Типы дисплеев

Основной принцип работы STN: изображение формируется строка за строкой за счет последовательного подвода управляющего напряжения на отдельные ячейки. Сравнение пропускания от напряжения на электродах ЖК дисплеев на основе типичного скрученного нематика.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид доклад
Язык русский
Дата добавления 17.12.2019
Размер файла 205,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

"Казанский (Приволжский) федеральный университет"

Институт физики

Доклад на тему

"Типы дисплеев"

Выполнил: Фаттахов А.А.

Казань 2019 г.

Типы дисплеев

STN

Цветные ЖК-дисплеи делятся на два вида: активные и пассивные. Пассивные матрицы - это "STN" (Super Twisted Nematic). Здесь "nematic" обозначает тип используемых жидких кристаллов: молекулам нематических кристаллов присущи наличие ориентационного и отсутствие позиционного порядка. Технология же "twisted nematic" (скрученных кристаллов) позволяет улучшить контрастность изображения.

Этот тип матриц называется пассивным, поскольку он не способен достаточно быстро отображать информацию: из-за большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому картинка обновляется медленно.

Основной принцип работы STN: изображение формируется строка за строкой за счет последовательного подвода управляющего напряжения на отдельные ячейки, который делает их прозрачными.

STN-дисплеи - имеют худшие характеристики по сравнению с TFT: как правило, они имеют меньшее разрешение, и могут отображать значительно меньшее количество цветов. Серьезным недостатком STN-матриц является и маленький угол обзора экрана - на него лучше смотреть под определенным углом, тогда цвета будут казаться четкими. На ярком солнечном свете такие экраны 'слепнут'- информация на дисплее становится плохо различимой

На графике приведено сравнение пропускания от напряжения на электродах ЖК дисплеев на основе типичного скрученного нематика (TN) и нематика с суперскручиванием (STN). (Собственно, увеличение угла закручивания эквивалентно увеличению мультиплексированию. Мультиплексирование изображение дисплей электрод

В информационных технологиях и связи - уплотнение канала, то есть передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу). Точки на графике V90 и V10 характеризуют напряжения при которых пропускание света составляет 90 % и 10 %, соответственно.

На рисунке видно, что крутизна характеристики STN-дисплея выше чем у TN, что позволяет первый тип дисплея выполнить с большим уровнем мультиплексирования. (супернематики были разработаны прежде всего для преодоления проблемы сложности увеличения уровня мультиплексирования TN дисплеев.)

Мультиплексное отношение эквивалентно числу строк, которое может быть отображено одновременно. Например, дисплей с мультиплексным отношением 400 до 400 строк информации может отображать одновременно.

Пассивная матрица

Пассивная матрица образована наложением слоев горизонтальных и вертикальных контактных полос. Ток подается на вертикальную и горизонтальную полоску, при этом задаются координаты. Там, где эти полоски скрещиваются, кристаллы изменяют структуру, и в соответствующем месте экрана появляется точка.

В зависимости от силы тока, кристаллы искажаются в большей или меньшей степени, пропуская, соответственно, больше или меньше света. В цветных дисплеях они еще и поляризуют свет. При поляризации из белого света электролюминесцентной лампы задней подсветки в нужных пропорциях "вырезаются" те или иные цветные составляющие, что в итоге и определяет цвет точки экрана. На принципе пассивной матрицы основана технология STN.

CSTN

Модификация технологии STN. CSTN (Color Super Twist Nematic) - это технология на основе, которой делают дисплеи для портативных устройств. В дисплеях выполненных по технологии CSTN на каждый из пикселей приходится три отдельных пикселя разного цвета (Красный, Зеленый и Синий). Каждый пиксель управляется индивидуально чипом графического контролера. Фактически дисплей CSTN с разрешением 320 х 240 пикселей содержит 960 х 240 индивидуальных цветовых пикселей.

Первые CSTN-дисплеи имели большое время отклика и страдали от наводок. В настоящее же время дисплеи на базе CSTN-матриц предоставляют время отклика 100мс, широкий угол видимости (140 градусов) и высококачественные цвета, почти не уступающие TFT экранам по сочности.

FSTN

Модификация технологии STN - FSTN (Film Super Twisted Nematic). Матрица с пленочной компенсацией, которая позволяет улучшить угол обзора. От STN-матриц технология отличается только тем, что у FSTN-матриц с внешней стороны есть специальная пленка, которая позволяет компенсировать цветовые сдвиги от синего на зеленый до черного на белый.

