Печатные платы

Рассмотрение требований к печатным платам, предъявляемых по ГОСТу. Анализ достоинств и недостатков печатных плат. Типовые конструкции печатных плат. Материалы для изготовления плат. Пайка электронных компонентов на плату. Ошибки при конструировании плат.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 01.12.2020
Размер файла 1003,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н. Э. Баумана»

факультет радиоэлектроники и лазерной техники

Кафедра технологии приборостроения

РЕФЕРАТ

Печатные платы

Москва 2020

Содержание

Введение

Требования, которые предъявляет к этим изделиям по ГОСТ

Достоинства и недостатки печатных плат

Основные термины

Виды печатных плат

Типовые конструкции печатных плат

Материалы для изготовления плат

Пайка электронных компонентов на плату

Методы изготовления печатных плат

Типичные ошибки при конструировании плат

Немного истории

Заключение

Источники информации

Введение

печатный плата электронный конструкция

Что представляет из себя печатная плата?

Печатная плата представляет собой пластину или панель состоящее из одного или двух проводящих рисунков, расположенных на поверхности диэлектрического основания, или из системы проводящих рисунков, расположенных в объеме и на поверхности диэлектрического основания, соединенных между собой в соответствии с принципиальной электрической схемой, предназначенное для электрического соединения и механического крепления устанавливаемых на нем изделий электронной техники, квантовой электроники и электротехнических изделий - пассивных и активных электронных компонентов.

Печатные платы используются в составе разной электронной техники, начиная от простых квартирных звонков, бытовых радиоприёмников, студийных радиостанций и завершая сложными радиолокационными, компьютерными системами.

Требования, которые предъявляет ГОСТ

1. Печатные платы должны иметь однородную по цвету диэлектрическую основу, которая должна быть монолитна по структуре, не содержать внутренних пузырьков, раковин, инородных включений, трещин, сколов, расслоений. Однако допускаются одиночные царапины, вкрапления металла, следы одиночного удаления непротравленного участка, а также проявление структуры, которое не меняет электрические параметры изделия, не уменьшает допустимого расстояния между элементами рисунка.

2. Рисунок - четкий, с ровным краем, без вздутий, разрывов, отслоений, следов инструмента. Допускаются незначительные местные протравы, но не более пяти точек на квадратный дециметр, при условии, что остальная ширина дорожки будет соответствовать минимально допустимой; царапины длиной до шести миллиметров и глубиной до 25 микрон.

Достоинства и недостатки печатных плат

Печатная плата имеет ряд преимуществ по сравнению с объемным (навесным) монтажом с использованием кабелей и проводов: высокая плотность монтажа радиокомпонентов и их соединений, в результате чего значительно сокращаются габариты и вес изделия; получение проводников и экранирующих поверхностей, а также радиоэлементов в едином технологическом цикле; стабильность, повторяемость таких характеристик, как емкость, проводимость, индуктивность; высокое быстродействие и помехозащищенность схем; стойкость к механическим и климатическим воздействиям; стандартизация и унификация технологических и конструктивных решений; надежность узлов, блоков и самого устройства в целом; повышенная технологичность в результате комплексной автоматизации сборочных работ и контрольно-регулировочных действий; низкая трудоемкость, материалоемкость и себестоимость.

Печатная плата имеет также и недостатки, но их совсем немного: ограниченная ремонтопригодность и высокая сложность добавления изменений конструкции.

Основные термины

Основание печатной платы - это элемент конструкции печатной платы, на поверхности или на поверхности и в объеме которого расположен проводящий рисунок или система проводящих рисунков печатной платы.

Рисунок печатной платы - это конфигурация, образованная проводниковым и (или) диэлектрическим материалом на печатной плате.

Основные элементы конструкции печатных плат

Печатный проводник - это Одна полоска в проводящем рисунке печатной платы.

Печатный контакт - это Часть проводящего рисунка печатной платы, представляющая собой часть электрического контакта.

Печатный компонент - это Электронный компонент, являющийся частью проводящего и непроводящего рисунков печатной платы (К печатным компонентам относятся резистор, конденсатор и др.)

Проводящий слой печатной платы - это Проводящий рисунок печатной платы, расположенный в одной плоскости.

Экран печатной платы - это Элемент проводящего рисунка печатной платы, предназначенный для защиты элементов печатного узла от электромагнитных излучений.

Базовый материал печатной платы - это Фольгированный или нефольгированный диэлектрический материал или пластина проводникового материала с нанесенным слоем диэлектрического материала, предназначенный(ая) для формирования рисунка печатной платы или печатного кабеля.

Для улучшения коррозионных характеристик и повышения паяемости поверхность платы покрывают электролитическим составом, который должен быть сплошным, без отслоений, разрывов и подгаров. Фиксирующие и монтажные отверстия необходимо располагать в соответствии с чертежом. Допускается иметь отклонения, определенные классом точности платы. С целью улучшения надежности пайки на все внутренние поверхности монтажных отверстий напыляют слой меди, толщина которого должна быть не менее 25 мкм. Этот процесс называют - металлизация отверстий.

Виды печатных плат

Основания для изготовления электроники разделяются на несколько видов. Они отличаются по конструкции, характеристикам, предназначению. Разновидности плат:

1. Односторонние -- конструкции представляющие собой диэлектрические пластинки, на которые с одной стороны нанесён токопроводящий рисунок. Для соединения отдельных контактов на верхнем диэлектрическом слое закрепляются металлические перемычки. Односторонние основания используются при изготовлении недорогой бытовой техники. Связано это с их малой надёжностью, недолговечностью, хрупкой конструкцией.

