Структура и принципы построения микропроцессов

Особенности построения микропроцессоров систем. Использование радиальной структуры для возможности организации параллельных потоков информации. Принципиальные схемы и режимы работы автоматических регуляторов уровня давления, скорости и температуры.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 22.05.2020
Размер файла 226,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

1. Структура и принципы построения микропроцессов. Особенности построения микропроцессоров систем. Типовая структура микропроцессорных систем

Микропроцессор - это программно-управляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной или нескольких БИС. Качественным отличием микропроцессора от других типов микросхем является возможность их функциональной перестройки путем изменения внешней программы. В зависимости от программы микропроцессор может быть использован для решения самых разных задач и в этом способен заменить многие типы интегральных схем с "жесткой" логикой. Подобная универсальность микропроцессоров обусловила массовость их выпуска, что привело к снижению их стоимости, в результате чего экономически выгодным стало их использование в промышленной автоматике, транспорте, бытовой технике и т.д.

Микропроцессор, взятый отдельно, не может выполнять каких-либо полезных функций. Для реальной пользы микропроцессор должен использоваться совместно с памятью и устройствами ввода-вывода, подключаемыми через специальные регистры, называемые портами. Такое объединение микропроцессора с памятью и портами ввода-вывода позволет получить микропроцессорную систему.

Существуют три типовые структуры микропроцессорных систем: магистральная, радиальная и радиально-магистральная. Каждая из этих структур обладает своими преимуществами и недостатками. Использование той или иной структуры определяется задачей, решаемой микропроцессорной системой.

Магистральная структура или, как ее еще называют, структура с общей шиной предполагает подключение всех составляющих микропроцессорной системы к микропроцессору по одной группе шин. Подобная структура представлена на рис. 1.

Шины представляют собой набор соединительных проводников-линий, объединяющих одноименные выводы всех периферийных модулей. По каждой линии может быть передано значение одного разряда двоичного кода в виде уровней напряжения, соответствующих логическому нулю или логической единицы. Периферийными модулями в рассматриваемой структуре являются запоминающие устройства (ОЗУ и ПЗУ), а также регистры портов ввода-вывода для подключения внешних устройств (клавиатуры, индикатора, таймера, АЦП, ЦАП, различных датчиков и исполнительных механизмов).

По роду передаваемой информации все шины разделены на три группы, образующие шину данных, шину адреса и шину управления. Характерной особенностью шины данных является ее двунаправленность, обеспечиваемая буферными регистрами, под которой понимается возможность передачи данных в разные моменты времени в различных направлениях, например, сначала от микропроцессора к периферийному модулю, а затем в обратном направлении. Ещё одна особенность этих буферных регистров заключается в том, что они являются трехстабильными, т.е. выходы этих регистров могут принимать третье пассивное, высокоимпедансное состояние, благодаря чему регистр оказывается отключенным от шины данных. Каждый периферийный модуль микропроцессорной системы имеет вход для приема сигнала CS (выбор кристалла). В процессе работы с помощью этого сигнала "активизируется" только один из периферийных модулей. Выходы буферных регистров остальных модулей остаются в высокоимпедансном состоянии.

Поскольку микропроцессор должен обмениваться данными с определенными ячейками памяти запоминающих устройств или с определенными портами, то для возможности обращаться (адресоваться) к ним, каждая ячейка памяти и каждый порт ввода или вывода имеют свои индивидуальные номера - адреса. При обмене данными микропроцессор устанавливает двоичный код, соответствующий адресу порта или ячейки памяти на шине адреса. Шина адреса является однонаправленной, т.е. адреса передаются только от микропроцессора. Рассматриваемая микропроцессорная система содержит два модуля памяти: модуль ОЗУ и модуль ПЗУ. В общем случае в системе может содержаться несколько модулей (микросхем) ОЗУ и ПЗУ, каждый из которых имеет вход для приема сигнала CS. Во всех случаях, когда в системе имеется более одного модуля памяти, часть кода адреса ячейки памяти должна указывать, к какому модулю памяти производится обращение. Эта часть называется кодом выбора модуля и определяется старшими разрядами адреса. Оставшаяся часть кода адреса, образованная младшими разрядами адреса, выбирает ячейку памяти внутри модуля и называется адресом ячейки внутри модуля. Дешифрация кода выбора модуля производится с помощью дешифратора выбора модуля памяти, который вырабатывает соответствующий сигнал CS. Дешифрация адреса ячейки осуществляется внутренним дешифратором модуля. Входы этого дешифратора (адресные шины модуля памяти) подключаются к соответствующим линиям шины адреса.

