Способы и средства защиты информации от утечки по техническим каналам
Технические средства защиты информации в акустических и вибрационных полях. Способы и средства подслушивания. Способы защиты акустической информации. Характеристика основных способов и средств информационного скрытия речевой информации от подслушивания.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | лекция |
Язык | русский |
Дата добавления | 08.04.2020 |
Размер файла | 483,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Способы и средства защиты информации от утечки по техническим каналам
Технические средства защиты информации в акустических и вибрационных полях
Основные способы и средства защиты акустической информации на открытом пространстве и в помещении.
Пассивные и активные технические средства защиты, их принципы действия и возможности. Основные принципы расчета параметров звукоизоляции.
Методы подавления распространения акустических сигналов по элементам конструкции здания. Генераторы акустического шума. Средства создания акустического шума в объеме помещения.
Средства подавления акустоэлектрических преобразований в аппаратуре. Особенности защиты отходящих линий при наличии акустоэлектрических преобразований в оборудовании объекта.
Способы и средства обнаружения и локализации закладок. Оценка возможностей радиомониторинга при использовании различных методов анализа сигналов.
Возможности нелинейных локаторов при поиске закладок. Применение генераторов шума для подавления излучения радиозакладок. Способы противодействия лазерным средствам подслушивания.
Методические рекомендации по инструментальной оценке эффективности защиты информации от подслушивания.
Организационные меры по скрытию объектов от акустической, гидроакустической и сейсмической разведок. Временные, пространственные и территориальные ограничения. Технические ограничения. Выбор места и времени проведения испытаний.
Способы и средства маскировки. Мероприятия и технические средства по дезинформации и создание помех средствам акустической разведки. Уменьшение мощности и искажение спектра акустических сигналов. Методические рекомендации по оценке эффективности защиты объектов от средств акустической и гидроакустической разведки.
Способы и средства подслушивания
При непосредственном подслушивании акустические сигналы, распространяющиеся от источника звука прямолинейно в воздухе, по воздухопроводам или через различные ограждения (двери, стены, окна и др.) и экраны, принимаются слуховой системой злоумышленника.
Слуховая система человека обеспечивает прием акустических сигналов в диапазоне звуковых (20-20000 Гц) частот, границы которого для разных людей колеблются в широких пределах и изменяются с возрастом. Верхний предел слышимости у молодых людей составляет 16-20 кГц, для пожилых людей он снижается в среднем до 12 кГц. Диапазон интенсивности воспринимаемых ухом звуков очень велик. На частоте 1000 Гц наиболее громкий звук, который человек может вынести, примерно в 1012 интенсивнее самого слабого воспринимаемого звука. Интенсивность звука при таком большом интервале уровней измеряют относительной мерой в дБ, определяемой относительно порога слышимости человеком звука на частоте 1000 Гц. Интенсивность звука человек оценивает как его громкость. Между психологическим восприятием громкости и физической интенсивностью звука нет прямого соответствия. Громкость звука зависит не только от его интенсивности, но и от частоты. При постоянной интенсивности звуки очень высокой и очень низкой частоты кажутся более тихими, чем звуки средней частоты. Порог слышимости слуховой системы на частоте 20 Гц выше порога в диапазоне 2000-5000 Гц примерно на 70 дБ, а на частоте 10000 Гц приблизительно на 15 дБ. Следовательно, максимальная дальность непосредственного подслушивания изменяется в широких пределах в зависимости от спектра звуков говорящего человека.
Уши человека плохо приспособлены для восприятия структурных звуков, распространяющихся в твердой среде. С этой целью используются устройства - стетоскопы, которые передают колебания поверхности твердой среды распространения в слуховые проходы ушей человека. Стетоскопы широко применяются в медицинской практике для прослушивания звуков в теле человека, Они представляет собой один или два гибких звукопровода в виде резиновых или из других синтетических материалов трубок, соединенных с контактной площадкой и передающих звуковое колебание от поверхности твердого тела к ушам человека. Эти звукопроводы локализуют и направляют звуковую волну к ушам человека, а также изолируют ее от акустических помех в окружающем пространстве. Для добывания информации применяются стетоскопы, у которых площадка, контактирующая с твердой поверхностью твердой среды распространения, соединена с мембраной микрофона. Для прослушивания структурных звуков подобный акустоэлектрический преобразователь (датчик) стетоскопа прижимают или приклеивают к поверхности стены или трубы.
Основной недостаток непосредственного подслушивания - малая дальность, составляющая для речи средней (нормальной) громкости единицы и десятки метров в зависимости от уровня шума. На улице города дальность слышимости днем составляет всего несколько метров.
Подслушивание с помощью технических средств осуществляется путем:
- приема и прослушивания акустических сигналов, распространяющихся в воздухе, воде и твердых телах;
- прослушивания речи, выделяемой из перехваченных радио- и электрических сигналов функциональных каналов связи и из сигналов побочных излучений и наводок;
- применения лазерных систем подслушивания;
- использования закладных устройств;
- высокочастотного навязывания.
Конкретный метод подслушивания реализуется с использованием соответствующего технического средства. Для подслушивания применяют следующие технические средства:
- акустические приемники, в том числе с направленными микрофонами;
- приемники опасных сигналов:
- акустические закладные устройства;
- лазерные системы подслушивания:
- устройства подслушивания путем высокочастотного навязывания.
Акустические приемники обеспечивают селекцию акустических сигналов, распространяющихся в атмосфере, воде, твердых телах, преобразуют их в электрические сигналы, усиливают и обрабатывают электрические сигналы и преобразуют их в акустическую волну для восприятия информации слуховой системой человека. Кроме того. электрические сигналы с выхода приемника подаются на аудиомагнитофон для регистрации акустической информации.
Типовая структура акустического приемника приведена на рис. 3.13.
Рис. Структурная схема акустического приемника
а) Микрофоны
Микрофон выполняет функцию акустоэлектрического преобразования и, в основном, определяет чувствительность и диапазон частот принимаемых акустических сигналов. Диаграмма направленности микрофона зависит от его конструкции.
В настоящее время созданы микрофоны, в которых используются для акустоэлектрических преобразований различные физические процессы. Классификация микрофонов приведена на рис. 3.14.
Рис. Классификация микрофонов
Угольный микрофон представляет собой круглую коробочку с гранулированным древесным углем, закрываемую тонкой металлической упругой крышкой - мембраной. К электроду, укрепленному на дне коробочки, и мембране подается напряжение около 60 В, под действием которого в массе угольного порошка протекает электрический ток. Принцип работы угольного микрофона основан на изменении под действием акустической волны сопротивления угольного порошка, находящегося между мембраной и неподвижным электродом. Акустическая волна приводит мембрану микрофона в колебательное движение, вследствие чего изменяется степень сжатия угольного порошка и площадь соприкосновения его гранул друг с другом. В результате этого сопротивление порошка и сила протекающего через него тока изменяются в соответствии с громкостью звука, т. е. производится запись информации путем амплитудной модуляции электрического тока.