Если более подробно, то FSTN - суперскрученный нематик с пленочной компенсацией. Пленка сделана из полимера с двойной рефракцией для исключения возможности интерференции цветов. В результате происходит замедление компенсации.

Пленка (верхний слой на рисунке) размещена на дисплее под или над верхним поляризатором. Некоторые системы пленочной компенсации используют две пленки, одна на тыльной стороне, которая служит как коллиматор, и одна на фронтальной стороне, которая служит как дисперсионная пленка, что позволяет расширить угол обзора. Пленочная компенсация улучшает угол обзора, но не улучшает быстродействие. FSTN - все стандартные STN-дисплеи с полимерной пленкой, приложенной к стеклу как компенсирующий слой вместо второй ячейки как у DSTN-дисплеев. Для этой технологии характерно более простое и более эффективное по стоимости получение преобладания черного над белым в изображении.

DSTN

DSTN (Dual Super Twisted Nematic). Каждая ячейка этой матрицы состоит из двух ячеек STN. Отличительной особенностью матрицы является то, что все ее поле разбивается на несколько независимых полей матрицы, каждое из которых управляется отдельно.

Активная матрица

Активные матрицы обозначают аббревиатурой TFT (Thin Film Transistors) или AM (Active Matrix). В таких матрицах под поверхностью экрана располагается слой тонкопленочных транзисторов, полупроводников, каждый из которых управляет одной точкой экрана. Таким образом, в цветном дисплее телефона их количество может достигать нескольких десятков, а то и сотен тысяч.

Основной принцип работы матрицы заключается в управлении интенсивностью светового потока с помощью его поляризации. Изменение вектора поляризации осуществляют жидкие кристаллы в зависимости от приложенного к ним электрического поля.

На один пиксель приходится по три транзистора, каждый из которых соответствует одному из трех основных цветов - красному, зеленому или синему, и конденсатор, поддерживающий необходимое напряжение. Такой способ управления позволяет существенно ускорить работу дисплея, хотя и это не панацея - при воспроизведении видеоролика изображение может быть слегка "размытым", поскольку сами кристаллы не будут успевать поворачиваться с нужной быстротой.

Случается, что транзистор выходит из строя. Подобный дефект легко заметить невооруженным взглядом - точка экрана постоянно светится яркой "звездой" на фоне других или не светится вообще, этот дефект еще называют "битым" элементом.

TFT

TFT (thin film transistor) - тип жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами, то есть TFT - тонкоплёночный транзистор. По сравнению с обычной, пассивной жидкокристалической матрицей, с помощью активной матрицы, управляемой тонкоплёночными транзисторами, удаётся значительно повысить быстродействие дисплея, а также повысить контрастность и чёткость изображения.

Устройство TFT-панели: жидкокристалическая матрица с разделителями (8); управляющая пластина (5,6 - горизонтальные и вертикальные управляющие шины; 9 - тонкоплёночные транзисторы; 11 - задние электроды); 10 - фронтальный электрод; 1 - стеклянные пластины; 2,3 - горизонтальный и вертикальный поляризаторы; 4 - RGB-светофильтр; 7 - слои прочного полимера; желтая стрелка - свет внешнeго источника.

TFD

TFD (Thin Film Diode) - технология производства жидкокристаллических дисплеев с использованием тонкопленочных диодов. Она аналогична технологии TFT, но здесь транзисторы заменены тонкопленочными управляющими диодами. Основной особенностью таких дисплеев является пониженное энергопотребление.

LTPS

LTPS (Low Temperature Poly Silicon) - технология производства LCD TFT-дисплеев с использованием низкотемпературного поликристаллического кремния. Данная технология обеспечивает повышенную яркость индикатора изображения и пониженное энергопотребление.

UFB

UFB (Ultra Fine and Bright) - собственная технология Samsung, основанная на использовании пассивной матрицы. Такие экраны обладают повышенной яркостью и контрастностью, при этом потребляемая мощность снижена по сравнению с традиционными LCD. Дисплеи UFB, способные отображать 262 тысячи цветов, обладают контрастностью 100:1, яркостью 150 кд/кв. м(кандела на метр квадратный), при этом потребляют не более 3 мВт.

