Влияние многофазной жидкости на показания кориолисова расходомера

Принцип действия и конструкционные особенности кориолисовых расходомеров. Применение кориолисовых массовых расходомеров для измерений газожидкостных потоков. Современные радиоизотопные средства измерения содержания свободного газа в потоках нефти.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид отчет по практике
Язык русский
Дата добавления 11.01.2020
Размер файла 148,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСТИТЕТ

Институт прикладной математики и механики

Кафедра теоретической механики

Отчет по научно-исследовательской работе на тему

Влияние многофазной жидкости на показания кориолисова расходомера

Яшин Алексей Владимирович

Научный руководитель

О.С. Лобода

Санкт-Петербург 2013

Введение

Во время добычи нефти, в трубопроводах могут возникать полости с газом, из-за которых датчики массовых расходомеров, на нефтедобывающих станциях, дают значительную погрешность.

В связи с этим появилась задача создания расходомера, на показания которого не влияет присутствие двух и более фаз в потоке жидкости.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис. 1. Кориолисов массовый расходомер

газожидкостный поток кориолисовый расходомер

Пусть жидкость течет в горизонтальной трубе. Закрепим трубу с одного конца и придадим ей вращение с постоянной угловой скоростью в горизонтальной плоскости относительно точки закрепления. Если жидкости сообщить кориолисово ускорение, посредством вращения трубы, то величина отклоняющей силы Кориолиса будет зависеть от массового расхода жидкости. Отклоняющая сила, действующая на трубу, будет всегда направлена вправо относительно вектора скорости. Вектор силы Кориолиса и вектор скорости жидкости лежат в одной (горизонтальной) плоскости.

Частица жидкости dm движется со скоростью V в трубе Т (рисунок 1). Труба вращается относительно неподвижной точки P. Частица находится на расстоянии r от точки P, равному радиусу трубы R. Частица движется с угловой скоростью w. Ускорение частицы складывается из двух составляющих: центростремительного, направленного к точке P и кориолисова, направленного вправо, относительно центростремительного.

ar (центростремительное)=w2r

at (кориолисово)=2wv

Для того, чтобы сообщить жидкости кориолисово ускорение, необходимо, чтобы со стороны трубы на частицу жидкости действовала сила atdm. Со стороны жидкости на трубу действует такая же сила, но противоположно направленная - сила Кориолиса:

Fc=atdm=2wv(dm)

Пусть жидкость имеет плотность D и течет с постоянной скоростью внутри вращающейся трубы через поперечное сечение площадью A. На часть трубы, имеющая длину x , будет действовать сила Кориолиса, величина которой равна:

Fc=2wvDAx

Поскольку массовый секундный расход равен dm=DvA, то Fc=2w(dm)x. В итоге имеем:

Массовый расход = Fc/(2wx)

Таким образом, измеряя значение силы Кориолиса жидкости во вращающейся трубе, можно определить величину массового расхода. Естественно, вращать трубу в промышленных условиях крайне неудобно, а в большинстве случаях просто невозможно, но если придать трубе колебательные движения или вибрацию, то можно достичь аналогичного эффекта. Кориолисовые расходомеры могут измерять массовый расход, как в прямом, так и в обратном направлении течения жидкости.

Конструкции трубок и принцип действия

Принцип действия заключается в том, что когда трубки совершают колебательные движения, в системе возникает дополнительная сила инерции - сила Кориолиса. И под действием этой силы трубки начинают изгибаться. Их изгиб фиксируется датчиками.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Привод заставляет трубки вибрировать. Электромагнитный привод состоит из катушки, соединенной с одной трубкой, и из магнита, соединенного с другой трубкой. На катушку подается переменный ток, который заставляет магнит периодически то притягиваться, то отталкиваться.

Поскольку магнит и катушка жестко закреплены на разных трубках, то сила будет отталкивать и притягивать трубки друг от друга или друг к другу. Необходимым условием является наличие переменного тока в катушке, т.к. сила должна менять направление.

Датчик может определить положение, скорость или ускорение трубок. Если используются электромагнитные датчики, магнит и катушка в датчике меняют свое положение друг относительно друга, во время того, как трубки вибрируют, вызывая изменение в магнитном поле катушки. Поэтому синусоидальное напряжение на катушке представляет собой движение трубок.

Когда поток отсутствует (в расходомере с двумя трубками) и происходит вибрация, различия в показаниях двух датчиков в точках B1 и B2 отсутствуют. Если есть поток жидкости и привод создает вибрацию трубок, то силы Кориолиса создают вторичную изгибающую вибрацию, которая проявляется в небольшой разнице фаз относительных движений трубок. Это обнаруживается датчиками в двух точках. Отклонение трубок, вызываемое силой Кориолиса, имеет место только в том случае, когда одновременно присутствует поток жидкости и вибрация трубок. Вибрация без потока или поток без вибрации не дают каких-либо показаний прибора.