В рассматриваемой системе содержится один порт ввода и один порт вывода. В общем случае портов ввода-вывода может быть гораздо больше. Поскольку каждый порт представляет собой один регистр, то дешифрация номеров портов осуществляется только внешним дешифратором, формирующим сигнал CS выбора портов.

Дополнительным условием «активизации» любого периферийного модуля является наличие соответствующего сигнала на шине управления. По линиям шины управления от микропроцессора к периферийным модулям поступают сигналы, определяющие выбор группы модулей (порты или модули памяти), а также направление обмена данными. Такими сигналами являются: сигнал чтения из модулей запоминающих устройств RDM (read memory); сигнал записи в модули запоминающих устройств WRM (write memory), сигнал чтения из порта ввода RDIO (read input/output), сигнал записи в порт вывода WRIO (write input/output). Например, при записи числа в ячейку памяти ОЗУ микропроцессор устанавливает на шине адреса адрес этой ячейки памяти, на шине данных - двоичный код записываемого числа, и выдает на линию шины управления сигнал WRM. При этом с шины данных число записывается в адресуемую ячейку памяти ОЗУ. При чтении данных из какого-либо порта ввода микропроцессор устанавливает на шине адреса адрес этого порта и выдает на соответствующую линию шины управления сигнал RDIO. При этом адресуемый порт ввода передает информацию со своего входа на шину данных, откуда она считывается микропроцессором.

Часто процесс ввода-вывода с (из) внешних устройств организуют в режиме прерывания. Этот режим характеризуется тем, что инициатива ввода-вывода информации при нем принадлежит внешнему устройству. Для инициализации режима ввода-вывода по прерыванию и передачи в микропроцессор номера устройства, запрашивающего прерывание, служит контроллер прерывания. Более подробно назначение и описание контроллера прерывания будет рассмотрено в этом параграфе позже.

На изображенной на рис.1 схеме шина данных разделена системным контроллером на локальную и системную. Системная шина данных связывает все периферийные модули между собой и с микропроцессором. Локальная шина данных связывает системный контроллер с микропроцессором. Системный контроллер является вспомогательным элементом микропроцессорной системы и его функции индивидуальны для разных микропроцессорных комплектов микросхем. Обычно системный контроллер используется для расширения функций шины управления, добавляя в нее управляющие сигналы, отсутствующие в выводах микропроцессора. Подключение его в схему микропроцессорной системы также индивидуально для каждого микропроцессорного комплекта. В приведенной на рисунке схеме системный контроллер формирует часть сигналов шины управления из служебных слов, передаваемых по шине данных в моменты времени, когда шина данных не используется для обмена информацией с периферийными модулями. Также системный контроллер в данном случае выполняет функцию шинного формирователя. Микропроцессор, системный контроллер и ряд вспомогательных узлов (тактовый генератор, шинные формирователи и прочие) образуют так называемый процессорный модуль.

Рис.1. Стуктура МП-системы с общей шиной

Поскольку в структуре с общей шиной обмен информацией между модулями системы возможен только поочередный, то это снижает производительность системы с позиции передачи данных. Это является недостатком такой структуры. Однако у нее есть и преимущество - это простая аппаратная реализация. В некоторых случаях можно обойтись даже и без системного контроллера, а периферийные модули подключать непосредственно к выводам шин данных и адреса микропроцессора.