Номинальное сопротивление угольного микрофона зависит от зернистости и технологии обработки порошка, тока питания и других факторов. Это сопротивление может составлять у низкоомных микрофонов 35-65 Ом, среднеомных- 65-145 Ом и высокоомных- 145-300 Ом [17]. Угольные микрофоны имеют низкую стоимость, создают без дополнительного усилителя уровни сигналов, достаточные для передачи их на большие (десятки км) расстояния. Однако они узкополосные и нуждаются в мощном источнике тока. Используются в телефонной проводной связи.
Конструкция электродинамических микрофонов аналогична конструкции электродинамического громкоговорителя. Динамические микрофоны относительно просты, надежны в работе, могут работать в широком диапазоне температур и влажности, устойчивы к сотрясениям и широко применяются в различной звукоусилительной и звукозаписывающей аппаратуре.
В электромагнитном микрофоне в результате колебаний мембраны из ферромагнитного материала возникает в обмотке неподвижной катушки с сердечником, по которой протекает постоянный ток. эдс индукции, эквивалентная интенсивности звука.
Конденсаторный микрофон представляет собой капсюль, состоящий из двух параллельно расположенных пластин -- электродов, один из которых массивный, другой - тонкая мембрана. Электроды образуют конденсатор, емкость которого зависит от площади пластин и расстояния между ними. К электродам подводится через резистор поляризующее постоянное напряжение. При воздействии на мембрану звуковых волн изменяются расстояния между электродами и, соответственно, емкость конденсатора. В результате этого через резистор протекает ток, амплитуда которого пропорциональна звуковому давлению на мембрану. При расстоянии между обкладками 20-40 мкм и поляризующем напряжении в несколько десятков вольт чувствительность микрофона достигает 10-20 мВ/Па.
Разновидностью конденсаторного микрофона является электретный микрофон, мембрана которого выполнена из полимерных материалов (смол), способных в сильном электрическом поле и при высокой температуре заряжаться и сохранять электрический заряд продолжительное время. Такие материалы называют электретами. Мембрана из электрета металлизируется, между пластинами после заряда возникает разность потенциалов 45-130 В. Электретные микрофоны не нуждаются во внешнем источнике и широко применяются в звукозаписывающей аппаратуре, в том числе для негласного подслушивания.
Действие пьезоэлектрического микрофона основано на возникновении эдс на поверхности пластинок из пьезоматериала, механически связанных с мембраной. Колебания мембраны под давлением акустической волны передаются пьезоэлектрической пластине, на поверхности которой возникают заряды, величина которых соответствует уровню громкости акустического сигнала.
По направленности микрофоны разделяются на ненаправленные, двухсторонней и односторонней направленности. Направленность микрофона определяется по уровню сигнала на его выходе в зависимости от поворота микрофона по отношению к источнику акустической волны в горизонтальной и вертикальной плоскостях. Ширина диаграммы направленности микрофона оценивается в градусах на уровне 0.5 (0.7) от максимальной мощности (амплитуды) электрического сигнала на его выходе. Чем уже ширина диаграммы направленности микрофона, тем меньше помех попадает на его мембрану из направлений, отличающихся от направления на источник акустического сигнала с информацией. Пространственное ограничение помех повышает отношение сигнал/помеха на мембране микрофона.
Частотные искажения при преобразовании акустической волны в электрический сигнал определяются неравномерностью частотной характеристики микрофона. Она описывается отклонением уровня спектральных составляющих звукового сигнала на выходе преобразователя по отношению к уровню спектральных составляющих входного сигнала.
Для добывания информации особый интерес представляют остронаправленные микрофоны, которые обеспечивают увеличение дальности подслушивания. Узкая диаграмма направленности микрофонов достигается за счет соответствующей конструкции микрофона, которую можно представить в виде акустической антенны с соответствующей диаграммой направленности. Такая диаграмма направленности формируется различными акустическими антеннами, содержащими плоскую, трубчатую и параболическую поверхности. За счет уменьшения ширины диаграммы направленности достигается повышение сигнал/шум на мембране микрофона на 10-20 дБ
Параболическая акустическая антенна представляет собой параболическое зеркало диаметром 20-50 см, в фокусе которого размещается мембрана микрофона.
Трубчатый остронаправленный микрофон состоит из одной трубки длиной 0.3-1 м или набора трубок, длины которых согласованы с длинами волн акустического сигнала. В торце трубок укрепляется мембрана микрофона.
На основе параболической и трубчатой акустических антенн создан, например. градиентный направленный микрофон UM 124.2. который состоит из трубки диаметром 20 мм в поролоновом ветрозащитном чехле, параболического отражателя диаметром 175 мм из акриловой пластмассы и капсюля микрофона. Длина микрофона составляет в зависимости от модификации 150 или 200мм. Ширина диаграммы направленности такого микрофона уменьшена до 30, 20 и 10 градусов (для разных модификаций) [39].
Поверхность плоского направленного микрофона встраивается в стенку атташе-кенса или в жилет, носимый под рубашкой и пиджаком, и передает колебания мембранам микрофонов, укрепленных на плоской поверхности. За счет увеличенной площади поверхности, воспринимающей колебания акустической волны, ширина диаграммы направленности составляет 40-60 градусов. Такой микрофон обеспечивает съем речевой информации на удалении до 50 метров от источника.
Рекламируемые возможности по дальности подслушивания направленных микрофонов (до 500 и более метров) завышаются. В [57] реальная дальность подслушивания речевой информации на улице города при коэффициенте направленного действия микрофона 15 дБ оценивается всего 6-12 м. С учетом имеющихся противоречивых данных предполагается, что максимальная дальность подслушивания разговора с помощью остронаправленных микрофонов может достигать 50-100 м.
По диапазону частот микрофоны разделяются на узкополосные и широкополосные. Узкополосные микрофоны предназначены для передачи речи. Широкополосные микрофоны имеют более широкую полосу частот и преобразуют колебания в звуковом и частично ультразвуковом диапазонах частот.
По способу применения микрофоны разделяются на воздушные, гидроакустические (гидрофоны) и контактные. Контактные микрофоны предназначены для приема структурного звука. Например, контактный стетоскопный микрофон UM 012, прикрепленный к стене помещения, позволяет прослушивать разговоры в соседнем помещении при толщине стен до 50 см. Модификацией контактных микрофонов являются ларингофоны и остеофоны, воспринимающие и преобразующие в электрические сигналы механические колебания (вибрации) связок и хрящей гортани или кости черепа говорящего.
Возможности микрофонов определяются следующими характеристиками:
- осевой чувствительностью на частоте 1000 Гц;
- диаграммой направленности;
- диапазоном воспроизводимых частот колебаний акустической волны;
- неравномерностью частотной характеристики;
- масса-габаритными характеристиками.
