика принципа передачи света и срока службы источников света. Описания методов сращивания отдельных участков кабелей, длины оптической линии.
курсовая работа [212,2 K], добавлен 30.11.2011