Расчет стабилизатора напряжения

Стабилизатор как электрическое устройство, используемое для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе. Расчет внутреннего сопротивления регулирующего транзистора.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 29.11.2019
Размер файла 44,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Значительные изменения во многих областях науки и техники обусловлены развитием электроники. В настоящее время электроника является уникальной и исключительно эффективным средством при решении различных проблем в разных областях. Оценивая электронные устройства в плане быстродействия и плотности упаковки электронных компонентов можно сделать вывод, что эти параметры возросли. Если до появления полупроводниковых элементов использовались лампы, размеры которых были велики, то сейчас в таком же объеме как у лампы располагают миллионы транзисторов и других полупроводниковых элементов. Роль электроники в настоящее время существенно возрастает в связи с применением микропроцессорной техники для обработки информационных сигналов и силовых полупроводниковых приборов для преобразования электрической энергии. Многие сферы нашей жизнедеятельности уже невозможно представить себе без электронных приборов.

1. Теоретическая часть

1.1 Общие сведения об источниках питания

Источник питания - это специальное устройство, которое обеспечивает электропитанием различные потребители энергии. Источники питания подразделяются на первичные и вторичные. К первой группе относятся преобразователи. Основное их назначение - преобразовывать любой вид энергии в электрическую. То есть первичный источник питания является генератором электрической энергии. Первичные источники питания включают в свой состав химические источники тока (гальванические элементы, топливные элементы, аккумуляторы, редокси-элементы) и прочие источники тока (фотоэлектрические преобразователи, электромеханические источники тока, термоэлектрические преобразователи, МГД-генераторы, радиоизотопные источники энергии). Вторичные источники преобразуют электрическую энергию. Они позволяют получить электропитание для различных устройств с требуемыми параметрами. В эту группу входят трансформаторы и автотрансформаторы, стабилизаторы напряжения, стабилизаторы тока, импульсные преобразователи, вибропреобразователи, инверторы, умформеры.

1.2 Основные виды источников питания

Источники первичного электропитания. К данной группе ИП относятся: 1) химические источники тока (гальванические элементы, батареи и аккумуляторы); 2) термобатареи; 3) термоэлектронные преобразователи; 4) фотоэлектрические преобразователи (солнечные батареи); 5) топливные элементы; 6) биохимические источники тока; 7) атомные элементы; 8) электромашинные генераторы.

Химические источники тока (ХИТ) широко используются для питания маломощных устройств и аппаратуры, требующей автономного питания. Батареи и аккумуляторы являются также вспомогательными и (или) резервными источниками энергии в устройствах, питающихся от сети переменного тока. Выходное напряжение таких источников практически не содержит переменной составляющей (пульсаций), но в значительной степени зависит от величины тока, отдаваемого в нагрузку, и степени разряда. Поэтому Изм. Лист № докум. Подпись Дата Лист 10 КП 12.03.01.13.000 ПЗ в устройствах, критичных к напряжению питания, химические источники тока используются совместно со стабилизаторами напряжения. Термобатареи состоят из последовательно соединенных термопар. Термобатареи используются в качестве ИП малой мощности, например для питания радиоприемников. В простейшем виде термоэлектрический генератор представляет собой батарею термопар, у которых одни концы спаев нагреваются, а другие имеют достаточно низкую температуру, благодаря чему создается термо-ЭДС и во внешней цепи протекает ток. Каждая термопара может состоять из двух разнородных полупроводников или из проводника и полупроводника. Большая теплопроводность металлических термопар не позволяет создавать значительную разность температур спаев, а следовательно, не дает возможность получить большую термо-ЭДС. Лучшие результаты дает использование в термогенераторах полупроводниковых термопар, или комбинированных, состоящих из проводника и полупроводника. В термопаре, состоящей из полупроводников с n- и p- проводимостями, при нагревании спая количество электронов в полупроводнике n-типа и число дырок.