Чувствительность - один из основных показателей микрофона и оценивается коэффициентом преобразования давления акустической волны в уровень электрического сигнала. Так как чувствительность микрофона для разных частот акустических колебаний различная, то она определяется на частоте наибольшей чувствительности слуховой системы человека. - 1000 Гц. Измерения проводятся для акустической волны, направление распространения которой перпендикулярно поверхности мембраны, в вольтах или милливольтах на Паскаль (В/Па, мВ/Па). Чувствительность микрофона зависит в основном от параметров физических процессов в акустоэлектрических преобразователях и площади мембраны микрофона.
Чувствительность микрофона повышается с увеличением площади мембраны приблизительно в квадратичной зависимости. Например, чувствительность конденсаторного микрофона с диаметром мембраны 6 мм, составляет 1.5-4 мВ/Па, для диаметра 12 мм-12.5 мВ/Па, а при диаметре 25 мм она увеличивается до 50 мВ/Па.
По конструктивному исполнению микрофоны бывают широкого применения, специальные миниатюрные и специальные субминиатюрные, применяемые в различных закладных устройствах.
Электрические сигналы на выходе микрофонов, используемых для добывания информации, в селективном усилителе обрабатываются и усиливаются до величины, необходимой для их записи с помощью аудиомагнитофона или преобразования в акустический сигнал для обеспечения восприятия информации человеком.
б) Аудиомагнитофоны
Для регистрации акустических сигналов широко применяются магнитофоны с вынесенными и встроенными микрофонами. Аудиомагнитофоны для записи речи называют диктофонами. Диктофоны для скрытного подслушивания имеют пониженные акустические шумы лентопротяжного механизма, металлический корпус для экранирования высокочастотного электромагнитного поля коллекторного двигателя, в них могут отсутствовать генераторы стирания и подмагничивания.
Характеристики некоторых типов миниатюрных магнитофонов, используемых для подслушивания, указаны в табл. 3.8.
Таблица
Тип.фирма |
Размеры..mm |
Вес. г |
Примечание |
||
L400, Olympus |
73х20х52 |
90 |
Запись до 3 ч |
||
L200. Olympus |
107х15х51 |
125 |
Можно носить в наградном кармане |
||
РК 1985. РК Electronic |
55х87х21 |
160 |
Питание 1.5 В. время работы 11 ч, |
||
Sony-909. Sony |
68х65х19 |
- |
В металлическом корпусе. 4 дорожки |
||
AD, Knowledge Express |
65х102х17 |
108 |
Запись на удалении до 15 м |
||
TP-X900, Aiwa |
167х94х43 |
315 |
Шифрование при записи |
Запись речи в диктофонах производится на микрокассете со скоростью 2.4 или 1.2 см/с, длительность записи в зависимости от скорости и типа кассеты составляет от 15 мин. до 3-х часов. Различные модели диктофонов могут иметь сервисные функции: активация (включение) записи голосом, возможность подключения внешнего микрофона, автостоп и автореверс, жидкокристаллический дисплей с индикацией режимов работы и расхода ленты.
в) Приемники опасных сигналов
Для приема опасных сигналов, несущих речевую конфиденциальную информацию, используют как бытовые, так и специальные приемники радио и электрических сигналов. Однако возможности бытовой радиоприемной аппаратуры ограничены узким диапазоном частот, выделенной для радиовещания. В диапазоне длинных волн и средних волн радиовещание осуществляется в интервале 148-1607 кГц, а в ультракоротком диапазоне - 64-108 Мгц.
Все более широкое распространение для подслушивания применяют сканирующие приемники, рассмотренные выше.
Для выделения, приема, усиления опасных электрических сигналов, распространяющихся по телефонным, радиотрансляционным и другим линиям, применяются селективные и специальные усилители низкой частоты. Специальные усилители содержат селективные элементы для выделения, например. опасных сигналов из сигналов электропитания, датчики для дистанционного съема сигналов, а также имеют конструкцию, удобную для переноса и автономной работы в различных условиях скрытного подслушивания.
г) Закладные устройства
С целью обеспечения реальной возможностью скрытного подслушивания и существенного повышения его дальности широко применяются закладные устройства (закладки, радиомикрофоны, «жучки», «клопы»). Эти устройства перед подслушиванием скрытно размещаются в помещении злоумышленниками или привлеченными к этому сотрудниками организации, проникающими под различными предлогами в помещение. Такими предлогами могут быть посещения руководства или специалистов посторонними лицами с различными предложениями, участие в совещаниях, уборка, ремонт помещения и технических средств и т. д.
Закладные устройства в силу их большого разнообразия конструкций и оперативного применения создают серьезные угрозы безопасности речевой информации во время разговоров между людьми практически в любых помещениях, в том числе в салоне автомобиля.
' Разнообразие закладных устройств порождает многообразие их вариантов их классификаций. Вариант классификации указан на рис. 3.15.
Рис. Классификации закладных устройств
По виду носителя информации от закладных устройств к злоумышленнику их можно разделить на проводные и излучающие закладные устройства. Носителем информации от проводных закладок является электрический ток, который распространяется по электрическим проводам. Проводные закладки, содержащие микрофон для преобразования акустических речевых сигналов в электрические, относятся к акустическим закладным устройствам, а ретранслирующие электрические сигналы с речевой информации, передаваемые по телефонной линии, образуют группу проводных телефонных закладок.
Проводные акустические закладки представляют собой:
- субминиатюрные микрофоны, скрытно установленные в бытовых радио- и электроприборах, в предметах мебели и интерьера и соединенные тонким проводом с микрофонным усилителем или диктофоном, размещаемыми в других помещениях;
- миниатюрные устройства, содержащие микрофон, усилитель и формирователь сигнала, передаваемого, как правило, по телефонным линиям и цепям электропитания.
Проводные акустические закладки в виде микрофона имеют высокую чувствительность и помехоустойчивость, но наличие провода демаскирует закладки и усложняет их установку, в особенности в условиях дефицита времени. Поэтому такие закладки могут устанавливаться во время ремонта или в помещениях с возможностью достаточно простого и длительного доступа в них людей, например, в номера гостиниц. Закладки, использующие цепи электропитания, размещаются, в основном, в местах подключения проводов электропитания к выключателям и сетевым розеткам.
Излучающие закладные устройства лишены недостатков проводных, но у них проявляется другой демаскирующий признак - излучения в радио- и оптическом диапазонах. В зависимости от вида первичного сигнала радиозакладки можно разделить на аппаратные и акустические. Аппаратные закладки устанавливаются в телефонных аппаратах, ПЭВМ и других радиоэлектронных средствах. Входными сигналами для них являются электрические сигналы, несущие речевую информацию (в телефонных аппаратах), или информационные последовательности, циркулирующие в ПЭВМ при обработке конфиденциальной информации. В таких закладках отсутствует микрофон, что упрощает их конструкцию, и имеется возможность использования для электропитания энергию средства, в котором установлена закладка.
