Черно-белый кинескоп
История развития, классификация, обозначение, маркировка, устройство и работа черно-белого кинескопа. Способы изменения угла отклонения луча в электронно-лучевой трубке. Применение принципа "ионной ловушки". Другие виды электронно-лучевых приборов.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 04.06.2019 |
Размер файла | 140,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Московский технологический университет (МИРЭА)
Реферат
Черно-белый кинескоп
Москва 2018
Оглавление
История развития
Классификация
Устройство и принцип работы
Угол отклонения луча
Ионная ловушка
Развёртка
Обозначение и маркировка
Другие виды электронно-лучевых приборов
Список литературы
История развития
В 1859 году Юлиус Плюккер открыл катодные лучи. В 1879 году Уильям Крукс создал прообраз электронной трубки, установил, что катодные лучи распространяются линейно, но могут отклоняться магнитным полем. Также он обнаружил, что при попадании катодных лучей на некоторые вещества, последние начинают светиться.
В 1895 году немецкий физик Карл Фердинанд Браун на основе трубки Крукса создал катодную трубку, получившую названия трубки Брауна. Луч отклонялся магнитно только в одном измерении, второе направление развёртывалось при помощи вращающегося зеркала. Браун решил не патентовать свое изобретение, выступал со множеством публичных демонстраций и публикаций в научной печати. Трубка Брауна использовалась и совершенствовалась многими учёными. В 1903 году Артур Венельт поместил в трубке цилиндрический электрод (цилиндр Венельта), позволяющий менять интенсивность электронного луча, а соответственно и яркость свечения люминофора.
В 1905 году Альберт Эйнштейн опубликовал уравнение внешнего фотоэффекта, открытого в 1877 году Генрихом Герцем, и исследованного Александром Григорьевичем Столетовым.
В 1906 году сотрудники Брауна М. Дикман и Г. Глаге получили патент на использование трубки Брауна для передачи изображений, а в 1909 году М. Дикман предложил в статье фототелеграфное устройство для передачи изображений с помощью трубки Брауна, в устройстве для развёртки применялся диск Нипкова. электронный лучевой трубка кинескопС 1902 года с трубкой Брауна работает Борис Львович Розинг. 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.
В начале и середине XX века значительную роль в развитии ЭЛТ сыграли Владимир Зворыкин, Аллен Дюмонт и другие.
Классификация
По способу отклонения электронного луча все ЭЛТ делятся на две группы: с электромагнитным отклонением (индикаторные ЭЛТ и кинескопы) и с электростатическим отклонением (осциллографические ЭЛТ и очень небольшая часть индикаторных ЭЛТ).
По способности сохранять записанное изображение ЭЛТ делят на трубки без памяти, и трубки с памятью (индикаторные и осциллографические), в конструкции которых предусмотрены специальные элементы (узлы) памяти, с помощью которых единожды записанное изображение может многократно воспроизводиться.
По цвету свечения экрана ЭЛТ подразделяются на монохромные и многоцветные. Монохромные могут иметь разный цвет свечения: белый, зелёный, синий, красный и другие. Многоцветные подразделяются по принципу действия на двухцветные и трёхцветные. Двухцветные -- индикаторные ЭЛТ, цвет свечения экрана которых меняется или за счет переключения высокого напряжения, или за счет изменения плотности тока электронного луча. Трёхцветные (по основным цветам) -- цветные кинескопы, многоцветность свечения экрана которых обеспечивается специальными конструкциями электронно-оптической системы, цветоделительной маски и экрана.
Осциллографические ЭЛТ подразделяют на трубки низкочастотного и СВЧ диапазонов. В конструкциях последних применена достаточно сложная система отклонения электронного луча.
Кинескопы подразделяют на телевизионные, мониторные и проекционные (применяются в видеопроекторах). Мониторные кинескопы имеют меньший шаг маски, чем телевизионные, а проекционные кинескопы имеют повышенную яркость свечения экрана. Они являются монохромными и имеют красный, зелёный и синий цвет свечения экрана.
Устройство и принцип работы
кинескоп электронный лучевой
Общие принципы
Устройство чёрно-белого кинескопа
В баллоне 9 создан глубокий вакуум -- сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер.
Для того чтобы создать электронный луч 2, применяется устройство, именуемое электронной пушкой. Катод 8, нагреваемый нитью накала 5, испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде (модуляторе) 12 можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки 3 с сердечником 11), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом 14, представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ анод представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт.