Для возможности организации параллельных потоков информации используется радиальная структура или, как ее еще называют, структура с распределенными шинами. Вариант подобной организации представлен на рис. 2. В представленной структуре используются раздельные магистрали (группы шин адреса, данных и управления) для связи портов ввода-вывода и запоминающих устройств с процессорным модулем. Причем в представленном примере для каждого типа памяти (памяти программ и памяти данных) используются независимые магистрали. Подобная структура отражает Гарвардскую модель микропроцессорной системы. Каждая магистраль в этом случае отвечает за связь своего типа периферийного модуля с процессорным модулем и позволяет осуществить независимый параллельный во времени обмен информацией. Однако это достигается за счет значительного увеличения аппаратных средств, участвующих в построении микропроцессорной системы. В частности, значительно усложняется аппаратная реализация системного контроллера, который в этой схеме распределяет ресурсы локальной магистрали микропроцессора между магистралями периферии.

Рис. 2. структура МП-системы с распределенными шинами

Следует отметить, что рассмотренное разбиение составных частей микропроцессорной системы на модули носит функциональный характер, а не конструктивный. В настоящее время часто все компонетнты микропроцессорных систем реализуются в едином кристалле микросхемы. Такие микросхемы называются микроконтроллерами. Использование микроконтроллеров позволяет значительно упростить разработку микропроцессорной системы, поскольку все необходимые компоненты такой системы, а именно АЦП, ЦАП, интерфейсные узлы, модуляторы, демодуляторы и многие другие, уже содержатся в кристалле микроконтроллера. микропроцессор радиальный давление температура

Еще более гибкой и более сложной в аппаратной реализации является радиально-магитсральная структура. В тех связях периферии с микропроцессором, где необходима высокая скорость обмена информацией, используется радиальный принцип, а где высокая скорость не нужна - магистральный. Примером может служить структура персонального компьютера. По магистральному принципу в нем строится шина PCI (шина периферийных устройств), а по радиальному - шины подсистемы памяти и видеосистемы. В специализированных микропроцессорных системах такая организация используется редко, поскольку она является сложной и дорогой для сравнительно медленных задач.

2. Структура и принципиальные схемы и режимы работы автоматических регуляторов уровня давления, скорости, температуры

1. Классификация систем автоматического регулирования (САР)

Регуляторы подразделяются:

-- по назначению (температуры, давления, перепада давлений, уровня, расхода);

-- характеристике регулирования (позиционное, статическое, астатическое, изодромное);

-- виду вспомогательной энергии (гидравлические, электрические);

-- по скорости перемещения регулирующего органа (с постоянной, переменной скоростью).

2. Принципы автоматического регулирования

САР предназначена для ликвидации последствий всех возмущающих факторов и приведения регулируемого параметра к заданному значению. Задачей автоматического регулирования является обеспечение заданного технологического режима работы системы без непосредственного участия человека. Технологический режим задаётся через параметры теплоносителя: давление, температуру, расход и т. п. Регуляторы делятся на регуляторы прямого действия и непрямого действия. В регуляторах прямого действия в одном элементе совмещается датчик, задатчик и командное устройство, при этом измерительный орган непосредственно воздействует на регулирующий (исполнительный) орган, кроме того, исполнительный орган для привода использует энергию самой регулируемой среды (см. рисунок 1).

В регуляторах непрямого действия измерительный орган воздействует на исполнительный механизм не прямо, а через командный орган, к которому подводится энергия от постороннего источника.

В САР осуществляется замкнутый контур взаимодействия: объект регулирования воздействует на регулятор, а регулятор через исполнительный орган воздействует на объект регулирования (т. н. внутренние связи, см. рисунок 3). Кроме внутренних связей на регулятор влияют внешние воздействия, например, изменение задания и т. п..

Рис. 3. Структурная схема Системы Автоматического Регулирования

Чувствительный элемент - состоит из датчика, измерительного устройства, усилителя и преобразователя; кроме датчика всё перечисленное входит в состав контроллера (электронного блока).

Задающее устройство (задатчик) - с помощью этого устройства задаётся необходимое значение регулируемой величины (например, уставка температуры горячей воды и т. п.).

Командно-усилительное устройство - сравнивает сигналы от чувствительного элемента и задатчика, вырабатывает сигнал рассогласования и усиливает его до величины, необходимой для управления исполнительным механизмом. Степень усиления сигнала рассогласования определяется глубиной отрицательной обратной связи.