В полупроводнике p-типа увеличивается. Электроны и дырки вследствие диффузии в полупроводниках движутся от горячего слоя термопары к холодному. Перемещение дырок приводит к тому, что горячий конец полупроводника p-типа заряжается отрицательно, а холодный конец - положительно. В полупроводнике n-типа электроны, переходя от горячего конца к холодному, так же как, и в металле, заряжают горячий конец положительно, а холодный конец - отрицательно. Термо-ЭДС полупроводниковой термопары значительно больше термо-ЭДС металлической пары. Термоэлектронные преобразователи представляют собой вакуумные или газовые приборы с твердыми нагреваемыми катодами. Преобразование Изм. Лист № докум. Подпись Дата Лист 11 КП 12.03.01.13.000 ПЗ тепловой энергии в электрическую осуществляется за счет использования термоэлектронной эмиссии нагретых тел. Эмитированные катодом электроны движутся к аноду под действием разности температур. Для обеспечения этой разности температур необходимо охлаждение анода. В зависимости от температуры нагрева катода термоэлектронные преобразователи делятся на низкотемпературные (1200 - 1600°С) и среднетемпературные (1900 - 2000°С). У среднетемпературных преобразователей КПД достигает 20%, что более чем в 2 раза превышает КПД термобатарей. Фотоэлектрические преобразователи осуществляют преобразование тепловой и световой энергии солнечных лучей в электрическую. Солнечные батареи представляют собой ряд фотоэлементов, соединенных между собой определенным образом. Фотоэлектрические преобразователи используются в качестве источника электрической энергии для питания маломощной радиоаппаратуры.

Также для питания радиотехнической и телеметрической аппаратуры на спутниках Земли и на автоматических межпланетных станциях. Солнечные батареи просты, имеют очень большой срок службы и работают в большом диапазоне изменения температур. Топливные элементы осуществляют непосредственное преобразование энергии химических реакций в электрическую энергию. Действие таких элементов основано на электрическом окислении вещества (топлива), которое подобно реакции горения топлива. Однако в отличие от горения в этих элементах окисление топлива и восстановление кислорода происходит на разных электродах. Поэтому энергия выделяется в нагрузке без промежуточного преобразования в энергию иного вида, что обеспечивает высокий КПД преобразователя. В топливных элементах химическая реакция протекает при взаимодействии активных веществ, которые в твердом, жидком или газообразном состоянии непрерывно поступают к электродам. Биохимические источники тока можно рассматривать как разновидность Изм. Лист № докум. Подпись Дата Лист 12 КП 12.03.01.13.000 ПЗ топливных элементов, так как в них протекают подобные окислительновосстановительные процессы. Отличие биохимических элементов от топливных состоит в том, что активные вещества (или одно из них) создаются с помощью бактерий или ферментов из различных углеводов и углеродов. Атомные элементы применяются для питания маломощных устройств. Конструкция таких ИП различна в зависимости от принципа их действия. В элементах, использующих в- излучение.

На внутреннем электроде размещается радиоактивный изотоп стронция 90. Вторым электродом является металлическая оболочка.

Между электродами находится твердый диэлектрик или вакуум. Под действием в-лучей на электродах создаются заряды. Напряжение в таких элементах может достигать нескольких киловольт, а внутреннее сопротивление очень велико (порядка 1013 Ом). Разрядный ток не превышает одного миллиампера. Достоинством таких элементов является очень большой срок службы. В элементах, использующих контактную разность потенциалов, применяются электроды в виде пластинок из различных материалов. Одна из пластин покрыта двуокисью свинца, другая изготовлена из алюминия. Между электродами находится смесь инертного газа и радиоактивного трития. Под действием излучения происходит образование ионных пар. Напряжение между электродами определяется контактной разностью потенциалов. Под действием этого напряжения положительно и отрицательно заряженные ионы перемещаются к электродам. В элементах с облучаемыми полупроводниками радиоактивное вещество наносится на поверхность полупроводника (кремния). Излучаемые электроны, имеющие большую скорость, выбивают из атомов полупроводника большое количество электронов. В результате односторонней проводимости между полупроводником и коллектором, приваренным к нему, возникает ЭДС величиной нескольких десятых долей вольта. Внутреннее сопротивление таких элементов 100 - 1000 Ом, КПД может достигать нескольких процентов. Недостатком является малый срок службы следствие разрушения полупроводника под действием радиации. Электромашинные генераторы преобразуют механическую энергию в электрическую. Они делятся на генераторы постоянного и переменного тока. Машины переменного тока могут быть как однофазными, так и многофазными.

