Задающие устройства
Определение, назначение, типы задающих устройств. Управление цифровыми системами на базе микропроцессоров и компьютеров. Задающие устройства для замкнутых и разомкнутых систем. Принцип действия командоаппаратов. Системы автоматического регулирования.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 10.11.2019 |
Размер файла | 195,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Бюджетное профессиональное образовательное Удмуртской Республики
«ГЛАЗОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»
Заочное отделение ПССЗ
РЕФЕРАТ
по учебной дисциплине «Автоматизация технологических процессов обработки металлов давлением»
на тему: «Задающие устройства»
Выполнил: студент М.Ю. Бабинцев
Проверил: преподаватель Т.В. Кузнецова
Глазов 2019
Введение
Задающие устройства - элемент системы автоматического регулирования (CAP), с помощью которого устанавливается требуемое значение либо задаётся определённый закон (программа) изменения регулируемой величины.
Такие устройства применяют для установления заданного значения управляемого параметра. Оно может устанавливаться вручную, с помощью сервопривода, приводящего в движение кулачок, магнитную ленту или другое устройство. Усилие, требуемое для установки заданного значения, очень мало. Задающее устройство часто является и преобразователем. Физическая природа параметра на выходе задающего устройства должна быть такая же, как у параметра на выходе измерительного устройства (датчика).
Назначением задающего устройства является ввод в систему автоматического управления задающего воздействия, которое в том или ином виде содержит информацию о желаемом течении управляемого процесса.
Задающие устройства. Определение ЗУ
Задающее устройство САР формирует и хранит величину воздействия, переменные величины, установки, коэффициенты, метки времени и т.п. Задающее устройство вырабатывает условия протекания технологического процесса Yз(t)- функцию времени. Эта функция может быть одномерной (одна величина) или многомерной (несколько величин). В системах автоматического управления чаще встречаются многомерные функции времени, когда задаются условия одновременно по нескольким параметрам - температуре, давлению и т.д.
В некоторых случаях задающая величина является постоянной во времени - тогда задается не функция времени, а отдельные величины. Задающие устройства выдают сигнал в аналоговой или цифровой форме. В качестве задающего устройства ранее применялись кулачковые механизмы, функциональные потенциометры, перфокарты, магнитные пленки и кинопленки и т. п. В настоящее время используются электронные аналоговые и цифровые устройства.
Пример системы автоматического регулирования
На рис.1. приведены некоторые типы задающих устройств - задатчиков постоянных аналоговых и цифровых величин. Существует достаточно широкий класс потенциометрических задающих устройств, в основе которых лежит уставка величины с помощью потенциометра R (рис.1а). На переменный резистор R подается опорное напряжение Uоп.
Постоянный сигнал Yз задается и запоминается положением движка потенциометра R. Например, при необходимости задать величину “1” положение движка устанавливают таким образом, что Yз = 1В, величину “1,4” - = 1,4В и т.д. Для этого к движку подсоединяют измерительный прибор П, проградуированный в единицах задаваемой величины, например, температуры. Иногда уставки имеют постоянные величины - их задают с помощью дискретного потенциометра, имеющего переключатель резисторов Пк (рис.1б). Положение переключателя 1-ое, 2-ое и т.д. также градуируется в единицах задаваемой величины.
При исчезновении внешнего напряжения заданная величина остается введенной и вновь подается в САУ при его появлении.
При необходимости использования задаваемой величины в цифровом виде потенциометрический задатчик снабжается аналого-цифровым преобразователем-АЦП (рис.1в). На его выходе имеется цифровой код Dз задаваемой величины Yз.
Запоминание заданной величины осуществляется за счет неизменного положения движка потенциометра или переключателя.
замкнутый командоаппарат разомкнутый микропроцессор
Рис.1- Аналоговые и цифровые постоянные задающие устройства: а- аналоговый потенциометрический; б- цифровой потенциометрический; в- дискретный потенциометрический; г- цифровой; R- потенциометр; Пк- переключатель; П- измерительный прибор; АЦП- аналого-цифровой преобразователь; Т1-Т4 - триггеры; K0 - K4- кнопки ввода сигнала; Uоп - опорное напряжение
Для управления цифровыми системами на базе микропроцессоров и компьютеров используются кнопочные задатчики. На рис.11.1г приведена схема дискретного четырехразрядного задатчика сигнала. Он состоит из кнопок ввода К1-К4, кнопки сброса Ко и триггеров памяти Т1 - Т4.