OLED

OLED (Organic Light Emitting Diodes) - электролюминесцентные дисплеи на органических светоизлучающих полупроводниках. Главное отличие - не нужны лампы подсветки, в новых дисплеях светятся непосредственно элементы поверхности. И светятся существенно ярче, чем экраны на ЖК (100000 кд/кв. м). При этом энергопотребление ниже, цветопередача лучше, контрастность выше (300:1), угол обзора больше (до 180 градусов), цветовой охват шире. В отличие от обычного ЖК-дисплея органика способна реагировать в 100-1000 раз быстрее. Толщина дисплея не превышает 1 мм (с учетом защитного стекла 2 мм), масса исчисляется граммами. Немаловажным параметром считается и диапазон рабочих температур: от -30 до +60 градусов. Из недостатков можно отметить только относительно низкое время жизни (порядка 5-8 тысяч часов). Как устроены органические экраны? Когда-то изобретатели люминесцентных диодов обнаружили, что если совместить два слоя определенных органических материалов и в какой-либо точке пропустить через них электрический ток, то в этом месте появится свечение. При этом используя разные материалы и светофильтры, можно получать разные цвета. Существующие модели аналогично ЖК разделяются по типу управляющей матрицы. Есть OLED с пассивными и с активными матрицами. Принцип работы матриц такой же, но вместо слоя жидких кристаллов используется слой органических полупроводников.

OLED-дисплей - Физически органический электролюминесцентный дисплей представляет собой цельное устройство, состоящее из нескольких очень тонких органических пленок, заключенных между двумя проводниками. Подача на эти проводники небольшого напряжения (порядка 2-8 вольт) и заставляет дисплей излучать свет. Основу OLED-матрицы составляют полимерные материалы, их постоянное совершенствование в немалой степени способствует улучшению дисплеев и развитию технологий изготовления матрицы.

MEMS

MEMS (Micro-Electro Mechanical Systems) - технология микроэлектромеханических систем.

Благодаря MEMS, а точнее, построенной на основе микроэлектромеханических систем инженерами компании Iridigm технологии iMoD (Interferometric Modulator - интерференционный модулятор), "слепнущие" на солнце и "гаснущие" в целях экономии заряда батареи дисплеи мобильных телефонов могут через какое-то время уйти в прошлое.

Принцип работы iMoD-дисплея заключается в том, что цветное изображение формируется благодаря интерференции световых волн, аналогично тому, как дневной свет приобретает определённый оттенок в покрытых пыльцой крыльях бабочки. Каждый пиксель iMoD представляет собой микромеханическую систему, состоящую из прозрачной плёнки и зеркальной мембраны, между которыми остаётся свободное воздушное пространство. Между световыми волнами, отразившиеся от плёнки, и волнами, прошедшими сквозь неё, а затем отразившимися от мембраны, возникает интерференция. В результате этого появляется излучение определенного цвета, который может меняться от красного до синего, в зависимости от величины зазора.

Структура интерференционного дисплея iMoD

Дисплеи, построенные на основе этой технологии, сохраняют "читабельность" при любом освещении. Они обладают в разы меньшим по сравнению со своими жидкокристаллическими конкурентами энергопотреблением, поскольку не требуют подсветки, и энергия в них тратится лишь на перевод пикселя из одного состояния в другое. Также нельзя не отметить их малую толщину.

Размещено на Allbest.ru

...

Подобные документы

  • Принципы формирования изображения на всех существующих типах дисплеев. Жидкокристаллический монитор и его особенности. Принцип действия и углы обзора TFT-LCD дисплеев, их плюсы и минусы. Наиболее распространенные технологии изготовления TFT-LCD.

    реферат [156,1 K], добавлен 17.02.2015

  • Изучение принципов функционирования видеомониторов и их компонентов, виды и классификация видеотерминальных устройств. Анализ особенностей различных технических и эксплуатационных характеристик дисплеев и исследование способов их усовершенствования.

    дипломная работа [4,2 M], добавлен 13.07.2010

  • Описание устройства регулятора напряжения. Основное назначение и область применения прибора. Рассмотрение особенностей регулятора на основе тиристоров, магнитных усилителей, транзисторов. Синхронный компенсатор: понятие, назначение, принцип работы.

    реферат [133,7 K], добавлен 03.11.2015

  • Технические характеристики и принцип работы стабилизированного источника питания с непрерывным регулированием. Назначение функциональных элементов стабилизатора напряжения с импульсным регулированием. Расчет параметрического стабилизатора напряжения.

    реферат [630,8 K], добавлен 03.05.2014

  • Описание и принцип работы преобразователя со средней точкой первичной обмотки трансформатора, его схема. Система управления и график её работы. Расчёт количества элементов в батарее и источника опорного напряжения. Параметры усилителя мощности.