Наиболее широко применяются акустические радиозакладки, позволяющие сравнительно просто и скрытно устанавливать их в различных местах помещения. Простейшая акустическая закладка содержит (см. рис. 3.16) следующие основные устройства: микрофон, микрофонный усилитель, генератор несущей частоты, модулятор, усилитель мощности, антенну.
Микрофон преобразует акустический сигнал с информацией в электрический, который усиливается до уровня входа модулятора. В модуляторе производится модуляция колебания несущей частоты, т. е. производится перезапись информации на высокочастотный сигнал. Для обеспечения необходимой мощности излучения модулированный сигнал усиливается в усилителе мощности. Излучение радиосигнала в виде электромагнитной волны осуществляется антенной, как правило, в виде отрезка провода.
Рис. Схема акустической закладки
В целях сокращения веса, габаритов и энергопотребления в радиозакладке указанные функции технически реализуются минимально возможным количеством активных и пассивных элементов. Простейшие закладки содержат всего один транзистор.
По диапазону частот закладные устройства отличаются большим разнообразием. На ранних этапах использования закладных устройств частоты излучений их привязывали к частотам бытовых радиоприемников в УКВ-диа-пазоне. При массовом появлении у населения бытовых радиоприемников увеличилась опасность случайного перехвата сигналов радиозакладок посторонними лицами. Поэтому большинство типов современных закладок имеют более высокие частоты в УВЧ-диапазоне.
Для более 96% радиозакладок рабочие частоты сосредоточены в интервале 88-501 МГц, причем с частотами 92.5-169.1 МГц выпускаются 42% радиомикрофонов, а с частотами 373.4-475.5 МГц - 52% радиомикрофонов [50]. Наиболее интенсивно используется диапазон частот 449.7-475.5 МГц. в котором сосредоточены рабочие частоты 36% образцов.
Продолжается тенденция дальнейшего повышения частот, в том числе с переходом в ГГц диапазон. С увеличением частоты передатчика уменьшается уровень помех, что позволяет снизить мощность передатчика и, соответственно, его габариты, а также длину антенны.
В интересах повышения скрытности для излучающих закладных устройств осваивается ИК-диапазон. Однако в силу большего по сравнению с радиоволнами затухания ИК-лучей в среде распространения и необходимостью прямой видимости между излучателем ИК-закладки и фотоприемником злоумышленника применение подобных закладных устройств ограничено.
Кроме диапазона частот на условия передачи закладкой информации влияет стабильность частоты ее передатчика. Для простых схемных решений передатчика закладки значения его частоты изменяются в значительных пределах в зависимости от температуры и питающего напряжения. Величина дрейфа рабочей частоты радиозакладок может достигать единиц МГц. В результате этого радиоприемник, настроенный на частоту радиозакладкн, через некоторое время «теряет» радиосигнал. Это обстоятельство имеет важное значение для обеспечения автоматического приема сигналов радиозакладок, например, в случае, когда подслушивание производится аппаратурой в автомобиле при отсутствии в нем оператора. Частоты около половины предлагаемых на рынке радиозакладок стабилизируются.
Повышение стабильности частоты излучения обеспечивается путем:
применения в колебательном контуре генератора элементов со слабой температурной зависимостью, температурной компенсации, стабилизации питающих напряжений, включения в колебательный контур элементов, стабилизирующих его частоту.
В закладных устройствах «мягкая» стабилизация со стабильностью частоты 10 -10' достигается схемотехническими решениями (стабилизацией напряжения, температурной компенсацией и др.). Для большей стабильности частоты передатчика («жесткой», со стабильностью Ю^-КТ6) в качестве стабилизирующих элементов используются пластины кристалла кварца. Частота стабилизации зависит от вида среза кристалла кварца, толщины и размеров его пластины, включенной в цепь генератора. Стабилизация частоты излучения радиозакладки усложняет ее схему и увеличивает габариты передатчика. но существенно улучшает удобство работы.
Другой проблемой, возникающей при применении закладных устройств, является обеспечение их энергией в течение времени подслушивания. Возможности современной микроэлектроники по созданию миниатюрных закладных устройств ограничиваются, в основном, масса-габаритными характеристиками автономных источников питания (химических элементов). Микрогабаритные источники тока. широко применяемые в электронных часах, обеспечивают работу закладных устройств в течение короткого времени (десятков часов при минимально-допустимой мощности излучений для дальности до сотни метров). Для закладных устройств используются гальванические элементы с высокой удельной энергией - ртутно-цинковые, серебряные и литиевые. Усредненные характеристики этих элементов приведены в табл 3.9 [73].
Таблица
Тип Элемента |
Рабочее напряжение. В |
Максимальная емкость. Ач/кг |
Плотность энергии- Втч/кг |
Срок хранения. лет |
|
Ртутный |
1 2-1 25 |
185 |
120 |
3 |
|
Серебряный |
1.5 |
285 |
130 |
25 |
|
Литиевый |
3 |
750 |
350 |
5 |
Емкость гальванического элемента пропорциональна его габаритам и весу.
Наиболее распространены ртутно-цинковые элементы. В них в качестве анода используются оксид ртути (HgO), катода - смесь порошка ртути и цинка или сплава индия с титаном, а электролит представляет собой 40% щелочь. Для малогабаритных приборов отечественной электропромышленностью созданы элементы РЦ-31С, РЦ-33С и РЦ-55УС с удельной энергией 600-700 кВт/м3. Электрические параметры ряда отечественных ртутно-цинковых элементов и батарей, предназначенных для питания малогабаритных радиоэлектронных устройств, указаны в табл. 3.12.
Таблица
Обозначение |
Напряжение. В |
Емкость. Ач |
Ток разряда. мА |
Габариты. MM |
Масса. Г |
|
РЦ-31 |
1.25 |
0.07 |
1 |
11.5х3.6 |
1.3 |
|
РЦ-53 |
1.25 |
0.25 |
10 |
15 6\6 3 |
4.6 |
|
РЦ-55 |
1.25 |
0.5 |
10 |
15.6х125 |
9.5 |
|
РЦ-57 |
1.25 |
1.0 |
20 |
16\17 |
15 |
|
РЦ-59 |
1.25 |
3.0 |
60 |
16\50 |
44 |
|
РЦ-85 |
1.22 |
2.5 |
50 |
30 1\14 |
39.5 |
|
РЦ-93 |
1.25 |
13.0 |
300 |
31х60 |
170 |
|
2РЦ-55с |
2.68 |
0.45 |
10 |
162х27 |
20 |
|
3 РЦ-55 с |
4.02 |
0.45 |
10 |
16.2х40 |
30 |
|
4РЦ-55с |
5.36 |
045 |
10 |
162\53 |
40 |
|
5РЦ-55с |
6.7 |
0.45 |
10 |
16.2\66 |
50 |
|
6РЦ-63 |
7.2 |
0.6 |
10 |
23х48 |
71 |
Среди гальванических источников тока зарубежного производства широкое применение находят элементы фирм Duracell. Varta, Kodak. Технические характеристики малогабаритных гальванических элементов фирмы Duracell приведены в табл. 3.13 [74].