Если кнопки К1 - К5 отжаты, не соединяют общую шину со входами триггеров Т1 - Т4, то на S - выходах последних имеются логические “0” . Логический “0” триггеров устанавливается путем нажатия кнопки Ко.
Для ввода цифрового кода нажимаются кнопки К1-К4. Например, для ввода “1” нажимается К1. Триггер T1 перекидывается, и на его S-выходе появляется логическая “1”, которая запоминается, несмотря на то, что кнопка К1 отпускается. Далее можно вводить другие цифры, например, “2” , нажимая на соответствующие кнопки - К2 и т.д. В результате на выходе триггеров появляется цифровой позиционный код вводимой величины, который используется далее САУ для получения управляющего сигнала. Цифровой код сохраняется до нажатия кнопки К0 или снятия напряжения со схемы. Последнее обстоятельство является недостатком описанной схемы. Для его устранения используют специальные источники питания - аккумуляторы или постоянные запоминающие устройства.
При многопараметрических задающих аналоговых сигналах задание каждого параметра производится отдельно, что предопределяет соответствующее количество вводных потенциометров. При использовании цифровой формы ввода информации отдельно хранятся только введенные величины, их ввод может осуществляться одними и теми же потенциометрами и кнопками.
Для получения функциональных зависимостей используют возможности микропроцессоров к хранению и выполнению сдвиговых и математических операций. Функциональные зависимости в микропроцессорном устройстве генерируются с помощью специальной рабочей программы, записываемой в его память. Для хранения рабочей программы используются постоянные запоминающие устройства - ПЗУ, выполняемые на отдельных микросхемах. Отличительной чертой ПЗУ является однократная запись информации. В последующем возможно только считывание записанной информации. Достоинством микросхем ПЗУ является их низкая стоимость и возможность хранения информации при отключенном питании.
Широко применяются перепрограммируемые устройства памяти - ППЗУ. Они используются для устройств, рабочая программа которых должна изменяться в процессе эксплуатации. Логическая часть этих устройств создается пользователем из базовых логических функций типа И, ИЛИ, ТРИГГЕР и т.д. ППЗУ является энергонезависимой памятью, т.е. хранимая в ней информация не разрушается в обесточенном состоянии. Для временного хранения результатов промежуточных вычислений используются оперативные запоминающие устройства (ОЗУ).
Задающие устройства для замкнутых и разомкнутых систем
В замкнутых системах, где осуществляется регулирование по отклонению, задающее устройство вводит заданное значение регулируемой координаты. В разомкнутых системах, где осуществляется регулирование по возмущению, задающее устройство как отдельный элемент отсутствует, и заданное значение регулируемой координаты вводится начальной настройкой системы.
В замкнутых и разомкнутых системах автоматического управления с логическими программами рабочую программу вводит задающее устройство. В системах регулирования задающее воздействие содержит информацию количественного характера, выраженную в дискретной или непрерывной форме. В системах с логическими программами наряду с информацией количественного характера используются команды типа включить, выключить, вперед, назад и т. п.
Характер задающего воздействия и объем содержащейся в нем информации определяют конструкцию задающего устройства. Простейшими задающими устройствами являются потенциометры, в которых входной величиной является перемещение, а выходной -- электрический сигнал (ток, напряжение). Например, потенциометр, движок которого в начале процесса установлен в определенное положение, т.е. с выхода которого подается в САР определенное напряжение, может служить простейшим задающим устройством для стабилизирующей системы.
Если же движок потенциометра связан с механизмом, осуществляющим его перемещение в течение рабочего процесса, это будет задающее устройство с переменным задающим воздействием.
Задающие устройства различной степени сложности
Автоматические системы с программным управлением, используемые в промышленности, весьма разнообразны и имеют задающие устройства различной степени сложности.
Рис. 2. Схема командоаппарата непрерывного действия (а) и диаграмма изменения его выходного сигнала во времени (б)
Наиболее простые автоматические системы с постоянной программой без информационных звеньев обратной связи обычно работают с периодической повторяемостью рабочих циклов, т.е. по окончании одного цикла автоматически начинается следующий, и т.д. В качестве задающих устройств в таких системах используют командоаппараты, которые могут быть механическими, электрическими, гидравлическими, а также комбинированными.
