Характеристика шагового двигателя
Анализ изучения конструкции шагового электродвигателя. Определение угла поворота ротора, соответствующего одному импульсу. Особенность управления шаговым двигателем с постоянными магнитами. Проведение исследования ротора гибридного шагового двигателя.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 23.03.2020 |
Размер файла | 801,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство науки и высшего образования Российской Федерации
Мытищинский филиал
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Московский государственный технический университет имени Н.Э. Баумана (МГТУ им. Н.Э. Баумана)
Факультет лесного хозяйства, лесопромышленных технологий и садово-паркового строительства.
Реферат
Автоматизация технологических процессов, оборудование и безопасность производств. (ЛТ-10)
По дисциплине: «Проектирование автоматизированных систем»
На тему: «Шаговый двигатель»
Работу выполнил:
Степанов Р. А.
Работу проверил:
Пеньков И.В.
Москва 2020 г
Шаговые двигатели широко используются в бытовых приборах, транспортных средствах, фрезерных и шлифовальных станках и других производственных механизмах.
Шаговый двигатель - это бесколлекторный синхронный двигатель, ротор которого совершает дискретные перемещения (шаги) определенной величины с фиксацией положения ротора в конце каждого шага,т.е. перемещение ротора происходит шагами известной величины, подсчитав шаги можно определить, на сколько изменилось положение ротора, вычислить его абсолютную позицию.
объединяя в себе двигатель и позиционирующее устройство без обратной связи, шаговый двигатель является идеальным приводом в промышленном оборудовании, станках с чпу, робототехнике...
Предшественником шагового двигателя является серводвигатель.
Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи. Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.
Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов.
Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.
Конструкция шагового электродвигателя
Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор - неподвижная часть, ротор - вращающаяся часть.
Рис.1 Гибридный шаговый электродвигатель
Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель - имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты. Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.
Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.
Характеристики
Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель - маломощный двигатель по сравнению с другими электродвигателями.
Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления. Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов. С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.
Типы шаговых двигателей
По конструкции ротора выделяют три типа шаговых двигателей:
· реактивный;
· с постоянными магнитами;
· гибридный.
Реактивный шаговый двигатель
Трехфазный реактивный шаговый двигатель (шаг 30°)
Реактивный шаговый двигатель - синхронный реактивный двигатель. Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор - четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам. В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.
Четырехфазный реактивный шаговый двигатель (шаг 15°)
Ниже представлены осциллограммы управления для трехфазного шагового двигателя.
Униполярное волновое управление
Биполярное полношаговое управление
Биполярное 6-шаговое управление
Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:
,
· где NR - количество полюсов ротора;
· NS - количество полюсов статора.
Осциллограммы управления 4-х фазным реактивным шаговым двигателем
Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор.
Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.
Отличительные черты:
· ротор из магнитомягкого материала с явно выраженными полюсами;
· наименее сложный и самый дешевый шаговый двигатель;
· отсутствует фиксирующий момент в обесточенном состоянии;
· большой угол шага.
Шаговый двигатель с постоянными магнитами
Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.
По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором -- большой угловой шаг (7,5--90°). Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов. Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.
Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.
Таким образом по виду обмоток выделяют два типа шаговых двигателей:
· униполярный (однополярный),
· биполярный (двухполярный).
Униполярный (однополярный) шаговый двигатель
Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.
Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.
Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.
Схема униполярного двухфазного шагового двигателя
Схема биполярного двухфазного шагового двигателя
Биполярный шаговый двигатель
Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода. Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные. Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление. Управление шаговым двигателем с постоянными магнитами
Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока. Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В. Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.
Существует несколько способов управления:
ѕ волновое
ѕ полношаговое
ѕ полушаговое
ВОЛНОВОЕ УПРАВЛЕНИЕ
Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.
Положение ротора шагового двигателя при волновом управлении
Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.
ВОЛНОВОЕ УПРАВЛЕНИЕ БИПОЛЯРНЫМ ШАГОВЫМ ДВИГАТЕЛЕМ
На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности ("+" и "-") подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.
Волновое управление униполярным шаговым двигателем
На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.
Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление. шаговой электродвигатель ротор импульс
Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.
Схема 4 выводного биполярного шагового двигателя
Схема 5 выводного униполярного шагового двигателя
Схема 6 выводного униполярного шагового двигателя
Схема 8 выводного шагового двигателя
Шаговый двигатель с 4 выводами может управляться только биполярным способом. 6-выводной двигатель предназначен для управления униполярным способом, несмотря на то, что он также может управляться биполярным способом если игнорировать центральные выводы. 5-выводной двигатель может управляться только униполярным способом, так как общий центральный вывод соединяет обе фазы. 8-выводная конфигурация двигателя встречается редко, но обеспечивает максимальную гибкость. Такой двигатель может быть подключен для управления также как 6- или 5- выводной двигатель. Пара обмоток может быть подключена последовательно для высоковольтного биполярного управления с малыми токами или параллельно для низковольтного управления с большими токами.
8-выводные двигатели могут быть соединены в нескольких конфигурациях:
· униполярной;
· биполярной с последовательным соединением. Больше индуктивность, но ниже ток обмотки;
· биполярной с параллельным соединением. Больше ток, но ниже индуктивность;
· биполярной с одной обмоткой на фазу. Метод использует только половину обмоток двигателя при работе, что уменьшает доступный момент на низких оборотах, но требует меньше тока.
ПОЛНОШАГОВОЕ УПРАВЛЕНИЕ
Полношаговое управление обеспечивает больший момент, чем волновое управление так как обе обмотки двигателя включены одновременно. Положение ротора при полношаговом управлении показано на рисунке ниже.
Положение ротора шагового двигателя при полношаговом управлении
Полношаговое биполярное управление шаговым двигателем
Полношаговое биполярное управление показанное на рисунке выше имеет такой же шаг как и при волновом управлении. Униполярное управление (не показано) потребует два однополярных управляющих сигнала для каждого биполярного сигнала. Однополярное управление требует менее сложной и дорогой схемы управления. Дополнительная стоимость биполярного управления оправдана когда требуется более высокий момент.
ПОЛУШАГОВОЕ УПРАВЛЕНИЕ
Шаг для данной геометрии шагового двигателя делится пополам. Полушаговое управление обеспечивает большее разрешение при позиционировании вала двигателя.
Положение ротора шагового двигателя при полушаговом управлении
Полушаговое управление - комбинация волнового управления и полношагового управления с питанием по очереди: сначала одной обмотки, затем с питанием обоих обмоток. При таком управлении количество шагов увеличивается в двое по сравнению с другими методами управления.
Полушаговое биполярное управление шаговым двигателем
ГИБРИДНЫЙ ШАГОВЫЙ ДВИГАТЕЛЬ
Гибридный шаговый двигатель был создан с целью объединить лучшие свойства обоих шаговых двигателей: реактивного и с постоянными магнитами, что позволило добиться меньшего угла шага. Ротор гибридного шагового двигателя представляет из себя цилиндрический постоянный магнит, намагниченный вдоль продольной оси с радиальными зубьями из магнитомягкого материала.
Конструкция гибридного шагового двигателя (осевой разрез)
Статор обычно имеет две или четыре фазы распределенные между парами явно выраженных полюсов. Обмотки статора могут иметь центральное ответвление для униполярного управления. Обмотка с центральным ответвлением выполняется с помощью бифилярной намотки.
Гибридный шаговый двигатель (радиальный разрез)
Заметьте что 48 зубьев на одной секции ротора смещены на половину зубцового деления л относительно другой секции (рисунок ниже). Из-за этого смещения ротор фактически имеет 96 перемежающихся полюсов противоположной полярности.
Ротор гибридного шагового двигателя
Зубья на полюсах статора соответствуют зубьям ротора, исключая отсутствующие зубья в пространстве между полюсами. Таким образом один полюс ротора, скажем южный полюс, можно выровнять со статором в 48 отдельных положениях. Однако зуб южного полюса ротора смещен относительно северного зуба на половину зубцового деления. Поэтому ротор может быть выставлен со статором в 96 отдельных положениях.