Таблица
Тип |
Напряжение. В |
Номинальная емкость. Ач |
Диаметр. MM |
Высота, MM |
|
D392 |
1.5 |
0.05 |
7.9 |
3.6 |
|
D391 |
1.5 |
0.05 |
11.6 |
2.1 |
|
D389, D390 |
1.5 |
0.08 |
11.6 |
3.1 |
|
D386 |
1.5 |
0.12 |
11.6 |
4.2 |
|
D357H/10L14 |
1.5 |
0.17 |
11.6 |
5.4 |
|
LR54 |
1.5 |
0.04 |
11.6 |
3.0 |
|
L.R43 |
1.5 |
0.08 |
11.6 |
4.2 |
|
LR44 |
1.5 |
0.10 |
11.6 |
5.4 |
|
DL2016 |
3.0 |
0.07 |
20.0 |
1.6 |
|
DL2032 |
3.0 |
0.18 |
20.0 |
3.2 |
Увеличение времени эксплуатации и повышение скрытности работы закладного устройства достигается путем автоматического подключения к источнику питания наиболее энергоемкого узла радиозакладки - передатчика. В первом варианте в закладке устанавливается специальное устройство -акустический автомат (акустоавтомат), подключающее к источнику питания передатчик при появлении на мембране микрофона акустического сигнала. В тишине в ночное время во включенном состоянии (в «дежурном» режиме) находится лишь микрофонный усилитель с исполнительными электронным реле. При возникновении в помещении акустических сигналов от разговаривающих людей реле по сигналу от микрофонного усилителя подключает передатчик и закладное устройство излучает радиосигналы с информацией. После прекращения разговора исходное состояние реле восстанавливается и излучение прекращается.
Во втором варианте закладные устройства дистанционно включаются на излучение по внешнему радиосигналу, подаваемому злоумышленником. Эти закладные устройства обеспечивают повышенную скрытность и более длительное время работы. Однако для их эффективного применения надо иметь дополнительный канал утечки сведений о времени циркулирования конфиденциальной информации в помещении, где установлено закладное устройство. Например, надо достаточно точно знать время, когда будут вестись в помещении конфиденциальные разговоры. Так как дистанционно управляемые закладки содержат устройство для приема управляющих радиосигналов, то они наиболее сложные и, следовательно, дорогие.
Рациональным решением задачи обеспечения закладных устройств электропитанием является подключение их к устройствам питания радио и электроприборов, в которые устанавливаются закладки. Широко применяются подобные закладные устройства в телефонных аппаратах, закамуфлированные под их элементы (конденсаторы, телефонные капсюли и др.), в тройниках для подключения нескольких приборов к одной розетке электросети. По оценке, приведенной в [50]. в 75% закладных устройств используется автономное (батарейное) питание, 8% - питание от сети и 17% - питание от телефонной линии.
Следует отметить, что применяются, пока редко, также пассивные закладки, - без собственных источников электропитания. Для активизации они облучаются внешним электромагнитным полем на частоте, соответствующей резонансной частоте колебательного контура закладки, образованного элементами ее конструкции. Модуляция радиосигнала производится в результате воздействия акустической волны на частотозадающие элементы конструкции закладки.
Жесткие требования к габаритам, массе, энергопотреблению закладных устройств ограничивают мощность излучения их передатчиков. Наиболее часто (более 80%) применяются радиомикрофоны, мощность излучения которых находится в интервале 3-11 мВт, закладки с более высокой мощностью - до 22 мВт составляют менее 10% [50]. Встречаются закладки и большей мощности излучения (до 200 мВт и более), однако их доля крайне незначительна. Малая мощность излучения передатчиков радиозакладок определяет относительно небольшую дальность приема их сигналов. Около 75% образцов обеспечивает функционирование канала на расстояниях 50-350м, 16% - на расстояниях 460-600 м, 7% - на расстояниях 740-800м и только около 2% - на расстояние до 1000 и более метров.
В общем случае технические данные закладных устройств находятся в следующих пределах [29]:
- частотный диапазон - 27-900 МГц;
- мощность - 0.2-500 мВт;
- дальность - 10-1500 м;
- время непрерывной работы - от нескольких часов до нескольких лет;
- габариты -1 -8 дм';
- вес - 5-350 г.
Основная проблема оперативного применения закладных устройств заключается в рациональном размещении их в помещении или в радиоэлектронном средстве. Рациональность достигается при обеспечении:
- поступления на вход закладки сигнала с уровнем, необходимым для качественной передачи звуковой или иной информации;
- скрытности размещения и работы закладки, по крайней мере. в течение времени подслушивания интересующей злоумышленника информации.
Эффективность выполнения этих условий зависит от удаленности места установки закладки от источников звука и наличия между ними звукопоглощающих и звукоизолирующих экранов, от чувствительности микрофона, размеров и параметров акустики, прежде всего, от времени реверберации помещения и времени, которым располагает злоумышленник для установки. Чувствительность современных малогабаритных микрофонов обеспечивает достаточно качественный прием акустических сигналов на удалении до 10-15 м при отсутствии экранов на пути распространения акустической волны.
Установка закладных устройств возможна с заходом злоумышленника в помещение, где производится их размещение, или без захода. Первый вариант позволяет более рационально разместить закладку как с точки зрения энергетики, так и скрытности, но связана с повышенным риском для злоумышленника. Поэтому в случаях, когда создаются предпосылки для дистанционной (беззаходовой) установки закладки, их забрасывают в помещение или ими выстреливают из пневматического ружья или лука. Например, комплект PS фирмы Sipe Electronic состоит из специального бесшумного пневматического пистолета с прицельным расстоянием 25 м и радиозакладкой, укрепленной на стреле. Стрела после выстрела надежно прикрепляется с помощью присоски к поверхностям, из металла, дерева, пластмассы, бетона и других гладких С1роительных и облицовочных материалов. Микрофон обеспечивает съем речевой информации с расстояния до 10 м, а передатчик - ее передачу на расстояние до 100 м.
Несмотря на сравнительно малые размеры и вес закладных устройств они могут быть обнаружены при тщательном визуальном осмотре помещения. С целью продления времени их оперативного использования, а также приближения микрофонов к источнику звука закладные устройства камуфлируют под предметы, не вызывающие подозрение у окружающих людей. Трудно назвать предметы личного пользования, средства оргтехники, средства бытовой радиоэлектроники, в которые не устанавливались бы различные устройства для подслушивания. Некоторые из таких средств подслушивания приведены в табл. 3.14.
