Свойства пьезоэффекта

Исследование природы и физических свойств пьезоэффекта, присущего кварцу, турмалину и другим кристаллам естественного и искусственного происхождения. Прямой и обратный пьезоэффект в кристаллах. Практические примеры использования пьезогенераторов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 22.01.2020
Размер файла 286,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Контрольная работа

по дисциплине «Электронные приборы»

Работу выполнил: Швед А.А.

Преподаватель: Куликов В.П.

Новосибирск 2019

Физические свойства пьезоэффекта

В ходе исследований было установлено, что пьезоэлектрический эффект присущ кварцу, турмалину и другим кристаллам естественного и искусственного происхождения. Перечень таких материалов постоянно растет. Если любой из этих кристаллов сжать или растянуть в определенном направлении, на отдельных гранях появятся электрические заряды с положительным и отрицательным значением. Разность потенциалов таких зарядов будет незначительной.

Для того чтобы понять природу пьезоэффекта, необходимо соединить электроды между собой и разместить их на гранях кристалла. При кратковременном сжатии или растяжении в цепи, образованной электродами, можно заметить образование короткого электрического импульса. Именно он является электрическим и физическим проявлением пьезоэффекта. Если же кристалл испытывает постоянное давление, в этом случае импульс не появится. Данное свойство кристаллических материалов широко используется при изготовлении точных чувствительных приборов. На рисунке №1 изображен пример сжатия и растяжения пьезокристала.

Рисунок 1

Одним из качеств пьезоэлектрических кристаллов является их высокая упругость. По окончании действия деформирующего усилия, эти материалы без всякой инерции принимают свою изначальную форму и объем. Если же прикладывается новое усилие или изменяется приложенное ранее, в этом случае мгновенно образуется еще один токовый импульс. Данное свойство, известное как прямой и обратный пьезоэффект, успешно используется в устройствах, регистрирующих совсем слабые механические колебания.

В самом начале открытия пьезоэффекта решение такой задачи было невозможно из-за слишком незначительной силы тока в колеблющейся кристаллической цепи. В современных условиях ток может быть усилен многократно, а некоторые виды кристаллов имеют довольно высокий пьезоэффект. Ток, полученный от них, не требует дополнительного усиления и свободно передается по проводам на значительные расстояния.

Прямой и обратный пьезоэффект

Все кристаллы, рассмотренные выше, обладают качествами прямого и обратного пьезоэффекта. Данное свойство одновременно присутствует во всех подобных материалах - с моно- и поликристаллической структурой. Обязательным условием является их предварительная поляризация в процессе кристаллизации воздействием сильного электрического поля.

Для того чтобы понять, как действует прямой пьезоэффект, необходимо кристалл или керамический материал расположить между металлическими пластинами. Генерация электрического заряда происходит в результате приложенного механического усилия - сжатия или растяжения.(Пример генерации электрического заряда при сжатии пьзоэлемента на рис. 2)

Рисунок 2

Величина полной энергии, полученной от внешней механической силы, составит сумму энергий упругой деформации и заряда емкости элемента. Поскольку пьезоэлектрический эффект носит обратимый характер, возникает специфическая реакция. Прямой пьезоэффект приводит к возникновению электрического напряжения, которое в свою очередь, под влиянием обратного эффекта вызывает деформацию и механические напряжения, оказывающие противодействие внешним силам. За счет этого жесткость элемента будет увеличиваться. В случае отсутствия электрического напряжения, обратный пьезоэффект тоже будет отсутствовать, а жесткость пьезоэлемента уменьшится.

Таким образом, обратный пьезоэлектрический эффект заключается в механической деформации материала - расширении или сжатии под действием приложенного к нему напряжения. Данные элементы выполняют функцию своеобразного мини-аккумулятора и применяются в гидролокаторах, микрофонах, датчиках давления, других чувствительных приборах и устройствах. Свойства обратного эффекта широко используются в миниатюрных акустических устройствах мобильных телефонов, в гидроакустических и медицинских ультразвуковых датчиках.

Виды пьезоэлектрических материалов

Основным свойством таких материалов является возможность получения электроэнергии за счет сжатия или растяжения, то есть, деформации.(рис №3)

Рисунок 3

Все материалы, используемые на практике, классифицируются следующим образом:

· Кристаллы. Включают в себя кварц и другие виды природных образований.