Далее луч проходит через отклоняющую систему 1, которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.
Электронный луч попадает в экран 10, покрытый люминофором 4. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.
Люминофор от электронов приобретает отрицательный заряд, и начинается вторичная эмиссия -- люминофор сам начинает испускать электроны. В результате вся трубка приобретает отрицательный заряд. Для того, чтобы этого не было, по всей поверхности трубки находится соединённый с анодом слойаквадага -- проводящей смеси на основе графита (6).
Кинескоп подключается через выводы 13 и высоковольтное гнездо 7.
В чёрно-белых телевизорах состав люминофора подбирают таким, чтобы он светился нейтрально-серым цветом. В видеотерминалах, радарах и т. д. люминофор часто делают жёлтым или зелёным для меньшего утомления глаз.
Угол отклонения луча
Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40°, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин и обеспечить линейность характеристики отклонения. У первых советских телевизионных кинескопов с круглым экраном угол отклонения составлял 50°, у чёрно-белых кинескопов более поздних выпусков был равен 70°, начиная с 1960-х годов увеличился до 110° (один из первых подобных кинескопов -- 43ЛК9Б). У отечественных цветных кинескопов составляет 90°.
При увеличении угла отклонения луча уменьшаются габариты и масса кинескопа, однако:
· увеличивается мощность, потребляемая узлами развёртки. Для решения этой проблемы уменьшался диаметр горловины кинескопа, что, однако, потребовало изменения конструкции электронной пушки.
· возрастают требования к точности изготовления и сборки отклоняющей системы, что было реализовано путём компоновки кинескопа с отклоняющей системой в единый модуль и сборки его в заводских условиях.
· возрастает число необходимых элементов настройки геометрии растра и сведения.
Всё это привело к тому, что в некоторых областях до сих пор применяются 70-градусные кинескопы. Также угол в 70° продолжает применяться в малогабаритных чёрно-белых кинескопах (например, 16ЛК1Б), где длина не играет такой существенной роли.
Ионная ловушка
Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы, которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 1960-х годов применялся принцип «ионной ловушки»: ось электронной пушки была расположена под некоторым углом к оси кинескопа, а расположенный снаружи регулируемый магнит обеспечивал поле, поворачивающее поток электронов к оси. Массивные же ионы, двигаясь прямолинейно, попадали в собственно ловушку.
Однако данное построение вынуждало увеличивать диаметр горловины кинескопа, что приводило к росту необходимой мощности в катушках отклонящей системы.
В начале 1960-х годов был разработан новый способ защиты люминофора: алюминирование экрана, кроме того, позволившее вдвое повысить максимальную яркость кинескопа, и необходимость в ионной ловушке отпала.
Задержка подачи напряжения на анод либо модулятор
В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа к этому моменту успевает разогреться.
Внедрение в узлы строчной развёртки полностью полупроводниковой схемотехники породило проблему ускоренного износа катодов кинескопа по причине подачи напряжения на анод кинескопа одновременно с включением. Для борьбы с этим явлением разработаны любительские узлы, обеспечивающие задержку подачи напряжения на анод либо модулятор кинескопа. Интересно, что в некоторых из них, несмотря на то, что они предназначены для установки в полностью полупроводниковые телевизоры, в качестве элемента задержки использована радиолампа. Позднее начали выпускаться телевизоры промышленного производства, в которых такая задержка предусмотрена изначально.
Развёртка
Чтобы создать на экране изображение, электронный луч должен постоянно проходить по экрану с высокой частотой -- не менее 25 раз в секунду. Этот процесс называется развёрткой. Есть несколько способов развёртки изображения.
Растровая развёртка
Электронный луч проходит весь экран по строкам. Возможны два варианта:
· 1--2--3--4--5--… (построчная развёртка);
· 1--3--5--7--…,
· затем 2--4--6--8--… (чересстрочная развёртка).
Векторная развёртка
Электронный луч проходит вдоль линий изображения. Векторная развёртка применялась в игровой консоли Vectrex.
Развёртка на экране радара
В случае использования экрана кругового обзора, т. н. тайпотрона, электронный луч проходит по радиусам экрана (экран при этом имеет форму круга). Служебная информация в большинстве случаев (цифры, буквы, топографические знаки) развёртывается дополнительно сквозь знаковую матрицу (находится в электронно-лучевой пушке).