Соседние фазы статора гибридного шагового двигателя смещены друг относительно друга на одну четверть зубцового деления л. В результате ротор перемещается с шагом в четверть зубцового деления во время переменного возбуждения фаз. Другими словами для такого двигателя на один оборот приходится 2x96=192 шага.
Шаговый гибридный двигатель имеет:
· шаг меньше, чем у реактивного двигателя и двигателя с постоянными магнитами;
· ротор - постоянный магнит с тонкими зубьями. Северные и южные зубья ротора смещены на половину зубцового деления для уменьшения шага;
· полюсы статора имеют такие же зубья как и ротор;
· статор имеет не менее чем две фазы;
· зубья соседних полюсов статора смещены на четверть зубцового деления для создания меньшего шага.
Заключение
В заключении выделим плюсы и минусы шагового двигателя.
К преимуществам эксплуатации шагового двигателя можно отнести:
ѕ В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
ѕ Точное позиционирование - обеспечивает 3 - 5% от установленного шага, которая не накапливается от шага к шагу;
ѕ Обеспечивает высокую скорость старта, реверса, остановки;
ѕ Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
ѕ Для позиционирования шаговому двигателю не требуется обратной связи;
ѕ Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
ѕ Сравнительно меньшая стоимость относительно тех же сервоприводов;
ѕ Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.
К недостаткам применения шагового двигателя относятся:
ѕ Может возникать резонансный эффект и проскальзывание шагового агрегата;
ѕ Существует вероятность утраты контроля из-за отсутствия обратной связи;
ѕ Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
ѕ Сложности управления из-за особенности схемы
Список литературы
1. Исмаилов Ш.Ю. Автоматические системы и приборы с шаговыми двигателями. М.: Издательство Энергия, 1968. 230 с.
2. Карпенко Б. К. Шаговые электродвигатели. М.: 1990. 120 с.
3. Ратмиров В. А., и др. Системы с шаговыми двигателями, М. -- Л., Издательство «Энергия», 1964. 136 с. с черт.
4. Емельянов А.В. Шаговые двигатели. Волгоград, Издательство ВолгГТУ, 2005. 154 с.
Размещено на Allbest.ru
...Подобные документы
Назначение и описание принципа работы шагового двигателя. Структурная блок-схема прибора. Диаграмма подачи импульсов на обмотки в полношаговом режиме. Реализация схемы и модели в программной среде Proteus. Модель устройства управления шаговым двигателем.
курсовая работа [1,6 M], добавлен 16.02.2013Структурная и функциональная схема управления исполнительными устройствами на базе шагового двигателя. Проектирование принципиальной схемы управления шаговым двигателем, описание ее работы и входящих в нее устройств. Составление алгоритма работы системы.
курсовая работа [613,8 K], добавлен 22.09.2012Разработка микропроцессорной системы на основе микроконтроллера, основные этапы и особенности данного процесса. Принципы работы шагового двигателя. Аппаратные средства микроконтроллеров серии AT90S2313. Расчет стоимости сборки и отладки устройства.
дипломная работа [1,4 M], добавлен 11.07.2010Сведения о построение математической модели. Описание тягово-динамических процессов, шагового двигателя, разработка схемы управления. Втягивание и выдвижение штока. Переключение между режимами, формирование управляющих сигналов. Экономия расхода топлива.
курсовая работа [2,7 M], добавлен 13.07.2010Описание фотоколориметра КФК-3: блок-схема, усилитель постоянного тока, стабилизаторы. Разработка блока смены фотофильтров: достоинства и недостатки шагового двигателя, критерии его выбора. Разработка микропрограммного управления сменой светофильтров.
курсовая работа [1,5 M], добавлен 22.09.2011Функциональная и структурная схемы системы. Выбор и расчет исполнительного устройства. Выбор двигателя и расчет параметров передаточной функции двигателя. Расчет регулятора и корректирующего звена. Реализация корректирующего вала электродвигателя.