· Керамические изделия. Представляют собой группу искусственных материалов. Типичными представителями являются цирконат-титанат свинца - ЦТС, а также титанат бария и ниобат лития. Они обладают более ярким пьезоэлектрическим эффектом по сравнению с природными материалами.

Если сравнивать ЦТС и кварц, становится заметно, что при одной и той же деформации, искусственный элемент вырабатывает более высокое напряжение. Когда на него влияет обратный пьезоэлектрический эффект он соответственно сильнее деформируется, когда к нему приложено такое же напряжение, как и к кварцу. Благодаря своим качествам, искусственные материалы получили широкое распространение в конструкциях керамических конденсаторов, ультразвуковых преобразователей и прочих электронных устройств.

Применение пьезоэлемента

пьезоэффект кристалл

Применение пьезоэлемента обычно сводится к четырем категориям: сенсоры, генераторы, силовые приводы, и преобразователи.

В генераторах, пьезоэлектрические материалы могут генерировать напряжение, которого достаточно для возникновения искры между электродами, и таким образом могут быть использованы как электроды для воспламенения топлива, для газовых плит и для сварочного оборудования. Альтернативно, электрическая энергия, генерируемая пьезоэлектрическими элементами, может накапливаться. Такие генераторы являются превосходными твердыми аккумуляторными батареями для электронных схем.

Практические примеры использования пьезогенераторов

Пьезогенераторы целесообразнее использовать для питания маломощных устройств, например мобильных коммуникационных аппаратов, мобильных плееров или небольших источников света. Максимальное напряжение, которое можно получить на выходе ПГ, обычно не превышает 1,6 В.

Пьезогенератор, построенный на принципе продольного направления колебаний, в некоторых опытах помещался в подкладку обуви. Бег или ходьба в такой обуви позволяет вырабатывать небольшую мощность. Есть в такой технологии недостаток - хрупкость ПЭ, имеющего спиральную пластинчатую структуру. По этой причине проще встраивать ПГ в поверхность, по которой выполняется перемещение людей. На станции метро Марунучи, расположенной в Токио, в настил пола помещены пьезоэлементы. Из-за большого скопления людей, давящих ступнями на пол, вырабатывается небольшая, но существенная мощность.

Таким же способом можно получать электроэнергию от деформации полотна трассы, по которой движутся автомобили, а затем аккумулировать ее для дальнейшего использования в нуждах расположенных вблизи потребителей. Велосипедную фару, как оказалось, можно тоже подпитывать от ПГ, расположенного в педали. Мощности, получаемой только от пьезогенераторов, в данном случае недостаточно для полноценного электроснабжения фары, но в комбинации с использованием генераторов типа «динамо» технология вполне применима.

Возможно также совмещение в одном генераторе ПЭ с элементами, трансформирующими солнечную энергию в электрическую. Кроме того, опыты показывают, что более масштабные пьезогенераторы обладают коэффициентом полезного действия, превышающим КПД менее габаритных образцов. Разработки механически прочных и гибких пьезоэлементов позволяют использовать их не только в обувной подкладке, но и при изготовлении одежды. Нанонити для этих целей производятся методом электроспиннинга. Эта технология дает дополнительные возможности получения электроэнергии от движений тела, сердцебиения и т.д.

В сенсорах, пьезоэлектрические материалы преобразуют физические параметры, такие как ускорение, давление и вибрации в электрический сигнал.

Датчики силы Пьезоэлектрические датчики силы в последнее время принимают активное участие в лабораторных исследованиях. Они отличаются повышенной точностью и неплохой проводимостью. Однако важно отметить, что рабочая частота в данном случае находится на уровне 4 Гц. Многие модификации производятся с обычными контактными мембранами. Также стоит отметить, что в магазинах представлены проводные устройства с кварцевыми пластинами. Показатель проводимости у таких датчиков составляет примерно 5 мк. Многие модификации разрешается применять в условиях повышенной влажности. Емкость проводников в данном случае равняется 55 пФ.

Датчики давления Пьезоэлектрические датчики давления производятся с мембранами разных типов. Если верить отзывам экспертов, то наиболее востребованными устройствами считают контактные элементы, показатель проводимости у них равняется 8 мк. При этом рабочая частота максимум достигает 5 Гц. Контактные мембраны у датчиков встречаются довольно редко. Кварцевые пластины устанавливаются через выводы. Емкость проводников в среднем равняется 120 пФ. Отдельного внимания у модификаций заслуживают компактные втулки. Как правило, они применяются экранированного типа. Для измерительной аппаратуры датчики данного типа подходят замечательно. Довольно часто их подключают к осциллографам. Подпятники у модификаций применяются переходного типа. Некоторые модели способны похвастаться высокой точностью замеров.