Обозначение и маркировка
Обозначение отечественных ЭЛТ состоит из четырёх элементов:
· Первый элемент: число, указывающее диагональ прямоугольного либо диаметр круглого экрана в сантиметрах;
· Второй элемент: две буквы, указывающие на принадлежность ЭЛТ к определённому конструктивному виду. ЛК -- кинескоп, ЛМ -- трубка с электромагнитным отклонением луча, ЛО -- трубка с электростатическим отклонением луча, ЛН -- трубки с памятью (индикаторные и осциллографические);
· Третий элемент: число, указывающие номер модели данной трубки с данной диагональю, при этом для осциллографических трубок СВЧ-диапазона нумерация начинается с номера 101;
· Четвёртый элемент: буква, указывающая цвет свечения экрана. Ц -- цветной, Б -- белого свечения, И -- зелёного свечения, В -- жёлто-зелёного свечения, С -- оранжевого свечения, П -- красного свечения, А -- синего свечения. Х -- обозначает экземпляр, имеющий худшие светотехнические параметры по сравнению с прототипом.
В особых случаях к обозначению может добавляться пятый элемент, несущий дополнительную информацию.
Пример: 50ЛК2Б -- чёрно-белый кинескоп с диагональю экрана 50 см, вторая модель, 3ЛО1И -- осциллографическая трубка с диаметром экрана зелёного свечения 3 см, первая модель.
Другие виды электронно-лучевых приборов
Кроме кинескопа, к электронно-лучевым приборам относят:
· Квантоскоп (лазерный кинескоп), разновидность кинескопа, экран которого представляет собой матрицу полупроводниковых лазеров, накачиваемых электронным лучом. Квантоскопы применяются в проекторах изображения.
· Осциллографическая электронно-лучевая трубка.
· Знакопечатающая электронно-лучевая трубка.
· Индикаторная электронно-лучевая трубка используются в индикаторах радиолокационных станциий.
· Запоминающая электронно-лучевая трубка.
· Потенциалоскоп
· Тайпотрон
· Графекон
· Передающая телевизионная трубка преобразует световые изображения в электрические сигналы.
· Моноскоп передающая электронно-лучевая трубка, преобразующая единственное изображение, выполненное непосредственно на фотокатоде, в электрический сигнал. Применялся для передачи изображения телевизионной испытательной таблицы (например, ТИТ-0249).
· Кадроскоп электронно-лучевая трубка с видимым изображением, предназначенная для настройки блоков разверток и фокусировки луча в аппаратуре, использующей электронно-лучевые трубки без видимого изображения (графеконы, моноскопы, потенциалоскопы). Кадроскоп имеет цоколевку и привязочные размеры, аналогичные электронно-лучевой трубке, используемой в аппаратуре. Более того, основная ЭЛТ и кадроскоп подбираются по параметрам с очень высокой точностью и поставляются только комплектом. При настройке вместо основной трубки подключают кадроскоп.
Список литературы
1. Д. Бриллиантов, Ф. Игнатов, В.Водычко. Однолучевой цветной кинескоп -- хромоскоп 25ЛК1Ц. Радио № 9, 1976. С. 32, 33.
2. Бурак Я. И., Огирко И. В. Об определении термоупругого состояния оболочки экрана кинескопа с учетом температурной зависимости характеристик материала // Качество, прочность, надежность и технологичность электровакуумных приборов. -- Киев: Наук. думка, 1976. -- С.59-62.
Размещено на Allbest.ru
...Подобные документы
Форма поля в магнитных линзах. Магнитная отклоняющая система. Недостатки электростатической и магнитной систем отклонения. Технология изготовления колбы и экрана, его люминофорное покрытие. Заключительные операции изготовления электронно-лучевых трубок.
курсовая работа [1,5 M], добавлен 20.05.2014Метрологические характеристики, контролируемые при поверке электронно-счетных частотомеров. Средства, методы и схемы поверки. Определение относительной погрешности по частоте опорного кварцевого генератора. Поверка электронно-лучевых осциллографов.
реферат [154,6 K], добавлен 09.02.2009Формирование растра на экране кинескопа и фотомишени передающей трубки. Параметры развёртки вещательной телевизионной системы. Ширина и микроструктура спектра видеосигнала, смешение цветов. Скорость движения электронного луча на экране кинескопа.
курсовая работа [1,6 M], добавлен 22.04.2014Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации. Одним из оптоэлектронных приборов является оптрон, принцип действия которого состоит в преобразовании электрического сигнала в оптический.