2. Двухсторонние -- на диэлектрическим слое с двух сторон наносятся токопроводящие рисунки, что позволяет устанавливать на основание большее количество электрических элементов, расширить функционал, технические характеристики платы. Отверстия имеют металлизированные вставки. Благодаря им прочность скрепления отдельных деталей с основанием становится надёжнее. Двухсторонние пластинки считаются наиболее популярными при изготовлении бытовой электроники, компьютеров.

3. Однослойные -- элементарная конструкция, состоящая из одной пластинки, прослойки покрытой металлом.

4. Многослойные -- сложные конструкции, которые используются при изготовлении сложных приборов, механизмов. Несколько слоёв, расположенных в определённой последовательности, позволяют надёжно закреплять основные компоненты. Количество слоёв выбирается зависимо от требуемых характеристик. Максимальное количество -- 40. У многослойных оснований есть ряд недостатков. Это сложности во время изготовления, сложный процесс починки, дороговизна расходных материалов.

5. Гибкие -- могут быть односторонними, двухсторонними, иметь несколько слоев. Изготавливаются на гибком основании. Предназначены для соединения отдельных элементов электрического оборудования. Могут заменять собой кабеля.

6. Гибко-жесткие -- конструкция представляет собой шлейф, на котором в определённых местах закрепляются жесткие пластинки, с нанесёнными на них токопроводящими рисунками. Используются для соединение жестких плат между собой. Обеспечивают надёжную связку.

7. Жёсткие -- плитки, выполненные из жёстких слоев, которые не дают платам деформироваться. Простой пример жёсткого основания -- материнская плата, устанавливаемая в компьютерах.

8. Теплопроводные -- другие названия этих пластинок ВЧ, СВЧ. Во время изготовления основания используется керамика, чтобы оно выдерживало воздействие высоких температур. Дополнительно керамика повышает жёсткость конструкции.

Зависимо от вида плат изменяются их характеристики, внешний вид, размер, возможности.

Типовые конструкции печатных плат

Самый простой печатной платой является плата, которая содержит медные проводники на одной из сторон печатной платы и связывает элементы проводящего рисунка только на одной из ее поверхностей. Такие платы известны как однослойные печатной платы или односторонние печатные платы.

На сегодняшний день, самые популярные в производстве и наиболее распространенные печатные платы, которые содержат два слоя, то есть, содержащие проводящий рисунок с обеих сторон платы - двухсторонни (двухслойные) печатные платы. Для соединения проводников между слоями используются сквозные монтажные и переходные металлизированные отверстия. Тем не менее, в зависимости от физической сложности конструкции печатной платы, когда разводка проводников на двусторонней плате становится слишком сложной, на производстве заказывается многослойные печатные платы, где проводящий рисунок формируется не только на двух внешних сторонах платы, но и во внутренних слоях диэлектрика. В зависимости от сложности, многослойные печатные платы могут быть изготовлены из 4,6, ….24 или более слоев.

Фрагменты конструкции печатных плат а) односторонней

б) двусторонней

1 - монтажное отверстие

2 - контактная площадка

3 - проводник

4 - диэлектрическая подложка

5 - переходное металлизированное отверстие

По своей конструкции многослойные печатные платы значительно сложнее двухсторонних плат, как много сложнее и их технология производства. Они включают дополнительные экранные слои (земля питание), а также несколько сигнальных слоёв.

Фрагмент конструкции многослойной печатной платы

Материалы для изготовления плат

Существует несколько видов материалов, которые используют при изготовлении оснований для электроники:

1. Главная часть конструкции должна изготавливаться из диэлектрического материала. Это может быть стеклотекстолит, гетинакс.

2. Второй вариант изготовления плат -- металлическое основание, на которое наносится диэлектрический слой. Чаще всего используется анодированный алюминий.

3. Для изготовления термоустойчивых оснований применяется фторопласт. Его дополнительно армируют стеклотканью. В состав добавляется керамика для повышения механических характеристик.

4. Чтобы сделать гибкую плитку, применяется каптон.

Пайка электронных компонентов на плату

Для монтажа электронных компонентов на печатные платы, необходима технологическая операция - пайка, применяемая для получения неразъёмного соединения деталей из различных металлов путём введения между контактами деталей расплавленного металла - припоя, имеющего более низкую температуру плавления, чем материалы соединяемых деталей (Для получения качественного соединения температура нагрева спаиваемых заготовок в зоне шва должна быть на 50... 100°С выше температуры плавления припоя.). Спаиваемые контакты деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате, припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается, и припой переходит в твёрдую фазу, образуя соединение. Этот процесс можно сделать вручную или с помощью специализированной техники.

Классификация видов пайки с помощью специализированной техники

В зависимости от синхронизации установки электронных элементов пайка плат бывает двух видов:

· 1) групповая (одновременная) - данный способ воздействует на всю поверхность диэлектрической пластины;

· 2) индивидуальная (селективная) - при таком виде происходит акцент исключительно на конкретном участке поверхности.

По способу применения определённых технологий выделяют следующие виды пайки плат:

· Волной припоя;

· В парогазовой фазе (среде);

· Инфракрасным нагревом (под воздействием ИК-лучей);

· Конвекционным методом (теплообменом);

· Лазерным способом.

Этапы пайки печатных плат

Пайка печатных плат включает в себя определённую последовательность этапов.

На первом этапе происходит нанесение клея, флюса или паяльной пасты (припоя) на диэлектрическую пластину. Соединительный материал наносится различными методами:

1. С помощью стержней.