Пьезоэлектрические датчики температуры работают на низкоомных модулях. Если верить отзывам экспертов, то мембраны в основном применяются контактного типа, и переходники под них используются низкой проводимости. Кварцевые пластины способны работать в условиях повышенной влажности. Если говорить про недостатки, то важно отметить, что модели производятся в основном без подпятников. Вместо них на мембраны устанавливаются специальные изоляционные пленки. Показатель диэлектрической проницаемости лежит в районе 50 %.

Датчики ускорения Пьезоэлектрический датчик ускорения довольно часто используется в промышленности. Выводы у моделей подключаются через мембраны. Некоторые устройства производятся специально под приводные агрегаты. Мембраны в данном случае устанавливаются контактного типа. Также стоит отметить, что в магазинах представлены элементы, которые работают на полированных пластинах. Подпятники в основном используются компактных размеров. Изоляция у моделей применяется высокого качества. Металлические подкладки встречаются довольно редко. Также надо отметить, что существуют устройства, которые способны работать при частоте 3 Гц. Показатель проводимости у них, как правило, не превышает 44 мк. Емкость проводников у моделей данного типа находится в районе 40 пФ.

В силовых приводах, пьезоэлектрические материалы преобразуют электрический сигнал в точно контролируемое физическое смещение, четко устанавливая точность механических инструментов, линз и зеркал.

Ультразвуковомй двимгатель (Ультразвуковой мотор, Пьезодвигатель, Пьезомагнитный двигатель, Пьезоэлектрический двигатель), двигатель, в котором рабочим элементом является пьезоэлектрическая керамика, благодаря которой он способен преобразовать электрическую энергию в механическую с очень большим КПД, превышающим у отдельных видов 90 %. Это позволяет получать уникальные приборы, в которых электрические колебания прямо преобразуются во вращательное движение ротора, при этом крутящий момент, развиваемый на валу такого двигателя столь велик, что исключает необходимость применения какого-либо механического редуктора для повышения крутящего момента. Также данный двигатель обладает выпрямительными свойствами гладкого фрикционного контакта. Эти свойства проявляются и на звуковых частотах. Такой контакт является аналогом электрического выпрямительного диода. Поэтому ультразвуковой двигатель можно отнести к фрикционным электромоторам.

Используемые источники

1. К.Б. Классен. Основы измерений. Электронные методы и приборы в измерительной технике. Москва: Постмаркет, 2000. - 352 с.

2. Шарапов В.М., Мусиенко М.П., Шарапова Е.В. Пьезоэлектрические датчики / Под ред. В.М. Шарапова. - Москва: Техносфера, 2006. - 632 с.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие вибропреобразователей, их сущность и особенности, классификация и разновидности, характеристика и отличительные черты, сферы применения. Основные параметры вибропреобразователей и критерии их оценки. Сущность пьезоэффекта и его параметры.

    лабораторная работа [916,8 K], добавлен 06.05.2009

  • История создания электронного микроскопа. Исследование микрорельефа поверхности и ее локальных свойств при помощи сканирующих зондовых микроскопов. Уравнение обратного пьезоэффекта для кристаллов. Механические редукторы и шаговые электродвигатели.

    курсовая работа [68,5 K], добавлен 03.05.2011

  • Аппаратура для лечебного применения постоянных и низкочастотных переменных магнитных полей. Классификация электромагнитных полей естественного и искусственного происхождения. Механизмы влияния магнитных полей на организм человека, биологические эффекты.

    реферат [888,1 K], добавлен 09.01.2009

  • Информация-это отражение разнообразия, присущего объектам и явлениям реального мира. Понятие информации. Свойства информации. Классификация информации. Формы представления информации. Информация-мера определенности в сообщении. Достоверность информации.

    контрольная работа [24,9 K], добавлен 24.09.2008

  • Исследование частотных свойств фильтра. Особенности уровня боковых лепестков, шумовых полос, максимальных потерь преобразования окна Кайзера-Бесселя при заданных параметрах. Исследование энергетических и вероятностных свойств многоканального фильтра.