реферат [83,5 K], добавлен 07.01.2009Расчет усилителя вертикального отклонения осциллографа, нагрузкой которого являются пластины вертикального отклонения электронно-лучевых трубок. Определение параметров выходного и входного каскадов, выбор транзисторов. Обеспечение плавной регулировки.
курсовая работа [1,2 M], добавлен 04.04.2012Разработка структурной схемы электронно-лучевого осциллографа. Методика расчета базовых усилительных каскадов и расчет элементов принципиальной электрической схемы. Выбор тактового генератора - кварцевого автогенератора с буферным выходным элементом.
курсовая работа [1,1 M], добавлен 12.03.2013Принцип действия мониторов на основе электронно-лучевой трубки (ЭЛТ). Управление цифровыми мониторами с помощью двоичных сигналов. Монохромные, цветные (RGB) и аналоговые цифровые мониторы. Общая характеристика и описание монитора VIEWS0NIC-17GA/GL.
курсовая работа [3,7 M], добавлен 04.09.2010Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока: история создания, виды, классификация. Устройство светодиодных световых приборов, область применения.
реферат [4,4 M], добавлен 05.05.2013Методы формирования и виды электронно-дырочных переходов. Классификация и маркировка транзисторов. Устройство полупроводниковых интегральных гибридных микросхем. Аноды и сетки электронных ламп. Питание цепей усилителя и стабилизация рабочей точки.
контрольная работа [4,4 M], добавлен 19.02.2012Характеристика электронно-лучевых индикаторов, конструкция, недостатки и преимущества, распространение в области отображения информации. Использование в жидких кристаллах "твист-эффекта" для индикации. Принципы отображения информации на больших экранах.
реферат [3,1 M], добавлен 12.08.2009Общая характеристика, основные параметры и схематическое изображение электронно-лучевых трубок. Осциллографические электронные трубки. Передающие телевизионные трубки с накоплением зарядов: иконоскоп, супериконоскоп, ортикон, суперортикон, видикон.
реферат [802,0 K], добавлен 29.05.2010Изучение основных принципы работы компьютерных мониторов, их описание и основные параметры. Как работает электронно-лучевой монитор, типы экранов и цифровые сигналы. Классификация видеоадаптеров, синхронизация и полярность видеосигнала, блоки развертки.
курсовая работа [9,4 M], добавлен 04.09.2010Основные контролируемые параметры электронно-оптических преобразователей (ЭОП). Интегральная чувствительность (чувствительность с фильтром) фотокатода, коэффициент преобразования, предел разрешения, рабочее разрешение, электронно-оптическое увеличение.
реферат [427,5 K], добавлен 26.11.2008Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.
лекция [1,8 M], добавлен 17.02.2011Телевизионные устройства и системы. Принципы черезстрочной развертки. Требования к структурным схемам черно-белых телевизоров. Функциональные взаимодействия каналов и блоков транзисторного телевизора. Построение совместимых систем цветного телевидения.
реферат [842,8 K], добавлен 24.08.2015Высокочастотные амперметры, виды разверток и синхронизация в универсальном электронно-лучевом осциллографе. Электронно-счетный частотомер при измерении частоты СВЧ сигналов. Аналоговые измерители спектральной плотности мощности случайного сигнала.
контрольная работа [1,2 M], добавлен 27.01.2010Диоды на основе электронно-дырочного перехода. Режимы работы диода. Технология изготовления электронно-дырочного перехода. Анализ диффузионных процессов. Расчет максимальной рассеиваемой мощности корпуса диода. Тепловое сопротивление корпуса диода.
курсовая работа [915,0 K], добавлен 14.01.2017Работа полупроводниковых электронных приборов и интегральных микросхем. Некоторые положения и определения электронной теории твердого тела. Кристаллическое строение полупроводников. Электронно-дырочный переход. Вольтамперная характеристика п-р перехода.
лекция [196,9 K], добавлен 15.03.2009Система связи для трансляции и приема движущегося изображения и звука на расстоянии. Количество элементов изображения. Полоса пропускания радиоканала. Применение электронно-лучевой трубки для приема изображений. Передача сигнала на большие расстояния.
презентация [2,1 M], добавлен 11.03.2013Телевидение как передача изображения объекта на некоторое расстояние (обычно со звуковым сопровождением). Физические процессы, положенные в основу передачи. Диапазон телевизионных передач. Устройство цветного кинескопа, частота изображения на экране.
презентация [765,2 K], добавлен 14.01.2010