Способ подходит только для нанесения клея или флюса. Сначала стержень погружают в резервуар, чтобы набрать определённое количество соединительного материала. Затем его опускают на пластину в тех местах, где нужно нанести точку. При этом следует учитывать, чтобы сам стержень не касался вплотную пластины: иначе возможно нарушение формы нанесённой точки.

2. Путём трафаретной печати.

Данный метод подходит только для клеев или припоя, но не для флюса, поскольку он обладает низкой вязкостью. А это препятствует более прочному соединению с поверхностью. Такой способ основан на нанесении соединительного материала через отверстия (апертуры) в трафарете специальным устройством - ракелем.

3. Дозирование материалов пульсационным, винтовым или поршневым насосом.

Метод подходит только для пасты или клея, поскольку они обладают более высокой вязкостью по сравнению с флюсом. При данном способе перед пайкой происходит точечное нанесение соединительного материала на диэлектрическую плату с помощью дозатора под действием импульса давления, архимедова винта или поршня.

Следующим этапом пайки печатных плат является установка компонентов на поверхность. Как правило, данный процесс осуществляется как ручным способом, так и на автоматах или полуавтоматах.

Помимо сложности печатной платы производительность труда при ручной пайке зависит от квалификации сборщика, а при автоматической - от типа станков, которые бывают двух видов:

· Револьверные

· Портальные

У современного автоматического оборудования захват и установка компонентов осуществляется специальной вакуумной головкой. В зависимости от сложности монтажа установки выделяются следующие виды групп электронных элементов:

· 1) Обычные компоненты

· 2) Компоненты с мелким шагом

· 3) Микросхемы с матричным расположением выводов.

При комбинированной пайке плат этап установки строится следующим образом: сначала на высокопроизводительном оборудовании устанавливаются обычные компоненты. После этого на высокоточных автоматах идёт монтаж более мелких микроэлементов.

Наконец, завершающий этап - это пайка плат оплавлением, которое происходит путём:

· 1) ИК-излучения - осуществляется специальными инфракрасными лампами;

· 2) Нагрева в парогазовой фазе - в отличие от первого способа он происходит за счёт передачи тепла от испарённого теплоносителя;

· 3) Способа конвекции (теплообмена) - производится при помощи теплообмена, создаваемого благодаря горячему воздуху либо азоту. При равномерном нагреве в специальных печах изделия получают более качественные соединения.

Из всех вышеперечисленных способов пайки печатных плат чаще всего применяют метод конвекции, поскольку он считается самым выгодным методом получения качественных изделий.

Для пайки используют легкоплавкие припои ПОС-61 или в крайнем случае ПОС-40. ПОС-61 обычно используют для лужения печатных плат, пайки выводов дискретных элементов, деталей из меди и медных сплавов. В качестве флюса используют твердую канифоль.

Перед пайкой вручную выводы деталей необходимо облудить, то есть покрыть слоем припоя. Делается это обычно перед пайкой конструкции. Вывод зачищают ножом, кладут на канифоль и смачивают жидкой канифолью. Потом большую часть вывода (не ближе 10 мм от корпуса) опускают в расплавленный кусочек припоя и, поворачивая деталь, облуживают вывод. Алогично облуживают монтажные провода.

К припоям предъявляют следующие требования:

· жидкотекучесть при температуре пайки

· хорошие электро- и теплопроводность

· герметичность

· стойкость против коррозии

· хорошее смачивание основного металла

· определенные для данного припоя температура плавления и величина температурного интервала кристаллизации.

· стойкость против коррозии

· высокая механическая прочность припоев в условиях нормальных, высоких и низких температур

Перед пайкой, компоненты размещаются на печатной плате выводами компонентов в сквозные отверстия платы и припаиваются к контактным площадкам и/или металлизированной внутренней поверхности отверстия - т.н. технология монтажа в отверстия (или другими словами - штыревой монтаж или DIP-монтаж). Так же, все большее распространение, в особенности, в массовом и крупносерийном производстве, получила более прогрессивная технология поверхностного монтажа - также называемая ТМП (технология монтажа на поверхность) или SMT (surface mount technology) или SMD-технология (от surface mount device - прибор, монтируемый на поверхность). Основным ее отличием от «традиционной» технологии монтажа в отверстия является то, что компоненты монтируются и паяются на контактные площадки (англ. land), являющиеся частью проводящего рисунка на поверхности печатной платы. В технологии поверхностного монтажа, как правило, применяются два метода пайки: пайка оплавлением припойной пасты и пайка волной. Основное преимущество метода пайки волной - возможность одновременной пайки компонентов, монтируемых как на поверхность платы, так и в отверстия. При этом пайка волной является самым производительным методом пайки при монтаже в отверстия.

Пайка волной припоя

Пайка оплавлением основана на применении специального технологического материала - паяльной пасты. Она содержит три основных составляющих: припой, флюс (активаторы) и органические наполнители. Паяльная паста наносится на контактные площадки либо с помощью дозатора, либо через трафарет, затем устанавливаются электронные компоненты выводами на паяльную пасту и далее, процесс оплавления припоя, содержащегося в паяльной пасте, выполняется в специальных печах путем нагрева печатной платы с компонентами.

Пайка оплавлением

Для избежания и/или предотвращения случайного короткого замыкания проводников из разных цепей в процессе пайки, производители печатных плат применяют защитную паяльную маску (англ. solder mask; она же «зеленка») - слой прочного полимерного материала, предназначенного для защиты проводников от попадания припоя и флюса при пайке, а также от перегрева. Паяльная маска закрывает проводники и оставляет открытыми контактные площадки и ножевые разъемы. Наиболее распространенные цвета паяльной маски, используемые в печатных платах - зеленый, затем красный и синий. Следует иметь в виду, что паяльная маска не защищает плату от влаги в процессе эксплуатации платы и для влагозащиты используются специальные органические покрытия.