По виду выходной величины различают командоаппараты непрерывного (рис. 3) и дискретного (рис. 4) действия.
Принцип действия командоаппаратов всех типов одинаков: распределительный вал вращается с постоянной скоростью от синхронного двигателя или привода самого автоматизированного устройства, совершая один оборот за заданное время цикла. На валу насажены кулачки, воздействующие на электрические контакты и рычаги, открывающие и закрывающие пневмоклапаны или другие управляющие органы. Фазные углы между кулачками можно регулировать, так как конструкция крепления предусматривает возможность угловых смещений. Можно менять и форму кулачков.
Рис. 3. Схема командоаппарата дискретного действия (контактного) устройства, совершая один оборот за заданное время цикла
На валу насажены кулачки, воздействующие на электрические контакты и рычаги, открывающие и закрывающие пневмоклапаны или другие управляющие органы. Фазные углы между кулачками можно регулировать, так как конструкция крепления предусматривает возможность угловых смещений. Можно менять и форму кулачков
За один оборот вала все кулачки и рычаги формируют один цикл задающих команд, посылаемых в автоматическую систему. При этом фактическое выполнение команд не влияет на ход задающего устройства (разумеется, кроме аварийных режимов, когда приборы защиты выключают всю систему).
В автоматических программных системах, имеющих цепи обратной связи, использование задающих устройств типа командоаппаратов не всегда приемлемо. В частности, они не могут применяться, когда начало последующей операции должно зависеть от окончания предыдущей. В качестве задающих устройств для таких систем используют шаговые командоконтроллеры или релейные логические схемы.
Действие шагового командоконтроллера аналогично действию командоаппарата; разница заключается только в том, что в последнем переход от одного состояния коммутируемых цепей к другому осуществляется не по временному закону, а в зависимости от команд, поступающих от управляемого объекта. В качестве командоконтроллера может быть использован шаговый искатель или любой другой распределитель как с самостоятельным приводом, так и имеющий переменное сцепление посредством муфт с основным приводом машины.
Если функции задающего устройства выполняет релейная схема, то переход от одной операции рабочего цикла к другой осуществляется изменением состояния элементов схемы (срабатыванием, отпусканием) по командам, поступающим от объекта.
На рис. 4 показана такая схема. Автоматическое включение вращения шпинделя в цикле обработки осуществляется здесь после того, как деталь зажата в патроне; факт ее зажима контролируется срабатыванием реле давления гидросистемы (РД), т.е. когда оно срабатывает, включается привод шпинделя.
Рис.4. Релейная схема, выполняющая функции задающего устройства
Размещено на Allbest.ru
...Подобные документы
Описание принципа действия выбранной системы автоматического регулирования. Выбор и расчет двигателя, усилителя мощности ЭМУ, сравнивающего устройства. Определение частотных характеристик исходной САР. Оценка качества регулирования системы по ее АЧХ.
курсовая работа [1,2 M], добавлен 06.10.2011Принцип действия оптических дисковых систем, в которых считывание информации с компакт-диска производится с постоянной скоростью. Определение передаточных функций звеньев. Вычисление передаточной функции двигателя. Синтез корректирующего устройства.
курсовая работа [262,1 K], добавлен 25.01.2011Назначение и условия эксплуатации локальной системы автоматического управления (ЛСАУ). Подбор элементов и определение их передаточных функций. Расчет датчика обратной связи и корректирующего устройства. Построение логарифмических характеристик системы.
курсовая работа [1,0 M], добавлен 09.03.2012Проектирование замкнутой, одномерой, стационарной, следящей системы автоматического управления с определением параметров корректирующего устройства, обеспечивающего заданные требования к качеству регулирования. Анализ системы с учетом нелинейности УМ.
курсовая работа [2,2 M], добавлен 18.01.2011Описание структурной схемы и оценка устойчивости нескорректированной системы. Осуществление синтеза и разработка проекта корректирующего устройства для системы автоматического регулирования температуры подаваемого пара. Качество процесса регулирования.