Таблица
Наименование |
Тип. фирма |
Характеристики |
|
Радиопередатчики в |
ELECTRONIC: |
||
стакане |
РК535 |
65х100 мм, 210г. солнечные батареи |
|
пепельнице |
PK565-S |
90х45 мм. 480 г. солнечные батареи |
|
подсвечнике |
РК580 |
100\175 мм. 650 г. солнечные батареи |
|
калькуляторе |
PK620-S |
135\100 мм. Радиус действия 150-200 м |
|
розетке |
РК550 |
140\60\40 мм. 380 г. дальность до 600 м |
|
Настольной зажигалке |
РК575 |
80\32х52 мм. 150г. время работы до 80 ч |
|
гвозде |
РК520 |
35\6 мм. 96 г. 36 часов, до 200 м |
|
шариковом ручке |
РК585 |
135х11 мм. 25 г. 6 часов, до 300 м |
|
часах |
PK1025-S |
88s 108 или 130s 150 МГц. 6 часов. |
|
ремне |
PK850-S |
139 МГц. до 800м |
|
Радиопередатчик- в запонках булавке для галстука |
STG4140.STG |
15-150 МГц. мощность 5 мВт. |
|
Радиопередатчик в видеокассете |
UM 007.3. SMIRAB ELECTRONIC |
136-146 МГц. до 300м. время непрерывной работы 3 суток |
|
Магнитофон в книге |
РК660. El-ECTRONIC |
200х250\65 мм. 1200г. время записи 2\90 мин. |
|
Магнитофон в пачке сигарет |
РК1985. ELECTRONIC |
55\87\21 мм 160г. время работы 11ч. |
д) Средства лазерного подслушивания
Лазерное подслушивание является сравнительно новым способом подслушивания (первые рабочие образцы появились в 60-е годы), и предназначено для съема акустической информации с плоских вибрирующих под действием акустических волн поверхностей. К таким поверхностям относятся, прежде всего, стекла закрытых окон.
Система лазерного подслушивания состоит из лазера в инфракрасном диапазоне и оптического приемника. Лазерный луч с помощью оптического прицела направляется на окно помещения, в котором ведутся интересующие злоумышленника разговоры. При отражении лазерного луча от вибрирующей поверхности происходит модуляция акустическим сигналом угла отраженного луча лазера или его фазы.
В варианте угловой модуляции вектор отраженного от колеблющейся поверхности стекла меняется в соответствии с амплитудой акустической волны. Отраженный луч принимается оптическим приемником, размещаемым в соответствии с углом отражения. Положение светочувствительного элемента (фотокатода) оптического приемника юстируется таким образом, чтобы пятно отраженного лазерного луча при отсутствии колебаний стекла освещало половину экрана. В этом случае изменения направления отраженного луча при колебаниях стекла вызывают соответствующие изменения площади пятна света на фотокатоде оптического приемника и появление в светочувствительном слое модулированного по амплитуде электрического сигнала. Сигнал после усиления прослушивается и записывается на магнитную ленту. На практике юстировка производится по субъективной оценке оператором разборчивости речи.
Второй вариант построения системы лазерного подслушивания предусматривает реализацию в оптическом приемнике фазовой демодуляции путем сравнения фаз облучающего и отраженного лучей. С этой целью исходный луч с помощью полупрозрачного зеркала расщепляется на два луча. Одним из них облучается стекло, другой направляется к приемнику в качестве опорного. В точке приема в результате интерференции опорного и отраженного лучей на поверхности светочувствительного слоя в нем возникают электрические заряды, величина которого соответствует разности фаз лучей. Этот вариант обеспечивает более высокую чувствительность системы подслушивания, но сложнее в реализации.
Примером системы лазерного подслушивания является система РК-1035 фирмы РК Electronic. Система состоит из лазерных передатчика и приемника, магнитофона для записи перехваченной информации. Передатчик и приемник системы устанавливаются на треноге. Лазерный передатчик имеет размеры 65х250 мм, вес 1.6 кг, мощность - 5 мВт. длина волны излучения- 850 мкм. Лазерный приемник имеет размеры 65х260 мм. вес 1.5 кг. Электропитание -- от сети и автономное.
Данные о возможностях систем лазерного подслушивания противоречивые. В рекламных материалах дальность указывается для разных систем от сотен метров до км. Однако без ссылки на уровень внешних акустических Шумов эти величины можно рассматривать как потенциально достижимые в идеальных условиях. В городских условиях, когда принимаются дополнительные меры по звукоизоляции помещений от шума улицы, дальности будут существенно меньшими. Следует также иметь ввиду сложность практической установки излучателя и приемника, при которых обеспечивается попадание зеркально отраженного от стекла невидимого лазерного луча на фото-приемник. Уровни же диффузно отраженных от стекла лучей столь малы, что их не удается принять на фоне городских акустических шумов. Кроме того, следует отметить, что соотношение между стоимостью системам лазерного подслушивания и затрат на эффективную защиту от них не в пользу рассматриваемого метода добывания информации.
Следовательно, системы лазерного подслушивания, несмотря на их достаточно высокие потенциальные возможности, имеют ограниченное реальное применение, в особенности разведкой коммерческих структур.
е) Средства высокочастотного навязывания
Добывание речевой информации путем высокочастотного навязывания достигается в результате дистанционного воздействия высокочастотным электромагнитным полем или электрическими сигналами на элементы, способные модулировать их информационные параметры первичными электрическими или акустическими сигналами с речевой информацией. В качестве таких элементов могут использоваться различные полости с электропроводной поверхностью, представляющие собой высокочастотные контура с распределенными параметрами и объем которых меняется под действием акустической волны. Если частота такого контура совпадает с частотой высокочастотного навязывания, а поверхность полости находится под воздействием акустической информацией, то эквивалентный контур переизлучает и модулирует внешнее поле.
Более часто в качестве модулирующего применяется нелинейный элемент, в том числе в схеме телефонного аппарата. В этом случае высокочастотное навязывание обеспечивается подведением к телефонному аппарату высокочастотного гармонического сигнала путем подключения к телефонному кабелю высокочастотного генератора. В результате взаимодействия высокочастотного колебания с речевыми сигналами на нелинейных элементах телефонного аппарата происходит модуляция высокочастотного колебания речевым низкочастотным сигналом. Модулированные высокочастотные сигналы могут быть перехвачены приемником злоумышленника
Способы защиты акустической информации
Способы и средства противодействия подслушиванию направлены, прежде всего, на предотвращение утечки информации в акустическом (гидроакустическом, сейсмическом) каналах. Кроме того, для повышения дальности подслушивания применяются составные каналы утечки информации, содержащие наряду с акустическими также радиоэлектронные (с использованием закладных устройств) и оптические (с лазерными микрофонами). Поэтому защита информации от подслушивания включает способы и средства блокирования любых каналов, с помощью которых производится утечка акустической информации.