курсовая работа [273,7 K], добавлен 09.03.2009Построение математических моделей цифро-аналогового преобразователя, исполнительного двигателя, механической передачи, приборного редуктора, тахогенератора. Определение уровня ограничения выходного сигнала регулятора, угла поворота объекта управления.
курсовая работа [1,5 M], добавлен 11.12.2012Датчик индукционный бесконтактный угла поворота. Изобретения, относящиеся к измерительно-преобразовательной технике. Подключение статора к источнику переменного напряжения. Особенности трансформаторного датчика угла поворота с цилиндрическим ротором.
реферат [3,6 M], добавлен 27.07.2009Разработка системы для ручного управления телекамерой. Выбор исполнительного двигателя следящей системы и передаточного отношения редуктора. Определение передаточной функции двигателя и ее параметров. Выбор датчиков углов поворота и схемы их включения.
курсовая работа [1,8 M], добавлен 27.11.2011Определение структуры и параметров объекта управления скоростью асинхронного двигателя с фазным ротором. Расчет его динамических характеристик. Расчет характеристик асинхронного двигателя. Разработка принципиальной схемы и конструкции блока управления.
курсовая работа [416,9 K], добавлен 29.07.2009Векторное управление частотно-регулируемого асинхронного электропривода. Результирующая составляющая токов статора и ротора. Структурная схема управления по вектору потокосцепления ротора. Структурная схема системы двухзонного регулирования скорости.
презентация [231,6 K], добавлен 02.07.2014Принцип действия системы, автоматически наводящей орудие на цель. Технические характеристики системы регулирования. Выбор двигателя и расчет передаточной функции датчика угла поворота. Применение программных корректирующих устройств на микропроцессорах.
курсовая работа [678,4 K], добавлен 20.10.2013Краткий анализ функциональной и принципиальной схем тиристорного электропривода типа ЭТУ-3601Д. Определение и уточнение паспортных данных, конструктивных особенностей и условий работы применяемого двигателя. Выбор трансформатора, расчет его параметров.
курсовая работа [1,9 M], добавлен 03.08.2014Частотные преобразователи используются для управления скоростью вращения трёхфазных асинхронных двигателей. Позволяют сократить энергопотребление устройств с электродвигателями. Обеспечивают защиту двигателя, точно изменяют скорость вращения двигателя.
дипломная работа [1,7 M], добавлен 13.07.2008Составление функциональной и структурной схемы системы дистанционной следящей системы передачи угла поворота. Определение коэффициентов передачи отдельных звеньев. Синтез корректирующего устройства. Переходные характеристики скорректированной системы.
контрольная работа [442,6 K], добавлен 08.02.2013Анализ исходных данных и выбор схемы импульсного управления исполнительным двигателем постоянного тока. Принцип работы устройства. Расчёт генератора линейно изменяющегося напряжения. Построение механической и регулировочной характеристик электродвигателя.
курсовая работа [843,9 K], добавлен 14.10.2009Оптическая телевизионная система сопровождения цели. Выбор исполнительного двигателя следящей системы и передаточного отношения силового редуктора. Анализ принципиальной схемы устройства управления исполнительным двигателем. Выбор силовых транзисторов.
курсовая работа [3,0 M], добавлен 17.11.2012Составление технического паспорта электродвигателя. Построение механических характеристик машины. Выбор преобразователя или станции управления. Построение кривых нагревания и охлаждения электродвигателя. Расчет и выбор провода или кабеля для силовой цепи.
курсовая работа [788,1 K], добавлен 18.12.2014Технические характеристики трехфазного асинхронного двигателя. Разработка схемы управления. Использование аккумуляторной батареи в качестве источника питания. Расчет тепловых режимов ключевых элементов, выбор теплоотвода. Смета затрат на разработку.
дипломная работа [915,9 K], добавлен 20.10.2013Схема солнечной фотоэлектрической установки. Выбор электродвигателя и определение передаточных функций. Моделирование системы автоматического управления средствами MATLAB. Подбор микроконтроллера, драйвера двигателя и датчика уровня освещенности.
курсовая работа [7,0 M], добавлен 11.08.2012