курсовая работа [1,8 M], добавлен 11.08.2012Система автоматического регулирования для объекта управления. Принципиальные схемы устройства сравнения и регулятора. Передаточные функции системы. Оптимальные параметры регулятора по минимуму линейной и квадратической интегральной оценки ошибки.
курсовая работа [778,0 K], добавлен 27.08.2012Освоение методики анализа и синтеза систем автоматического регулирования с использованием логарифмических частотных характеристик и уточненных расчетов на ЭВМ. Выбор параметров параллельного корректирующего устройства. Анализ устойчивости системы.
курсовая работа [92,3 K], добавлен 14.07.2013Анализ влияния напряжения питания на работу микроэлектронных устройств. Принцип действия и характеристика устройств контроля напряжения. Выбор типа микроконтроллера. Функции, выполняемые супервизором. Разработка алгоритма и структурной схемы устройства.
диссертация [3,1 M], добавлен 29.07.2015Системы управления нитью накала, принцип их действия, структура, конструкции и элементы. Технические характеристики фоторезистора. Расчет передаточной функции. Определение амплитуды входного сигнала и колебательности системы автоматического регулирования.
курсовая работа [1,2 M], добавлен 20.10.2013Функциональная зависимость между входными и выходными параметрами как основная цель автоматического управления техническими системами. Система автоматического регулирования угловой скорости вращения коленчатого вала двигателя, алгоритмы функционирования.
курсовая работа [2,4 M], добавлен 19.11.2012Построение структурной схемы системы радиосвязи, радиопередающего устройства при частотной модуляции. Основные характеристики двоичных кодов, типы индикаторных устройств. Определение скорости передачи информации при цифровой передаче непрерывного сигнала.
контрольная работа [1,8 M], добавлен 11.01.2013Данные источников входных сигналов, основные требования к качеству работы электронного усилительного устройства системы автоматического управления. Выбор транзисторов оконечного каскада усиления. Расчет площади теплоотвода и сопротивлений резисторов.
курсовая работа [371,1 K], добавлен 23.12.2011Описание устройства и работы автоматической системы, разработка ее функциональной схемы. Логарифмическая амплитудно-частотная характеристика корректирующего устройства. Расчет передаточной функции скорректированной системы автоматического регулирования.
курсовая работа [913,9 K], добавлен 22.12.2014Применение системы автоматического регулирования (САУ) на примере процесса производства кефира. Разработка структурной схемы и математической модели САУ. Повышение качества процесса регулирования с помощью синтеза САУ и корректирующих устройств.
курсовая работа [692,9 K], добавлен 17.03.2013Выбор регулятора для объекта управления с заданной передаточной функцией. Анализ объекта управления и системы автоматического регулирования. Оценка переходной и импульсной функций объекта управления. Принципиальные схемы регулятора и устройства сравнения.
курсовая работа [2,5 M], добавлен 03.09.2012Структурная и принципиальная схема системы регулирования, их анализ. Передаточные функции П регулятора, расчет его балластных составляющих. Построение переходного процесса. Выбор и обоснование, расчет исполнительного устройства, пропускная способность.
курсовая работа [1,2 M], добавлен 19.11.2011Характеристика системы автоматического регулирования скорости двигателя, математическое описание ее динамики, расчет необходимого коэффициента передачи. Оптимизация параметров корректирующего устройства по интегральному квадратичному критерию, его схема.
курсовая работа [2,8 M], добавлен 14.01.2011Классификация автоматических регуляторов. Законы регулирования. Источники первичной информации для электронных промышленных устройств. Виды и принцип действия тепловых, тензометрических, пьезоэлектрических, емкостных и электромагнитных преобразователей.
методичка [1,7 M], добавлен 25.01.2015Назначение и условия эксплуатации светодиодного устройства на МК ATtiny 15. Микроконтроллер как микросхема, предназначенная для управления электронными устройствами. Обоснование его применения. Разработка структурной схемы светодиодного устройства.
курсовая работа [380,8 K], добавлен 04.04.2015Определение передаточных функций звеньев системы автоматического регулирования (САР). Оценка устойчивости и исследование показателей качества САР. Построение частотных характеристик разомкнутой системы. Определение параметров регулятора методом ЛАЧХ.
курсовая работа [1,2 M], добавлен 31.05.2013