При одновременном снятии сигналов происходит смещение по фазе на Т. Это относительное запаздывание прямо пропорционально массовому расходу

Естественная резонансная частота двухтрубной конструкции зависит от геометрии, конструкционных материалов и массы всей конструкции (массы трубок и массы жидкости внутри трубок). Масса трубы постоянна. Так как масса жидкости есть ее плотность (D), умноженная на объем (который также постоянен), частота вибрации может быть обусловлена плотностью протекающей жидкости. Следовательно, плотность жидкости может быть определена путем измерения резонансной частоты колебаний трубок (заметим, что плотность жидкости может быть определена и в отсутствие потока, пока трубки заполнены жидкостью и колеблются).

Применения и ограничения

Кориолисовы массовые расходомеры могут обнаруживать поток всех жидкостей, включая ньютоновских и неньютоновских, а также достаточно плотных газов.

Если поток состоит из двух отдельных фаз (жидкость и газ), то показания прибора будут ошибочными. Если контроллер имеет функцию обнаружения двухфазного потока, то измерения будут автоматически остановлены. Контроллер может обнаружить такой поток по чрезмерно высокой потребляемой приводом энергии или по падению плотности потока (уменьшение амплитуды выходного сигнала датчика).

Количество попутного воздуха, допускаемое прибором, зависит от вязкости жидкости. Жидкости с вязкостью до 300,000 мПа/c могут измеряться кориолисовым расходомером. Содержание газа в таких высоковязких жидкостях может быть до 20%, причем газ должен быть в виде мелких пузырьков, гомогенно диспергированных. Газ в жидкостях с низкой вязкостью, как молоко, отделится при концентрации газа до 1%.

Стоимость расходомера среднего размера (до 2 дюймов (50,8 мм)) находится в пределах 4000-5000$. Конструкции с прямой трубкой обычно используются для жидких растворов и других многофазных жидкостей. Поток в конструкции с двумя трубками разделяется на два потока и эти потоки не обязательно должны абсолютно одинаковый массовый расход (но они должны иметь одинаковую плотность). Разные плотности в двух трубках разбалансируют систему, и это создаст ошибки при измерении. Следовательно, если в потоке присутствует вторая фаза, то обычный разделитель может не распределить равномерно поток по трубкам.

Конструкция с одной трубкой также предпочтительна для измерения жидкостей, которые могут создать отложения на стенках и/или засорить прибор. Прямая трубка, если она подобрана так, чтобы по ней проходила максимально возможная по размеру твердая частица жидкости, имеет меньшую вероятность засорения, и она легче очищается. Прямые трубки могут быть очищены механическими средствами, в то время, как изогнутые обычно промываются специальным раствором при скоростях, превышающих 3 м/c. Прямые трубки также используются в санитарных условиях, т.к. они обладают требованием самозаполнения.

Длинные изогнутые трубки изгибаются лучше, чем короткие и прямые, поэтому они создают более сильный сигнал в одинаковых условиях.

Прямотрубные расходомеры выдерживают большие напряжения трубы и вибрацию, легко устанавливаются, требуют меньший перепад давления, могут быть очищены механически, более компактны и требуют меньше места для установки.

Они также используются при измерении жидкости, которая может затвердеть при определенной температуре.

Вывод

• Был изучен большой объем литературы.

• Рассмотрены принцы действия и конструкционные особенности различных кориолисовых расходомеров.

• Из анализа литературы было установлено, что для исследования двухфазных жидкостей подходит конструкция расходомера с прямой трубкой. Такая конструкция дает более точные показания по сравнению с расходомером, имеющим форму U - образной трубки.

Литература

• Исследования влияния газа, Содержащегося в нефти, на показания преобразователей объемного расхода нефти // Е.В. Березовский, А.Д. Акчурин (ОП ГНМЦ ОАО "Нефтеавтоматика", ФГАОВПО "Казанский (Приволжский) федеральный университет");

• Разработка чувствительного элемента кориолисового расходомера // Е.А. Баландин, Т.Н. Баландина - Томский политехнический университет - Вестник науки Сибири. 2013. № 2 (8).

Размещено на Allbest.ru

...

Подобные документы

  • Назначение, конструкция и принцип работы тепловых расходомеров. Расчёт чувствительного элемента датчика, преобразователей. Структурная схема измерительного устройства. Выбор аналогово-цифрового преобразователя и вторичных приборов, расчет погрешности.

    курсовая работа [906,9 K], добавлен 24.05.2015

  • Разработка газодинамического стенда "Крокус" для создания многокомпонентных парогазовых смесей с задаваемыми уровнями концентраций каждого компонента. Управление блоками и устройствами стенда, схемы подключения. Принцип измерений тепловых расходомеров.

    практическая работа [2,1 M], добавлен 25.11.2013

  • Технология измерения количества и показателей качества нефти при транспортировке. Средства автоматизации, применяемые на СИКН № 3. Анализ существующих средств измерения давления. Направления усовершенствования системы автоматизации ООО "Балтнефтепровод".

    дипломная работа [875,4 K], добавлен 29.04.2015

  • Структурная схема и принцип работы средства измерений прямого и уравновешивающего преобразования. Назначение и сферы применения время-импульсного цифрового вольтметра. Нахождение результата и погрешности косвенного измерения частоты по данным измерения.