Методы изготовления печатных плат

Субтрактивные метод

Субтрактивный метод наиболее освоен и распространен для простых и очень сложных конструкций печатных плат. С данного метода начиналась индустрия печатных плат. В качестве исходного материала используются фольгированные (в основном медью) изоляционные материалы. После переноса рисунка печатных проводников в виде стойкой к растворам травления пленки на фольгированную основу, незащищенные ею места химически стравливаются. Защитную пленку наносят методами полиграфии: фотолитографией, трафаретной печати и др. При использовании фотолитографии, защитная пленка формируется из фоторезиста материала, через фотокопию печатного рисунка -- фотошаблон. При трафаретной печати используют специальную, химически стойкую краску, называемую трафаретной.

Аддитивные методы

Эти методы предполагают использование нефольгированных диэлектрических оснований, на которые тем или другим способом, избирательно (там, где нужно) наносят токопроводящий рисунок. Разновидности метода определяются способами металлизации и избирательностью металлизации.

Токопроводящие элементы рисунка можно создать:

· химическим восстановлением металлов на катализированных участках диэлектрического основания (толстослойная химическая металлизация);

· переносом рисунка, предварительно сформированного на металлическом листе на диэлектрическую подложку (метод переноса);

· нанесением токопроводящих красок или паст или другим способом печати;

· восстановительным вжиганием металлических паст в поверхность термостойкого диэлектрического основания из керамики и ей подобных материалов;

· вакуумным или ионно-плазменным напылением;

· выштамповыванием проводников.

Избирательность осаждения металла можно обеспечить:

· фотолитографией (через фотошаблон) фоторезиста, закрывающего в нужных местах участки поверхности основания, не подлежащие металлизации (для метода толстослойной химической металлизации);

· через фотошаблон или сканирующим лучом катализатора, предварительно нанесенного на всю поверхность основания;

· трафаретной печатью (для паст и красок);

· масочной защитой.

Полуаддитивные методы

Полуаддитивные методы придуманы, чтобы избавиться от длительных и неустойчивых процессов толстослойной химической металлизации, заменив их на высокопроизводительные надежные электрохимические (гальванические) методы металлизации. Но для электрохимических методов металлизации электроизоляционных оснований нужен токопроводящий подслой. Его создают любым способом, удовлетворяющим требованиям по проводимости и прочности сцепления с подложкой:

· химическим осаждением тонкого слоя (до 1 мкм) металла. Процесс тонкослойной металлизации длится не более 15 мин и не требует высокой технологической надежности;

· вакуумным напылением металла, в том числе магнетронным;

· процессами газотермической металлизации;

· процессами термолиза металлоорганических соединений.

Однако для полуаддитивных методов неприемлемы процессы прямой металлизации, так как их использование связано с большим расходом катализатора, и возникают проблемы удаления проводящего подслоя из пробельных мест.

Комбинированные методы

Комбинированные методы объединяют в себе все приемы изготовления печатных плат, необходимые для изготовления печатных проводников и металлизированных отверстий. Поэтому они называются комбинированными. В зависимости от последовательности операций формирования печатных проводников и металлизированных отверстий различают комбинированный позитивный метод (используются фотошаблоны -- позитивы) и комбинированный негативный (используются фотошаблоны -- негативы).

Для изготовления многослойных печатных плат применяются такие методы как:

Метод попарного прессования

Этот метод изготовления многослойных печатных плат основан на выполнении межслойных соединений посредством металлизации отверстий но типу обычных двусторонних печатных плат. Для изготовления многослойных печатных плат используются две заготовки из двустороннего фольгированного диэлектрика.

1. На одной стороне каждой заготовки фотохимическим способом изготавливаются схемы внутренних слоев -- второго и третьего.

2. Затем сверлятся и металлизируются отверстия межслойных переходов, со второго на первый и с третьего на четвертый слой. При электрохимической металлизации переходных отверстий, для электрического соединения с катодом ванны используется целиковая фольга будущих наружных слоев.

3. Заготовки с готовыми внутренними слоями платы спрессовываются. Выдавленная при прессовании смола заполняет переходные отверстия, защищая, тем самым, их медное гальванопокрытие от химического воздействия последующих технологических операций, в том числе от травления.

4. После прессования заготовка МПП обрабатывается так же, как двусторонняя печатная плата, -- позитивным комбинированным методом с получением металлизированных отверстий и печатных проводников на наружных слоях.

Нужно отметить, что наружный слой МПП попарного прессования дважды подвергается металлизации: при осаждении меди в переходные отверстия и при металлизации сквозных отверстий, соединяющих наружные слои. Поэтому толщина меди наружных слоев, считая и медную фольгу, достигает 130--160 мкм. Это резко снижает разрешающую способность печатного рисунка наружных слоев, так как травление меди значительной и неравномерной толщины не обеспечивает необходимого качества и плотности печатного рисунка. Кроме того, при защите печатных узлов покровными лаками создаются значительные затруднения в получении плотного защитного покрытия: лак стекает с высоких проводников, обнажая их острые кромки.

Методом попарного прессования можно изготовить многослойную печатную плату с числом слоев не более четырех, что не всегда позволяет получить необходимую плотность монтажа.

Преимуществами метода попарного прессования

К достоинствам данного метода относится простота реализации, поскольку он основан на обычной технологии металлизации отверстий двусторонних печатных плат, хорошо освоенной в промышленности.