Наиболее широкое применение нашли трехфазные синхронные и асинхронные генераторы, действие которых основано на использовании вращающегося магнитного поля. В синхронных машинах процесс преобразования энергии происходит при синхронной частоте, то есть когда частота вращения ротора равна частоте вращения магнитного поля. В асинхронных машинах процесс преобразования энергии происходит при асинхронной частоте, то есть, когда частота вращения ротора отличается от частоты вращения магнитного поля

1.3 Основные функции источников питания

Первичные ИП ? преобразователи различных видов энергии в электрическую.

Например: гидроэлектростанция ? ГЭС (потенциальная гравитационная энергия воды преобразуется в электрическую энергию), химические источники тока (ХИТ), аккумуляторы, топливные элементы (химическая энергия преобразуется в электрическую), дизель-генераторная установка ? ДГУ (химическая энергия преобразуется в механическую, затем в электрическую), ветрогенератор (кинетическая энергия частиц воздуха преобразуется в электрическую) и др.

В силовой электротехнике к первичным источникам питания можно отнести аккумуляторные батареи, дизельные- газовые- бензиновые генераторные установки, генерирующие электростанции, ИБП в автономном режиме работы и др. Вторичные ИП ? сами электроэнергию не генерируют, а служат только для ее преобразования и обеспечения требуемых параметров напряжения, частоты, пульсаций напряжения и другие

В силовой электротехнике вторичными источникам питания считаются стабилизаторы напряжения, источники бесперебойного питания, преобразователи напряжения, выпрямители, инверторы и др.

1.4 Стабилизатор напряжения

Стабилизатор напряжения (рисунок 1) -- это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств.

Эти стабилизаторы напряжения могут быть однофазными и двухфазными

Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах

КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%).

Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Рисунок 1 - Схема стабилизатора напряжения

2. Практическая часть

2.1 Требования к устройству

Рассчитать стабилизатор последовательного типа при следующих условиях: Uвх. мин. = 13В, Uвх. макс. = 15 В, Uвых. = 12В. Максимальный ток нагрузки 1 А, входное сопротивление 1 кОм.

2.2 Расчет устройства

Выбираем тип регулирующего транзистора из условий

Uкэ max = Uвх + ДUвх - Uн min = 10В < Uкэ max доп

Pк max + Uкэ max Iн max = 20В < P к max доп Iн max < Iк доп

Данным условиям удовлетворяет транзистор типа КТ908А с параметрами. Iк max дон = 10А, Pк max доп = 50Вт, h21э = 80, Uкэ max доп = 65В. Рассмотрим возможность получения заданных параметров схемы при использовании в качестве усилительного элемента операционного усилителя.

Uвых oy = Uбэ + Uн max = 6.6 B < Uвых max oy, Iвых oy = Iб

max = Iн max/(1 + h21э min) = 25 мА < Iвых max oy,

где Uвых max oy, Iвых maxoy -- предельные значенzвыходных напряжения и тока операционного усилителя. Выбираем операционный усилитель типа К157УД1, для которого

Uвых max oy = 12В, Iвых max oy = 300мА

В качестве усилительного элемента следует использовать транзистор. При невыполнении условия (Iвыx oy) в качестве регулирующего элемента используют составной транзистор.

Тогда

Iвых oy = Iн max / (1 + h21э1 h21э2) < Iвых max oy

где h21э1, h21э2 -- коэффициенты усиления по току отдельных транзисторов.

Для создания опорного напряжения

Uon=Ucт> Iвх oy:

R5 = (Uвх ср - Uоп) / Iст ном = 0,9 кОм.

Для расчета сопротивлений резисторов R1, R2, R3 предположим, что движок в потенциометре R2 стоит в крайнем верхнем положении. Тогда выходное напряжение стабилизатора имеет заданное по условию минимальное значение. При крайнем нижнем положении движка выходное напряжение максимально. В первом случае:

Uн min = Uвых oy - Uбэ ~ (R1 / R2 + R3 + 1) Uоп - Uбэ

Во втором случае:

Uн max ~ (R1 + R2 / R3 + 1) Uоп - Uбэ

Полагая R3 = 1 кОм, из системы уравнений (Uв min) и (Uв max) находим

R1= 0.5 кОм, R2 = 0,5кОм.