    контрольная работа [485,2 K], добавлен 06.03.2011

  • Обратная связь как связь, при которой на вход регулятора подается действительное значение выходной переменной, а также заданное значение регулируемой переменной. Изменение динамических характеристик, типовых звеньев САУ при охвате обратной связью.

    лабораторная работа [802,2 K], добавлен 13.03.2011

  • Качественный и количественный подходы к оценке опасностей и выявления отказов систем. Прямой и обратный порядок определения причин отказов и нахождения аварийного события при анализе состояния системы. Метод анализа опасности и работоспособности.

    курсовая работа [74,2 K], добавлен 03.01.2014

  • Понятие искусственного интеллекта. История развития систем искусственного интеллекта. Самообучение искусственного интеллекта. Квантовые компьютеры и нейрокомпьютеры. Основы нейроподобных сетей. Некоторые сведения о мозге. Реально ли компьютерное мышление.

    курсовая работа [220,1 K], добавлен 06.10.2008

  • Практические навыки схемного введения биполярного транзистора в заданный режим покоя. Определение основных свойств транзистора в усилительном и ключевых режимах. Овладение методикой работы в учебной лаборатории в программно-аппаратной среде NI ELVIS.

    лабораторная работа [1,3 M], добавлен 04.03.2015

  • Вероятность битовой ошибки в релеевском канале в системе с разнесенным приемом. Использование искусственного шума и пропускная способность. Соотношение амплитуд полезного сигнала и искусственного шума. Влияние шума на секретность передачи информации.

    лабораторная работа [913,8 K], добавлен 20.09.2014

  • Практические примеры и их программная реализация на языке ассемблера для микроконтроллера семейства MCS-51 (МК51). Использование команд передачи данных. Арифметические и логические, битовые операции в MCS-51. Взаимодействие МК с объектом управления.

    курсовая работа [75,0 K], добавлен 19.02.2011

  • Специфика создания справочно-правовых систем, обзор их рынка в России. Преимущества использования справочно-правовой системы "КонсультантПлюс", достоинства, примеры решения поисковых задач с ее помощью, преимущества использования для разных специалистов.

    научная работа [2,6 M], добавлен 08.06.2010

  • Создание модели антенны и оптимизация ее конструкции. Свойства антенны горизонтальной поляризации с учетом свойств поверхности земли в направлении максимального КНД и влияние диаметра проводников симметричного вибратора на рабочую полосу частот.

    курсовая работа [1,0 M], добавлен 23.02.2016

  • Определение возможности генерации на кристалле Tm:CaF2 в области 2 мкм в схемах лазеров с продольной диодной накачкой. Физические свойства кристалла. Спектры пропускания образцов кристалла CaF2. Расчет квантового генератора на лазерном кристалле.

    курсовая работа [4,9 M], добавлен 14.07.2012

  • Общие рекомендации к выполнению лабораторных работ. Изучение электронного осциллографа. Исследование выпрямительного и туннельного диодов. Исследование дифференциального включения операционного усилителя. Изучение свойств интегрирующего усилителя.

    учебное пособие [939,5 K], добавлен 25.03.2009

  • Системы искусственного интеллекта как предпосылки создания робототехники. Теоретические основы систем искусственного интеллекта, особенности их прикладных задач. История и основные перспективы развития робототехники. Современное состояние роботизации.

    курсовая работа [435,3 K], добавлен 14.04.2014

  • Экспериментальное исследование свойств и характеристик линейных динамических звеньев первого порядка во временной и частотной области. Исследование переходной функции h(t). Исследование частотных характеристик устойчивого апериодического звена.

    лабораторная работа [111,7 K], добавлен 21.04.2012

  • Обзор оптических свойств преобразователей оптического излучения при разных температурах. Изучение возможностей прибора для нагревания кристаллов, собранного на базе ПИД-регулятора ОВЕН ТРМ101. Настройка прибора, разработка инструкции по пользованию им.

    дипломная работа [1,8 M], добавлен 30.06.2014

  • Влияние постоянной времени на динамические свойства системы привода. Рациональное определение параметров фильтра. Схема скорректированной системы привода. Характеристики скорректированной системы привода до и после уменьшения постоянных времени фильтра.

    лабораторная работа [445,9 K], добавлен 24.12.2009

  • Использование спектра в представлении звуков, радио и телевещании, в физике света, в обработке любых сигналов независимо от физической природы их возникновения. Спектральный анализ, основанный на классических рядах Фурье. Примеры периодических сигналов.

    курсовая работа [385,8 K], добавлен 10.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.