Однако прессование заготовок при недостаточной жесткости исходного материала может приводить к разрушению металлизации переходных отверстий, следовательно, к отказам соединений.

Метод открытых контактных площадок и выступающих выводов

Сущность обоих методов заключается в прессовании тонких печатных слоев с перфорированными окнами для доступа к внутренним слоям. Межслойные соединения, как таковые, в этих методах изготовления отсутствуют. Поэтому проводники, принадлежащие одной цепи, должны лежать в одном слое.

1. Метод открытых контактных площадок

При изготовлении многослойных печатных плат методом открытых контактных площадок используются полученные травлением отдельные печатные слои. Соединения выводов навесных элементов с контактными площадками внутренних слоев осуществляются через перфорированные окна вышележащих слоев. В результате этого верхний слой имеет перфорации, обеспечивающие доступ ко всем нижним слоям. Очевидно, нижний внутренний слой имеет наибольшую площадь для трассировки печатных цепей, поскольку не имеет перфораций, а верхний наружный слой имеет наименьшую площадь для трассировки и наибольшее количество перфорации.

Ограничения метода

Таким образом, при использовании метода открытых контактных площадок плотность печатного рисунка внутренних слоев имеет ограничения, связанные с необходимостью перфораций для осуществления соединений.

Поэтому увеличение количества слоев печатных плат, изготавливаемых методом открытых контактных площадок, более пяти становится нецелесообразным.

Такие ограничения отсутствуют для метода выступающих выводов.

2. Метод выступающих выводов

Фольгирование перфорированной стеклоткани внутренних слоев при изготовлении многослойных печатных плат методом выступающих выводов производится самим изготовителем платы, так как выступающие выводы являются продолжением печатных проводников и выходят из внутренних слоев в перфорированные окна. После склеивания пакета внутренних слоев выступающие в окна выводы отгибают на наружную поверхность платы и формуют под крепящую колодку либо подпаивают к контактным площадкам наружного печатного слоя. Окна в плате предназначены для размещения микросхем. Из каждого окна должны выходить концы проводников в количестве, равном числу выводов микросхем.

Достоинства

Оба вышеперечисленных метода изготовления печатных плат отличаются простотой и сравнительно коротким технологическим циклом. Кроме того, метод выступающих выводов не имеет каких-либо ограничений по максимальному количеству слоев.

Недостатки

Необходимость формовки выводов радиоэлементов на различную глубину и пайка в перфорированные окна повышают трудоемкость монтажных операций для метода открытых контактных площадок. Также, при этом методе существует ограничение на число слоев (не более 5…7), так как большее их число увеличивает глубину перфорации, что делает пайку открытых контактных площадок ненадежной.

Сосредоточение печатных проводников в узких переплетах перфорированных окон, в конечном счете, создает большие перекрестные помехи и, тем самым, ограничивает трассировочные возможности печатных узлов. Наряду с этим недостатком, следует принять во внимание затруднения в формовке и закреплении выступающих выводов на поверхности платы в пределах периметра окна.

Изготовление многослойных печатных плат методом послойного наращивания

Изготовление многослойных печатных плат этим методом заключается в последовательном чередовании слоя изоляции и металлизированного слоя печатного рисунка. Соединения между проводящими элементами печатных слоев производятся гальваническим наращиванием меди в отверстиях слоя изоляции.

Изготовление платы начинается с приклейки к медной фольге изоляционной прокладки с перфорациями в местах будущих межслойных переходов. На всех операциях изготовления многослойной печатной платы методом послойного наращивания эта фольга осуществляет соединение металлизируемых поверхностей с катодом гальванической ванны. На конечном этапе на ней вытравливают рисунок наружного слоя.

После изготовления металлизированных переходов и их планаризации в плоскость с диэлектриком, на поверхности межслойной изоляции полуаддитивным методом формируют печатный рисунок слоя. На изготовленный слой проводящего рисунка напрессовывают следующий слой перфорированной изоляции и через перфорации наращивают очередные металлизированные переходы. Таким образом, последовательно создаются слои проводящего рисунка и изоляции с межслойными переходами.

В качестве межслойной изоляции могут быть использованы стеклотекстолитовые прокладки с перфорациями в местах межслойных переходов или полимерные пленки, отверстия в которых химически вытравливают в назначенных местах.

Количество слоев многослойной печатной платы при послойном наращивании ограничивают обычно пятью, так как изготовление каждого последующего слоя связано с многократными термическими (при прессовании) и химическими воздействиями на уже изготовленные слои.

Преимущества метода послойного наращивания

Преимуществом данного метода изготовления многослойных печатных плат является исключительно высокая плотность монтажа, так как он дает возможность выполнения межслойных переходов в любой точке платы, независимо от трассировки и местоположения межслойных соединений смежных слоев. Таким образом, межслойные переходы могут выполняться независимо друг от друга, между любыми слоями в любой назначенной точке.

Метод металлизации сквозных отверстий

Процесс изготовления многослойных печатных плат методом электрохимической металлизации сквозных отверстий состоит в изготовлении отдельных внутренних слоев химическим методом, прессования слоев в монолитный пакет, сверлении сквозных отверстий и их металлизации. При сверлении на стенках отверстий вскрывают торцы контактных площадок внутренних слоев. Соединения их друг с другом и с контактными площадками наружных слоев получаются за счет металлизации отверстий.