Определим минимальный коэффициент стабилизации схемы, применив общую формулу

Kст min ~ Uн min / Uвх max * Rl / Rвых * Kдел

Так как

R1 = r * k = rk/(1+h21э) - внутреннее сопротивление регулирующего транзистора,

Rвых ~ rэ/Ku oy -- выходное сопротивление схемы без учета делителя,

Kдел = (R2 + R3) / (R1+ R2+ R3), то

Kст min ~ Uн min / Uвх max * rк / rэ * Kuoy / (1 + h21э)*Kдел = 1,2 * 107

Рассчитаем Rн для стабилизатора последовательного типа:

R4 = U / I1 + I2

R4 = 12В / 0,3А + 1 А = 9,23 Ом

Был рассчитан стабилизатор последовательного типа со следующими характеристиками. R4 = 9,28 Ом; Uкэ max = 10 В; Uвых oy= 6.6 B; Iвых oy= 25 мА; R3 = 1 кОм; R1= 0.5 кОм; R2 = 0,5 кОм;R5 = 0.9 кОм

Заключение

Обширность типов и модификаций стабилизаторов напряжения дало возможность применять стабилизаторы, как на производстве, так и в быту. Использование их позволило не только обеспечивать стабильное питание у электроприборов, но и уберечь большинство устройств от поломки.

Литература

стабилизатор электрический транзистор

1 Китаев В.В. Электропитания устройств связи [текст]/ В.В. Китаев Минск.: Беларусь, 1494. - 31с.

2 Остапенко Г.С. Устройства напряжения [текст] / Г.С. Остапенко: Учебное пособие для вузов. - М: Радио и связь, 1489. - 129с.

3 Баюков А.В. Полупроводниковые приборы: Диоды, тиристоры, оптоэлектронные приборы. [текст] / А.В. Баюков Справочник. - М.: издательство, 1482. - 74с.

4 Костиков В.Г. Источники электропитания электронных средста [текст]/ В.Г. Костиков - М.: Радио и связь, 1481. - 63с.

Размещено на Allbest.ru

...

Подобные документы

  • Выбор и обоснование структурной и принципиальной схемы стабилизатора постоянного напряжения. Защита полупроводниковых стабилизаторов напряжения на основе операционного усилителя от перегрузок по току и короткому замыканию. Расчет регулирующего элемента.

    курсовая работа [632,2 K], добавлен 09.07.2014

  • Величина минимального напряжения на входе стабилизатора. Выбор кремниевого стабилитрона с номинальным напряжением стабилизации. Резисторы и конденсаторы, расчет величины сопротивления. Расчётный коэффициент стабилизации и коэффициент полезного действия.

    курсовая работа [113,3 K], добавлен 05.12.2012

  • Стабилизатор напряжения, его предназначение. Экспериментальное определение характеристик полупроводниковых параметрического и компенсационного интегрального стабилизатора напряжения постоянного тока. Определение мощности, рассеиваемой на стабилизаторе.

    лабораторная работа [115,4 K], добавлен 18.06.2015

  • Схема ключевого преобразователя напряжения с импульсным трансформатором. Регулировка напряжения и тока через нагрузку. Схема управления обмотками трансформатора. Комплексный расчет однокаскадный параметрический стабилизатор напряжения постоянного тока.

    курсовая работа [959,9 K], добавлен 28.04.2014

  • Технические характеристики и принцип работы стабилизированного источника питания с непрерывным регулированием. Назначение функциональных элементов стабилизатора напряжения с импульсным регулированием. Расчет параметрического стабилизатора напряжения.

    реферат [630,8 K], добавлен 03.05.2014

  • Основные параметры схемы электрического принципиального блока управления стабилизатора переменного напряжения. Технология изготовления печатных плат, их трассировка и компоновка. Расчет себестоимости блока управления стабилизатора переменного напряжения.

    курсовая работа [1,1 M], добавлен 14.06.2014

  • Конструкторский анализ электрической принципиальной схемы стабилизатора напряжения. Разработка и расчет варианта компоновки печатной платы устройства. Оценка помехоустойчивости и надежности изделия, описание его допустимых температурных режимов.