    контрольная работа [1,3 M], добавлен 17.01.2010

  • Разные шкалы и средства измерения температуры. Принцип действия оптической пирометрии как метода измерения температуры. Основные понятия и термины, связанные с влажностью воздуха. Виды гигрометров (датчики влажности), принципы и особенности их работы.

    курсовая работа [664,8 K], добавлен 24.10.2011

  • Изучение устройства температурного датчика на основе термопары. Принцип работы металлических тензодатчиков веса (силы). Микросенсоры расхода газа (жидкости), их технические характеристики. Уравнение пироэлектрического эффекта. Способы измерения ускорений.

    доклад [977,7 K], добавлен 18.03.2013

  • Понятие расхода как количественной характеристики жидкости или газа, протекающего через сечение трубопровода в единицу времени. Классификация приборов, измеряющих расход. Новые методы измерения расхода жидкостей и газов. Сигнализаторы потока и протока.

    презентация [459,5 K], добавлен 07.12.2012

  • Назначение, конструкция, принцип работы и технические характеристики расходомера топлива. Проведение анализа элементной базы оригинальных деталей устройства. Разработка конструкторской схемы и технологического маршрута сборки и монтажа данного изделия.

    курсовая работа [58,4 K], добавлен 10.01.2011

  • Обзор методов измерения физической величины и их сравнительный анализ. Принцип действия фотоэлектрических преобразователей. Избыточный коэффициент усиления. Источники погрешностей от приемников излучения. Погрешности от нестабильности условий измерений.

    курсовая работа [917,9 K], добавлен 06.12.2014

  • Поверка средств измерений органами метрологической службы при помощи эталонов и образцовых средств измерений. Описание технических приемов поверки. Принцип действия измерительного преобразователя. Описание и характеристики преобразователя "Сапфир-22ДИ".

    реферат [480,1 K], добавлен 17.07.2015

  • Сравнение мгновенно-суммирующих расходомеров топлива по конструктивному, метрологическому и экономическому критериям. Общие сведения о цифровых РТМС, их структура: передающая и приемная части. Устройство сжатия телеметрических данных и классификация БССО.

    курсовая работа [821,1 K], добавлен 18.03.2011

  • Методы измерения давления с помощью пьезорезистивного датчика Siemens KPY 43A № 35, определение его калибровочной зависимости и выполнение тарировки. Влияние электромагнитной помехи на показания датчика. Образцовый ртутный манометр, весы рейтерного типа.

    контрольная работа [854,3 K], добавлен 29.12.2012

  • Характеристика электромеханических приборов для измерения постоянного, переменного тока и напряжения. Их конструкция, принцип действия, область применения, достоинства и недостатки. Определение и классификация электронных вольтметров, схемы приборов.

    курсовая работа [1,1 M], добавлен 26.03.2010

  • Метрологические, динамические и эксплуатационные характеристики измерительных систем, показатели их надежности, помехозащищенности и безопасности. Средства и методы проверки; схема, принцип устройства и действия типичной контрольно-измерительной системы.

    контрольная работа [418,2 K], добавлен 11.10.2010

  • Государственная метрологическая аттестация: методы и проблемы проверки магнитоэлектрических логометров, стандарты достоверности, средства измерений и контроля. Правила и схемы метрологических проверок средств измерения для обеспечения единства измерений.

    курсовая работа [44,2 K], добавлен 27.02.2009

  • Разновидности и описание уровнемеров: визуальные, поплавковые, гидростатические, электрические, радарные, волноводные, радиоизотопные. Методы измерения дальности. Импульсные радиодальномеры: следящие и не следящие. Обоснование выбора корпуса устройства.

    дипломная работа [3,7 M], добавлен 09.08.2014

  • Группы метрологических характеристик. Относительная и абсолютная погрешность. Принцип действия и конструкция термопары, его достоинства и недостатки. Причины возникновения систематических погрешности измерений, способы их обнаружения и исключения.

    контрольная работа [1,2 M], добавлен 16.06.2014

  • Конструктивные схемы емкостных преобразователей, области их применения. Технические характеристики уровнемера ИСУ100И, принцип работы данного устройства. Физический принцип измерения уровня жидкости в резервуаре. Расчёт погрешности ёмкостных уровнемеров.

    курсовая работа [286,7 K], добавлен 04.03.2014

  • Средства электрических измерений: меры, преобразователи, комплексные установки. Классификация измерительных устройств. Методы и погрешности измерений. Определение цены деления и предельного значения модуля основной и дополнительной погрешности вольтметра.

    практическая работа [175,4 K], добавлен 03.05.2015

  • Параметры ошибок и методы их измерений по G.821. Схема измерений параметров каналов ЦСП типа "точка-точка". Основные принципы методологии измерений по G.826. Методика индикационных измерений. Измерение параметров кодовых ошибок, их связь с битовыми.

    реферат [405,0 K], добавлен 12.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.