Поскольку все отверстия в плате являются сквозными, плотность межсоединений несколько ограничена, так как каждое отверстие используется для внутреннего соединения только один раз и в то же время занимает определенную площадь на каждом слое, ограничивая свободу трассировки печатных цепей. Вводя промежуточные внутренние соединения или сквозные отверстия для групп слоев, межслойные соединения можно располагать, друг над другом или только между теми слоями, где они нужны, не ограничивая трассировку печатных цепей на других слоях. Изготовление многослойных печатных плат по таким схемам обеспечивает наибольшую свободу в выборе месторасположения внутренних соединений и путей трассировки печатных проводников, следовательно, позволяет получить максимальную плотность межсоединений.

Метод металлизации сквозных отверстий, по существу единственный метод создания конструкций с наиболее оптимальной электрической структурой, обеспечивающей надежную передачу наносекундных импульсов и распределение питания между активными элементами. Такие конструкции многослойных печатных плат позволяют выполнить печатные цепи как полосковые линии передач и создают эффективное экранирование одной группы цепей от другой.

Достоинства метода

Таким образом, наряду с высокой технологичностью многослойные печатные платы, изготовленные методом металлизации сквозных отверстий, имеют высокую плотность монтажа, большое количество вариантов трассировки печатных цепей, более короткие линии связей, возможность электрического экранирования, улучшение характеристик, связанное с устойчивостью к воздействию окружающей среды за счет расположения всех печатных проводников в массе монолитного диэлектрика, возможность увеличения числа слоев без существенного увеличения стоимости и длительности процесса.

Недостатки метода

Недостатком метода металлизации сквозных отверстий является относительно механически слабая связь металлизации отверстий с торцами контактных площадок внутренних слоев. Изготовление МПП этим методом осложнено проблемой точного совмещения печатных слоев из-за погрешностей фотошаблонов и деформаций базовых материалов в процессе изготовления внутренних слоев и прессования. Особой тщательности требует подбор режимов прессования для обеспечения прочной адгезии пакета слоев, устойчивой к воздействию групповой пайки. Наконец, в процессе использования МПП возникают трудности, при внесении изменений в трассировку при ремонте плат.

Многослойные печатные платы со скрытыми микропереходами на наружных слоях

Схема изготовления МПП со скрытыми микропереходами похожа на схему МПП изготавливаемых методом попарного прессования. Отличие лишь в том, что металлизацию внешнего слоя защищают от осаждения, чтобы не создавать больших толщин меди на внешних слоях. Для этого отверстия в слое выполняют не сквозными, а глухими. Не трудно увидеть также, что высверлить глухое отверстие в тонком основании на заданную глубину, не порвав фольги, невозможно. Поэтому слой с микропереходами выполняют из фольгированного полиимида и отверстия вытравливают через перфорации фольги по местам, где должны быть отверстия.

Нужно сказать, что технология изготовления МПП со скрытыми микропереходами активно вытесняется методом послойного наращивания переходов на основание, изготовленное методом металлизации сквозных отверстий.

Гибкие печатные платы

Использование гибких диэлектрических материалов для изготовления печатных плат электронных устройств дает ряд уникальных возможностей:

· уменьшение размеров и веса конструкции;

· повышение эффективности сборки;

· повышение электрических характеристик, теплоотдачи и, в целом, надежности.

Основное свойство таких плат -- динамическую гибкость. Учитывая это, становится понятным все возрастающий объем применения таких плат.

Гибкие печатные платы находят широкое применение:

· в автомобилях;

· бытовой технике;

· медицине;

· оборонной и аэрокосмической технике;

· компьютерах;

· системах промышленного контроля;

· бортовых системах.

Гибкие печатные платы (ГПП) изготавливаются на полиимидной или лавсановой пленке, поэтому могут легко деформироваться. Гибкость сохраняется даже после формирования проводящего рисунка. Большая часть конструкций гибких печатных плат аналогична конструкциям печатных плат на жесткой основе.

Типичные ошибки при конструировании плат

При сборке самодельных оснований люди допускают различные ошибки. К наиболее часто встречаемым относятся:

1. Неправильно выбранная ширина токопроводящих дорожек. Это приводит к потере напряжения, перегреву проводников, низкой механической прочности. Чтобы не столкнуться с такими проблемами, необходимо делать максимально допустимую ширину токопроводящих дорожек.

2. Неправильное проектирование цепей питания. Приводит к снижению выходящего напряжения, большие пульсации на выходе, помехам вместо постоянного напряжения. Решение проблемы -- максимальная ширина дорожек, подающий конденсатор из керамики.

3. Проблемы заземления. Использование обычного проводника минимальной ширины. Приводит к нестабильности рабочего процесса, перегреву основания. Решение -- использование отдельного слоя изоляции для разводки.

4. Небольшой зазор между медными проводниками, нанесёнными на плату. Приводит к нарушению целостности основания. Необходимо увеличить расстояние между проводниками, чтобы справиться с проблемой.

5. Большое количество соединительных отверстий на одной пластинке. Это приводит к увеличения токопроводящих дорожек, повышению сопротивления. Использовать максимум два отверстия на пластинках малого размера.

Немного истории

В Вначале XX века немецким инженером Альбертом Паркером Хансоном, занимавшимся разработками в области телефонии, было создано устройство, считающееся прототипом всех известных сегодня видов печатных плат. «Днем рождения» печатных плат считается 1902 год, когда изобретатель подал заявку в патентное ведомство родной страны.

Печатная плата Хансена представляла собой штамповку или вырезание изображения на бронзовой (или медной) фольге. Получившийся проводящий слой наклеивался на диэлектрик - бумагу, пропитанную парафином. Уже тогда заботясь о большей плотности размещения проводников, Хансен наклеивал фольгу с двух сторон, создавая двустороннюю печатную плату. Изобретатель также использовал идущие насквозь печатной платы соединительные отверстия. В работах Хансена есть описания создания проводников при помощи гальваники или проводящих чернил, представляющих собой измельченный в порошок металл в смеси с клеящим носителем.