В соответствии с общими методами защиты информации для защиты от подслушивания применяются следующие способы:
1) информационное скрытие, предусматривающее:
- техническое закрытие и шифрование семантической речевой информации в функциональных каналах связи;
- дезинформирование;
2) энергетическое скрытие путем:
- звукоизоляции акустического сигнала;
- звукопоглощения акустической волны;
- глушения акустических сигналов;
- зашумления помещения или твердой среды распространения другими широкополосными звуками (шумами, помехами), обеспечивающими маскировку акустических сигналов;
3) обнаружение, локализация и изъятие закладных устройств.
Способы и средства информационного скрытия речевой информации от подслушивания
информация прослушивание защита акустический
Информационное скрытие речевой информации обеспечивается техническим закрытием (аналоговым скремблированием) и шифрованием сигналов речевой информации, передаваемых по кабелям и радиоканалам.
При аналоговом скремблировании изменяются характеристики исходного речевого сообщения таким образом, что преобразованное сообщение становится нераспознаваемым «на слух», но занимает ту же частотную полосу. Это позволяет передавать скремблированные сигналы по обычным коммерческим телефонным каналам связи..
Классификация способов технического закрытия приведена на рис. 8.1.
В скремблере, реализующем инверсию спектра и называемым также маскиратором, осуществляется преобразование речевого спектра путем поворота частотной полосы речевого сигнала вокруг некоторой средней точки спектра f0 (рис. 8.2). В этом случае достигается эффект преобразования низких частот в более высокие и наоборот.
Этот способ обеспечивает невысокий уровень закрытия, так как при перехвате достаточно легко определяется значение частоты fo инверсии спектра речевого сигнала.
F min F0 F max F min F0 F max
а) исходный сигнал б) исходный сигнал
В скремблере. выполняющего частотные перестановки, спектр исходного речевого сигнала разделяется на несколько частотных полос равной ширины (в современных моделях число полос может достигать 10-15). производится их перемешивание по некоторому алгоритму - ключу (рис. 8.3). При приеме спектр сигнала восстанавливается в результате обратных процедур.
1 2 3 4 5 3 5 2 4 1
а). Исходный сигналб) Преобразованный сигнал
Рис. 8.3. Принципы частотной перестановки
Изменение ключа в ходе сеанса связи в скремблерах с динамическим закрытием позволяет повысить степень закрытия, но при этом требуется передача на приемную сторону сигналов синхронизации, соответствующих моментам смены ключа.
Другие виды преобразования носителя речевой информации реализуют временные способы технического закрытия с более высоким уровнем зашиты информации. Инверсия кадра обеспечивается путем предварительного запоминания в памяти передающего скремблера отрезка речевого сообщения (кадра) длительностью Тк и считывание его (с передачей в телефонную линию) с конца кадра - инверсно. При приеме кадр речевого сообщения запоминается и считывается с устройства памяти в обратном порядке, что обеспечивает восстановление исходного сообщения. Для достижения неразборчивости речи необходимо, чтобы продолжительность кадра была не менее 25П мс. В этом случае суммарная продолжительность запоминания и инверсной
передачи кадра составляет примерно 500 мс, что может создать заметные задержки сигнала при телефонном разговоре.
В скремблерах с временной перестановкой кадр речевого сообщения делится на отрезки (сегменты) длительностью каждый. Последовательность передачи в линию сегментов определяется ключом, который должен быть известен приемной стороне (рис. 8.4).
Изменением ключа в ходе сеанса связи в скремблерах с динамическим закрытием можно существенно повысить уровень защиты речевой информации. Остаточная разборчивость зависит от длительности кадра и с увеличением последнего уменьшается.
Вследствие накопления информации в блоке временного преобразования появляется задержка между поступлением исходного речевого сигнала в передатчик и восстановлением его в приемнике. Эта задержка неприятно воспринимается на слух, если превышает 1-2 с. Поэтому Тк выбирают равной (4-16)
Используя комбинацию временного и частотного скремблирования, значительно повышают степень закрытия речи.
В комбинированном (частотно-временном) скремблере исходное сообщение разделяется на кадры и сегменты, которые запоминаются в памяти скремблера. При формировании передаваемого сообщения производятся временные перестановки сегментов кадра и перестановки полос спектра речевого сигнала каждого сегмента. Если при этом обеспечить динамическое изменение ключа временной и частотной перестановки, то уровень защиты такого комбинированного технического закрытия может не уступать цифровому шифрованию. Однако сложность реализации такого способа и требования к качеству передачи синхроимпульсов между скремблерами телефонных абонентов также высоки.
К достоинствам наиболее широко используемых скремблеров относится простота технической реализации и, как следствие, низкая стоимость и малые габариты, а также возможность их эксплуатации практически на любых каналах связи, предназначенных для передачи речевых сообщений. Основной
недостаток простых скремблеров - относительно низкая стойкость закрытия информации. Кроме того, скремблеры, за исключением простейшего (с частотной инверсией), вносят искажения в восстановленный речевой сигнал. Границы частотных полос и временных сегментов нарушают целостность исходного сигнала, что приводит к появлению внеполосных составляющих. Нежелательное влияние оказывают и групповые задержки составляющих речевого сигнала.
Однако, несмотря на указанные недостатки, методы временного и частотного скремблирования, а также их различные комбинации, исключают понимание речевой информации на «слух». Для восстановления речи требуется запись закрытого сообщения на аудио магнитофон, длительная и трудоемкая работа с использованием дорогостоящей аппаратуры. Поэтому аналоговое скремблированные успешно используется в коммерческих каналах связи для защиты конфиденциальной информации.
Альтернативой скремблированию является цифровое шифрование речевых сигналов, предварительно преобразованных в цифровую форму. При аналого-цифровом преобразовании амплитуда сигнала измеряется через равные промежутки времени, называемые шагом дискретизации. Для того чтобы цифровой речевой сигнал имел качество не хуже телефонного, шаг дискретизации не должен превышать 160 мкс. а количество уровней квантования амплитуды речевого сигнала - не менее 128. В этом случае один отсчет амплитуды кодируется 7 битами, скорость передачи превышает 43 кбит/с, а ширина спектра дискретного двоичного сигнала равна сумме полос 14 стандартных телефонных каналов.
Для передачи речи в цифровой форме по стандартному телефонному каналу необходимо резко сократить полосу речевого сигнала. Эта проблема решается в устройстве, называемом вокодером. В передающей части вокодера из речевого сигнала выделяются медленно изменяющиеся информационные параметры спектра речи, основной тон вокализованных (звонких) звуков и переходы тон-шум глухих звуков.
Вокодеры различаются в зависимости от выделяемых параметров. Распространены полосные вокодеры и вокодеры с линейным предсказанием.
В полосном вокодере анализируется форма речевого сигнала с периодом анализа 10-30 мс, выделяются и передаются по телефонному каналу в цифровом виде: значения амплитуд ограниченного числа частотных полос спектра речевого сигнала, величины периода основного тона для вокализованных звуков и решение тон/шум, соответствующее наличию или отсутствию вокализованного участка в речевом сигнале. В приемном вокодере синтезируются звуки с переданными параметрами.