    курсовая работа [751,2 K], добавлен 03.12.2010

  • Описание и анализ аналогов. Преимущества разработанного стабилизатора напряжения, его функциональная и принципиальная схемы, принцип работы. Обоснование выбора и описание элементной базы устройства. Организация рабочего места техника-электромеханника.

    дипломная работа [28,7 K], добавлен 25.01.2009

  • Классификация и параметры стабилизаторов напряжения тока. Характеристики стабилитрона и нагрузочного сопротивления. Компенсационный транзистор постоянного напряжения с непрерывным регулированием. Различные параметры мощности импульсного стабилитрона.

    реферат [492,5 K], добавлен 18.07.2013

  • Понятие, сущность, классификация, основы проектирования и расчета стабилизатора напряжения последовательного типа. Методика проектирования однофазного мостового выпрямителя, работающего на нагрузку с сопротивлением, порядок вычисления его параметров.

    курсовая работа [149,9 K], добавлен 09.09.2010

  • Электрическое сопротивление постоянному току. Методы измерения сопротивления. Метод преобразования сопротивления в интервал времени, в ток и в напряжение. Градуировка прибора, расчет блока питания и погрешностей. Выбор усилителя постоянного напряжения.

    курсовая работа [157,6 K], добавлен 13.06.2016

  • Анализ схемы электрической принципиальной и описание принципа работы регулируемого стабилизатора напряжения с "резисторным теплоотводом". Выбор элементной базы и основных вариантов ее установки. Расчет электрических параметров печатных проводников.

    курсовая работа [121,1 K], добавлен 07.07.2012

  • Расчет структурной схемы для измерения постоянного напряжения. Микросхема MAX232. Матричная клавиатура. Расчет делителя напряжения. Преобразователь импеданса. Расчет аналого-цифрового преобразователя и микропроцессора с индикацией, суммарной погрешности.

    курсовая работа [1,2 M], добавлен 29.04.2014

  • Расчет маломощного выпрямителя с ёмкостной нагрузкой. Расчёт усилительного каскада на биполярном транзисторе, определение его входных и выходных характеристик. Синтез цифровой комбинационной схемы. Расчёт параметрического стабилизатора напряжения.

    контрольная работа [659,9 K], добавлен 18.01.2012

  • Определение среднего значения выпрямленного напряжения на нагрузке и амплитудного значения тока через диод. Схема тока заряда и разряда конденсаторов и двухкаскадного усилителя. Параметрический стабилизатор постоянного напряжения на стабилитроне.

    контрольная работа [465,6 K], добавлен 19.10.2010

  • Принцип действия, структура и методы расчета параметрического стабилизатора напряжения на основе кремниевого стабилитрона графоаналитическим способом. Определение h-параметров двух биполярных транзисторов, включенных по схеме с общей базой и эмиттером.

    курсовая работа [4,6 M], добавлен 30.06.2014

  • Использование параметрических феррорезонансных стабилизаторов напряжения. Конструктивно-технологическое исполнение интегральной микросхемы. Расчет интегрального транзистора и его характеристики. Разработка технических требований и топологии микросхемы.

    курсовая работа [140,6 K], добавлен 15.07.2012

  • Разработка топологии ИМС параметрического стабилизатора напряжения и технологического маршрута производства в соответствии с данным техническим заданием. Создание внутрисхемных соединений и формированием защитного покрытия. Кремниевый стабилитрон.

    курсовая работа [5,7 M], добавлен 21.02.2016

  • Разработка структурной функциональной схемы устройства, его аппаратного обеспечения: выбор микроконтроллера, внешней памяти программ, устройства индикации, IGBT транзистора и драйвера IGBT, стабилизатора напряжения. Разработка программного обеспечения.

    курсовая работа [495,1 K], добавлен 23.09.2011

  • Вольтамперная характеристика полупроводникового стабилитрона. Параметрические стабилизаторы напряжения. Соотношения токов и напряжений. Относительное приращение напряжения на выходе стабилизатора. Температурный коэффициент напряжения стабилизации.

    лабораторная работа [123,2 K], добавлен 03.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.