Известно, что великого Эдисона тоже посещали подобные идеи. Сохранилось его письмо Франку Спрагу (основавшему корпорацию Sprague Electric), где Эдисон описывает три способа рисования проводника на бумаге.

1. Рисунок формируется при помощи адгезивных полимеров путём нанесения на их не застывшую поверхность измельченного в пыль графита или бронзы.

2. Рисунок формируется непосредственно на диэлектрике. Для нанесения изображения используется ляпис (нитрат серебра), после чего серебро просто восстанавливается из соли.

3. Проводником является золотая фольга с нанесенным на нее рисунком.

Естественно, Эдисон не употреблял термина «печатные платы», но практически все названные выше идеи нашли применение в сегодняшних технологических процессах. На основе первой из них сформировались тонкопленочные технологии сегодняшнего дня, а второй метод широко применяется для нанесения покрытий путем восстановления металлов из соли.

Изначально для изготовления печатных плат применялись исключительно аддитивные технологии, то есть рисунок наносился на диэлектрик наклеиваемым или напыляемым материалом.

Субтрактивные методы, широко применяемые в области полиграфии, стали использоваться и для производства печатных плат. Суть субтрактивных методик в том, что рисунок получается после удаления ненужных частей.

В 1913 году Артур Берри получил патент на субтрактивный метод изготовления печатных плат. Разработчик предлагал покрывать металлическую основу слоем резистного материала и травлением убирать незащищенные части c поверхности. В 1922 году проживающий в США Эллис Бассит изобрел и запатентовал методику использования светочувствительных материалов при производстве печатных плат.

Еще в 1918 году швейцарцем Максом Скупом была предложена технология газопламенного напыления металла. Методика осталась не востребованной из-за затратности производства и неравномерного осаждения металла.

Другое дело - методики американца Чарльза Дукласа. Он запатентовал технологию металлизации проводников, суть которой, заключалась в том, что в мягком диэлектрике (например, воске) прочерчивались каналы, заполняемые впоследствии металлизируемыми токопроводящими пастами при помощи электрохимического воздействия.

Так же в патент была включена технология травления, подразумевающая электролитическое осаждение металла (серебра, золота или меди) через контактную маску на пластину из низкотемпературного сплава. Пластина с осажденным рисунком нагревается, и все неприкрытые серебром части сплава удаляются. Чарльз Дукас располагал проводники с обеих сторон диэлектрической основы.

Первые разработки были ориентированы на формирование простых устройств, то есть не создавалось ничего сложнее отдельного узла схемы. Но прошло совсем немного времени, и тот же Дукас приступил к разработке многослойных печатных плат и предложил несколько интересных решений для межслойных соединений.

Спустя время появились гибкие печатные платы. На диэлектрик (лощеная бумага) наносили токопроводящий слой из графитовой пасты. Позже в обиход вошли токопроводящие пасты из меди и свинца.

Француз Цезарь Паролини реанимировал аддитивный метод создания токопроводящего слоя. В 1926 году он наносил на диэлектрик изображение посредством клеящего материала с напылением на него медного порошка и полимеризовал под воздействием высокой температуры. Именно Паролини начал применять в печатных платах проволочные перемычки, устанавливаемые до полимеризации материала.

В 1933 году были изданы работы Эрвина Франца, на которых базируются все существующие сегодня методики производства гибких печатных плат. Американскому разработчику удалось нанести токопроводящий рисунок на целлофановую пленку, для чего использовался жидкий полимер с графитовым наполнением.

Внедрению технологии печатных плат в область радиоэлектроники мы обязаны переселившемуся из Австрии в Великобританию инженеру Паулю Эйслеру. Во время второй мировой войны он успешно работал над поиском технологических решений для запуска печатных плат в массовое производство, широко используя полиграфические методы. После войны, в 1948 год, у Эйслер основал предприятие по изготовлению печатных плат - Technograph Printed Circuits.

Инженеру удалось получить пять десятков патентов в США и Великобритании, но конкурирующей американской фирме Bendix удалось доказать в суде неправомерность их выдачи Эйслеру. По мнению Bendix в технологии Эйслера не было ничего принципиально нового кроме области применения печатных плат. Во многом Bendix правы: над печатными платами с начала века работали инженеры со всего мира, и не стоит преуменьшать их заслуги в данной области. С другой стороны, сегодня уже никто не станет оспаривать очевидное - Эйслер многое усовершенствовал в технологии печатных плат. Без него мир электроники был бы несколько другим.

Послевоенное время стало эпохой внедрения печатных плат во все электрические приборы. Сначала печатные платы пришли в авиацию, а затем, в 50-х годах, стали основой всей бытовой электроники. Сегодня печатные платы практически не имеют конкуренции в качестве основы электронной аппаратуры, входя в состав компьютеров, сотовых телефонов и военной техники.

В заключении можно сделать вывод, что печатные платы - это сложное и гениальное изобретение без которого невозможно представить современную жизнь.

Ему нашлось применение во всех отраслях современной промышленности, а технологии изготовления только развиваются и усложняются, и всё же, глядя на темпы развития современной науки, я думаю, человечество, в скором времени, изобретёт новый и более совершенный способ решения задач, для которых сейчас применяют печатные платы.