Исполнительный механизм (привод) - преобразует сигнал от командно-усилительного устройства в движение регулирующего органа.

Регулирующий орган (регулирующий клапан) - изменяет расход регулируемой среды.

Устройство обратной связи - передаёт воздействие с выхода исполнительного механизма на вход командно-усилительного устройства. (в САР применяется только отрицательная обратная связь - ОС, иначе, при преобладании положительной обратной связи система переходит в режим генератора, т. е. будет иметь только два крайних положения).

Процесс регулирования происходит по отклонению и по возмущению.

Регулирование по отклонению - регулятор измеряет величину отклонения непосредственно регулируемой среды и производит воздействие на регулирующий орган. По этому принципу работают большинство регуляторов (например, регулирование температуры горячей воды).

Регулирование по возмущению - регулятор воздействует на регулируемую среду в зависимости от величины возмущающего фактора (например, изменение температуры наружного воздуха). Преимущества данного метода в том, что регулятор начинает воздействовать на объект регулирования ещё до того, как произойдёт отклонение регулируемой величины. (Например, регулирование температуры теплоносителя для систем отопления по изменению температуры наружного воздуха, т. н. Погодный Компенсатор).

По характеру процесса регулирования регуляторы подразделяются на регуляторы-стабилизаторы, программные и следящие.

3. Назначение, принцип действия, основные технические параметры и характеристики реле, область применения реле

Реле - коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока.

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

- чувствительность - срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;

- сопротивление обмотки электромагнита;

- напряжение (ток) срабатывания - минимально допустимое значение, достаточное для переключения контактов;

- напряжение (ток) отпускания - значение параметра, при котором происходит отключение КУ;

- время притягивания и отпускания якоря;

- частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле.

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

- управление электрическими и электронными системами;

- защита систем;

- автоматизация систем.

По принципу действия:

- тепловые;

- электромагнитные;

- магнитолектические;

- полупроводниковые;

- индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

- от тока;

- от напряжения;

- от мощности;

- от частоты.

По принципу воздействия на управляющую часть устройства:

- контактные;

- бесконтактные.

Электромагнитное реле - это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Электронное реле

Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных схемах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение общих принципов построения пропорционально-интегрально-дифференциальных технологических регуляторов. Проектирование алгоритма регуляторов температуры на базе дешевых микроконтроллеров MSP430 (Texas Instruments). Дискретная форма регулятора.

    дипломная работа [2,2 M], добавлен 12.10.2015

  • Принципы построения и структура взаимоувязанной сети связи. Понятие информации, сообщения, сигналов электросвязи. Типовые каналы передачи и их характеристики, принципы многоканальной передачи. Цифровые сигналы: дискретизация, квантование, кодирование.

    дипломная работа [2,4 M], добавлен 17.05.2012

  • Проверка качества работы автоматических систем регулирования (АСР) путем математическоого и имитационного моделирования на реальном микропроцессорном контроллере. Выбор периода квантования цифровых регуляторов, определение параметров их настройки.

    курсовая работа [543,9 K], добавлен 19.11.2012

  • Принципы расчета и построения систем беспроводной связи. Особенности распространения и затухания сигналов в системах радиосвязи с радиальной структурой. Определение максимального расстояния уверенного приема и посредственного, неуверенного приема.

    курсовая работа [255,8 K], добавлен 08.10.2012

  • Оценка безопасности информационных систем. Методы и средства построения систем информационной безопасности, их структура и основные элементы, принципы и значение. Криптографические методы защиты информации, виды и основные направления их обеспечения.

    курсовая работа [32,9 K], добавлен 12.03.2011

  • Анализ принципов построения сети цифровой связи и структуры комплекса "Обь-128Ц". Принципы построения групповых каналов, схемы их организации и программного обеспечения. Разработка алгоритмов программирования диспетчерских и промежуточных пунктов.