    курсовая работа [477,9 K], добавлен 26.08.2012

  • Основные части ЖК-монитора: ЖК-матрица, источник света, блок питания, схемы управления. Регулятор и преобразователь входного питающего напряжения. Основные проблемы, возникающие при эксплуатации монитора. Типовые неисправности, их причины и устранение.

    курсовая работа [1,5 M], добавлен 18.05.2015

  • Анализ аналогов генератора пилообразного напряжения. Принципиальная схема, принцип работы. Генератор пилообразного напряжения на микроконтроллере. Разработка структурной функциональной схемы цифрового устройства. Индикатор уровня сигнала на LM3915.

    курсовая работа [1,3 M], добавлен 27.01.2016

  • Составление функциональной схемы стабилизатора напряжения, принципиальной электрической схемы. Принцип работы силовой части. Специфика разработки системы управления стабилизатором напряжения, управляемым по принципу широтно-импульсного моделирования.

    курсовая работа [248,4 K], добавлен 11.10.2009

  • Принцип действия OLED-дисплея (органический светодиод), его устройство и применение. Основные характеристики дисплеев (яркость, угол обзора, контрастность, срок службы прибора), их сравнение с другими похожими дисплеями. Технология изготовления OLED.

    курсовая работа [2,0 M], добавлен 14.11.2014

  • Выбор и обоснование структурной и принципиальной схемы стабилизатора постоянного напряжения. Защита полупроводниковых стабилизаторов напряжения на основе операционного усилителя от перегрузок по току и короткому замыканию. Расчет регулирующего элемента.

    курсовая работа [632,2 K], добавлен 09.07.2014

  • Принципиальная схема преобразователя, основные элементы и направления их взаимосвязи. Методика и этапы расчет делителя напряжения для источника напряжения смещения. Анализ переходных процессов и построение передаточной функции в программе LTSpice.

    курсовая работа [221,4 K], добавлен 21.03.2014

  • Понятие, сущность, классификация, основы проектирования и расчета стабилизатора напряжения последовательного типа. Методика проектирования однофазного мостового выпрямителя, работающего на нагрузку с сопротивлением, порядок вычисления его параметров.

    курсовая работа [149,9 K], добавлен 09.09.2010

  • Основные характеристики импульса. Генераторы линейно изменяющегося (пилообразного) напряжения, их назначение и область применения. Методы линеаризации пилообразного напряжения. Требования к устройству. Основные характеристики и принцип построения ГПН.

    курсовая работа [2,5 M], добавлен 07.08.2013

  • Описание и анализ аналогов. Преимущества разработанного стабилизатора напряжения, его функциональная и принципиальная схемы, принцип работы. Обоснование выбора и описание элементной базы устройства. Организация рабочего места техника-электромеханника.

    дипломная работа [28,7 K], добавлен 25.01.2009

  • Структурные схемы и принцип работы преобразователей постоянного напряжения. Расчет выпрямителей. Анализ включения транзисторов в преобразователях напряжения. Определение объема катушки, толщину изоляции тороидального трансформатора, его тепловой расчет.

    контрольная работа [1,1 M], добавлен 28.01.2015

  • Потенциометры и реостаты - простейшие регуляторы напряжения и тока. Виды и принцип работы. Высокая эффективность управляемых выпрямителей для регулирования U и I. Параметрические стабилизаторы постоянного и переменного тока, недостатки и применение.

    реферат [193,1 K], добавлен 10.02.2009

  • Анализ влияния напряжения питания на работу микроэлектронных устройств. Принцип действия и характеристика устройств контроля напряжения. Выбор типа микроконтроллера. Функции, выполняемые супервизором. Разработка алгоритма и структурной схемы устройства.

    диссертация [3,1 M], добавлен 29.07.2015

  • Понятие стабильного переменного напряжения, его характеристика и свойства особенностей. Параметрические феррозонансные стабилизаторы напряжения. Компенсационные стабилизаторы напряжения и тока, их описание и особенности каждого из разновидностей.

    реферат [429,2 K], добавлен 10.02.2009

  • Вольтамперная характеристика полупроводникового стабилитрона. Параметрические стабилизаторы напряжения. Соотношения токов и напряжений. Относительное приращение напряжения на выходе стабилизатора. Температурный коэффициент напряжения стабилизации.

    лабораторная работа [123,2 K], добавлен 03.03.2009

  • Закономерности протекания тока в p–n переходе полупроводников. Построение вольтамперных характеристик стабилитрона, определение тока насыщения диода и напряжения пробоя (напряжения стабилизации). Расчет концентрации основных носителей в базе диода.

    лабораторная работа [171,4 K], добавлен 27.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.