В большинстве практических случаев анализ речевых сигналов проводится с периодом 20 мс для 16-20 частотных полос, выделяемых полосовыми фильтрами, а параметры речи по телефонному каналу передаются со скоростью 2400 бит/с. При снижении требований к качеству синтезированной речи скорость передачи речевой информации может быть уменьшена до 1200-1800 бит/с.
В вокодерах с линейным предсказанием исходный речевой сигнал аппроксимируется кусочно-линейной функцией, каждый текущий отчет которой является линейной функцией п предыдущих отчетов. В этих вокодерах речевая информация передается величиной амплитуды, значениями коэффициентов линейного предсказания, периодом основного тона и решением о тоне или шуме. Скорость передачи речевой информации в широко распространенных вокодерах с линейным предсказанием для n=10 составляет 2400 бит/с, но существует возможность снижения ее до 800 бит/с и менее с допустимой потерей качества речи.
Вокодеры для телефонной закрытой связи со скоростью передачи 4800 бит/с обеспечивают слоговую разборчивость до 93% (словесная разборчивость достигает 99%) при удовлетворительной узнаваемости абонента. В телефонных каналах низкого качества скорость информационного потока на выходе вокодера снижают до 2400 бит/с при сохранении хорошей разборчивости, но низкой узнаваемости голоса абонента.
...Подобные документы
Способы и средства защиты речевой информации от утечки по техническим каналам. Аппаратура и организационные мероприятия по защите речевой информации. Обоснование установки двойных дверей и заделки имеющихся в окнах щелей звукопоглощающим материалом.
курсовая работа [2,5 M], добавлен 20.06.2014Создание системы защиты речевой информации на объекте информатизации. Пути блокирования акустического, акусто-радиоэлектронного, акустооптического, радиоэлектронного каналов утечки данных. Технические средства защиты информации от подслушивания и записи.
курсовая работа [2,3 M], добавлен 06.08.2013Управление доступом как основной метод защиты информации регулированием использования всех информационных ресурсов, его функции. Этапы поиска закладных устройств для предотвращения утечки речевой информации по акустическому и виброакустическому каналам.
реферат [18,7 K], добавлен 25.01.2009Разработка проекта технической составляющей системы защиты речевой информации от утечки по техническим каналам в помещениях, предназначенных для проведения собраний совета директоров, служебных переговоров с клиентами, рабочих закрытых совещаний.
курсовая работа [436,8 K], добавлен 05.02.2013Характеристика инженерно-технической защиты информации как одного из основных направлений информационной безопасности. Классификация демаскирующих признаков объектов защиты, способы их защиты и обнаружения. Сущность и средства процесса защиты объекта.
реферат [37,0 K], добавлен 30.05.2012Актуальность защиты информации от утечек по электромагнитному каналу. Пассивные и активные способы защиты речевой информации в выделенных помещениях. Технология виброакустической маскировки. Проектирование системы защиты информации на предприятии.
презентация [2,0 M], добавлен 17.05.2016Анализ вероятных способов и средств наблюдения, подслушивания информации. Моделирование каналов утечки сведений, ранжирование видов угроз в кабинете руководителя. Использование системы видеоконтроля и контрольно-пропускного пункта с целью защиты объектов.
контрольная работа [1,9 M], добавлен 21.04.2011Объекты защиты информации. Технические каналы утечки информации. Экранирование электромагнитных волн. Оптоволоконные кабельные системы. Особенности слаботочных линий и сетей как каналов утечки информации. Скрытие информации криптографическим методом.
реферат [937,8 K], добавлен 10.05.2011Меры противодействия информационным угрозам. Акустические и виброакустические каналы утечки речевой информации. Разновидности радиолокационной разведки. Классификация методов и средств защиты информации от радиолакационных станций бокового обзора.
презентация [88,0 K], добавлен 28.06.2017Технические способы, применяемые для недопущения несанкционированных подключений. Активные методы защиты от утечки информации по электроакустическому каналу. Основные способы передачи пакетов с речевой информацией по сети в IP-телефонии, их шифрование.
реферат [17,6 K], добавлен 25.01.2009Описание выявленных функциональных каналов утечки информации. Методологические подходы к оценке эффективности защиты речевой информации. Расчет возможности существования естественного акустического канала утечки информации по методу Н.Б. Покровского.
курсовая работа [3,6 M], добавлен 06.08.2013Задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации. Способы их воздействия на объекты защиты информации. Традиционные и нетрадиционные меры и методы защиты информации. Информационная безопасность предприятия.
курсовая работа [347,8 K], добавлен 08.09.2008Основные задачи физических средств защиты информации, их классификация. Виды объектов охраны. Технические средства и системы охраны. Системы контроля и управления доступом. Методы биометрической идентификации. Радиолучевые и радиоволновые системы.
презентация [1,9 M], добавлен 15.04.2014Виды обнаружителей диктофонов. Системы подавления диктофонов путем воздействия на носитель информации. Оснащение средствами защиты речевой информации кабинета руководителя. "Канонир–К5" - мощнейший подавитель диктофонов и подслушивающих устройств.
дипломная работа [241,4 K], добавлен 04.05.2015Графическая структура защищаемой информации. Пространственная модель контролируемых зон, моделирование угроз информации и возможных каналов утечки информации в кабинете. Моделирование мероприятий инженерно-технической защиты информации объекта защиты.
курсовая работа [2,9 M], добавлен 19.06.2012Принцип распространения звуковых волн в помещении и звукоизоляция. Акустические каналы утечки информации. Способы перехвата акустической (речевой) информации из выделенных помещений. Порядок проведения измерений с помощью шумомера АТЕ-9051, его настройка.
дипломная работа [3,3 M], добавлен 15.06.2013Анализ основной разработки технического проекта системы защиты информации, и угроз по электромагнитным и акустическим каналам. Выявление возможных каналов утечки информации в переговорной комнате. Экранирование: понятие, главные особенности, задачи.
курсовая работа [2,1 M], добавлен 09.01.2014Проектирование помещения для хранения ценной информации. Возможные каналы утечки данных. Характеристики средств защиты информации. Съем информации за счет электромагнитных излучений проводных линий 220 B, выходящих за пределы контролируемой зоны.
курсовая работа [2,9 M], добавлен 14.08.2015Особенности распространения речевого сигнала. Анализ спектральных характеристик. Разработка лабораторного стенда по исследованию прямых акустических, вибрационных и акустоэлектрических каналов утечки речевой информации и методики проведения экспериментов.
дипломная работа [2,4 M], добавлен 27.10.2010Акустоэлектрические преобразователи, их виды. Акустический и виброакустический каналы утечки информации. Технические характеристики акустопреобразовательного канала и направления защиты акустической информации от утечки через каналы, образуемые им.
курсовая работа [1,1 M], добавлен 11.04.2009