    дипломная работа [7,0 M], добавлен 05.03.2011

  • Основы построения аналоговых радиорелейных линий. Радиорелейные линии синхронной цифровой иерархии. Принципы построения спутниковых систем связи. Многостанционный доступ с разделением по частоте и времени. Требования к видеодисплейным терминалам.

    дипломная работа [813,6 K], добавлен 17.05.2012

  • Виды и использование датчиков автоматического контроля режимных параметров технологических процессов химического производства. Принцип действия измеряемых датчиков, регуляторов температуры, модульных выключателей. Средства защиты электроустановок.

    дипломная работа [770,6 K], добавлен 26.04.2014

  • Принципы построения систем передачи информации. Характеристики сигналов и каналов связи. Методы и способы реализации амплитудной модуляции. Структура телефонных и телекоммуникационных сетей. Особенности телеграфных, мобильных и цифровых систем связи.

    курсовая работа [6,4 M], добавлен 29.06.2010

  • Принципы построения структурированных кабельных систем. Разработка схемы подключения в пакете Cisco Packet Tracer, обзор стандартов. Построение локальной вычислительной сети административного здания. Современные методы построения и создания сети.

    контрольная работа [300,6 K], добавлен 16.02.2016

  • Принципы построения тепловизионных систем мониторинга КС, основные задачи систем такого рода. Анализ состояния современного уровня техники. Требования к тепловизионной системе СП-1. Разработка оптико-электронной схемы канала на основе выбранной камеры.

    дипломная работа [6,5 M], добавлен 24.03.2011

  • Общие принципы построения волоконно-оптических систем передачи. Структура световода и режимы прохождения луча. Подсистема контроля и диагностики волоконно-оптических линий связи. Имитационная модель управления и технико-экономическая эффективность.

    дипломная работа [3,8 M], добавлен 23.06.2011

  • Назначение, принцип действия, каналы связи и сферы использования автоматических идентификационных систем. Отображение информации на мониторе и сравнение информации на экране радиолокационных станций. Отображение информации на электронной карте.

    дипломная работа [169,9 K], добавлен 09.06.2011

  • Нелинейное и линейное представление информации. Презентация – пример интерактивного способа подачи информации. Понятие гипертекста как способа коммуникации в Интернете, его особенности и использование. Основные композиционные принципы его построения.

    реферат [16,5 K], добавлен 10.06.2010

  • Особенности волоконно-оптических систем передачи. Выбор структурной схемы цифровой ВОСП. Разработка оконечной станции системы связи, АИМ-модуляторов. Принципы построения кодирующих и декодирующих устройств. Расчёт основных параметров линейного тракта.

    дипломная работа [2,8 M], добавлен 20.10.2011

  • Обзор методов кодирования информации и построения системы ее передачи. Основные принципы кодово-импульсной модуляции. Временная дискретизация сигналов, амплитудное квантование. Возможные методы построения приемного устройства. Расчет структурной схемы.

    дипломная работа [823,7 K], добавлен 22.09.2011

  • Математическая основа построения систем защиты информации в телекоммуникационных системах. Особенности методов криптографии. Принципы, методы и средства реализации защиты данных. Основы ассиметричного и симметричного шифрования-дешифрования информации.

    курсовая работа [46,9 K], добавлен 13.12.2013

  • Помехоустойчивость как одна из важнейших характеристик современных систем передачи информации. Основные особенности построения биортогонального двоичного кода на базе матрицы Адамара. Анализ и характеристика схемы функционального кодирующего устройства.

    контрольная работа [853,8 K], добавлен 06.01.2013

  • Свойства электромагнитных волн, лежащие в основе работы радиосистем извлечения информации. Измерение расстояния, угловых координат и радиальной скорости. Влияние кривизны земной поверхности и атмосферной рефракции на точность радиолокационных наблюдений.

    реферат [1,7 M], добавлен 13.10.2013

  • Принципы работы цифрового компаса HMC5883L, платы Arduino UNO. Особенности шины I2C, ее недостатки и преимущества. Программа Fritzing, ее значение для построения схемы подключения цифрового компаса к Arduino UNO. Согласование уровней выхода со входом.

    курсовая работа [1,4 M], добавлен 30.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.