Источники

1. https://belplata.by/pp/istoriya-pechatnykh-plat

2. https://www.radioingener.ru/pechaynye_platy/

3. https://www.vectorltd.ru/articles/pajka-pechatnyh-plat.html

4. ГОСТ Р 53386-2009 - основные термины

5. https://fb.ru/article/120551/pechatnaya-plata-opisanie-naznachenie

6. https://pcbdesigner.ru/sposobi-izgotovleniya-pechatnih-plat/metody-izgotovleniya-pechatnyx-plat.html

7. http://www.pselectro.ru/article/7/84

8. http://www.electrosad.ru/Electronics/PP.htm

9. Процессы формообразования и инструменты: учебник для студ. учреждений сред. проф. образования / Р. М. Гоцеридзе

Размещено на Allbest.ru

...

Подобные документы

  • Материалы, используемые при изготовлении однослойных печатных плат. Маркировка печатных плат, контроль и автоматизация технологического процесса изготовления однослойных печатных плат. Система печатных проводников. Длина сигнальных проводников в плате.

    курсовая работа [1,2 M], добавлен 14.06.2011

  • Условные графические изображения элементов. Правила выполнения принципиальных электрических схем. Требования ГОСТов к чертежам печатных плат, к графическим документам. Порядок выполнения чертежа печатной платы устройства гальванической развязки.

    курсовая работа [976,7 K], добавлен 08.12.2011

  • Методы создания печатных плат и характерные размеры элементов. Субтрактивный, аддитивный и полуаддитивный метод. Размеры сетки для отображения печатных плат, контактных площадок и отверстий. Создание макета печатной платы в среде Sprint-Layout 5.0.

    дипломная работа [2,5 M], добавлен 11.01.2016

  • Характеристика оборудования фирмы LPKF для производства печатных плат в домашних условиях. Исследование набора инструментов для скрайбирования и сверления, конструкции фрезерного станка для высокоточной обработки, оборудования для металлизации отверстий.

    курсовая работа [1,2 M], добавлен 07.12.2011

  • Процесс производства печатных плат. Методы создания электрических межслойных соединений. Химическая и электрохимическая металлизация. Контроль качества химического меднения. Растворы для тонкослойного и меднения. Виды брака на линии химического меднения.

    курсовая работа [2,2 M], добавлен 14.05.2011

  • Выбор материала и типа конструкции для производства двусторонней печатной платы, определение класса ее точности. Позитивный фотохимический способ изготовления и нахождение размеров печатной платы, допустимые паразитные параметры и длина проводников.

    курсовая работа [103,7 K], добавлен 07.10.2010

  • Материал для изготовления толстопленочных элементов. Требования, предъявляемые к пастам. Наполнители проводниковых паст. Методы формирования рисунка. Трафаретная печать. Проводники толстопленочных схем. Материалы для герметизации кристаллов и плат.

    реферат [131,8 K], добавлен 15.01.2009

  • Анализ создания электрической принципиальной схемы. Программные средства разработки для микроконтроллера. Описание технологии изготовления печатной платы. Мероприятия по устранению или уменьшению влияния вредных факторов при производстве печатных плат.

    дипломная работа [855,4 K], добавлен 13.06.2021

  • Понятие координатографа как прибора для быстрого и точного нанесения на карту или план точек по их прямоугольным координатам. Операция изготовления фотошаблонов в производстве печатных плат. Классификация фотоплоттеров, характеристика основных видов.

    презентация [808,9 K], добавлен 13.12.2013

  • Проектирование универсального цифрового контроллера, его функции, возможности и недостатки. Разработка структурной схемы устройства. Расчет элементов печатных плат. Компоновочный расчет устройства. Стоимостная оценка затрат, эргономичность устройства.

    дипломная работа [1,5 M], добавлен 29.06.2010

  • Определение элементной базы электронного устройства. Определение технологии изготовления печатной платы. Обзор современных систем автоматизированного проектирования печатных плат. Анализ трудоемкости работ по проектированию электронного устройства.

    курсовая работа [1,9 M], добавлен 18.12.2013

  • Разработка печатной платы для схемы РЭА в программе DipTrace. Расчет основных показателей надежности (безотказности) схемы: интенсивности отказов, наработки на отказ и вероятности безотказной работы РЭА за 1000 часов. Система проектирования печатных плат.

    контрольная работа [524,4 K], добавлен 04.12.2009

  • Разработка принципиальной схемы и печатной платы СВЧ ГУН и квадратичного детектора в среде P-Cad. Монтаж печатных плат генератора и квадратичного детектора, анализ их характеристик. Метрологические характеристики установленных в устройство СВЧ-блоков.

    дипломная работа [2,4 M], добавлен 15.07.2014

  • Разработка охранной защиты от проникновения с подсистемами: защиты периметра, контроля и обнаружения доступа в здание или отдельные помещения. Характеристики прибора присутствия, схемы источника питания. Метод изготовления печатных плат устройства.

    курсовая работа [152,0 K], добавлен 27.02.2009

  • Основные понятия и принципы работы GSM-сетей. Сущность метода и структура временного разделения каналов (TDMA). Принцип работы генератора пакетов. Особенности изготовления печатных плат. Технические характеристики блокиратора сигнала сотовых телефонов.

    курсовая работа [2,5 M], добавлен 09.12.2012

  • Назначение и основные функциональные элементы радиопередатчика телеметрической системы. Структурная и принципиальная схемы устройства. Характеристики микросхем: MAX4617, MAX1178, КХО-210, RF 2713. Конструкция печатных плат и используемые программы САПР.

    курсовая работа [603,8 K], добавлен 19.11.2010

  • Разработка специального цифрового устройства, обеспечивающего генерацию и обработку радиосигналов как в режиме реального времени так и в режиме пост-обработки. Краткий алгоритм работы приемника цифрового анализатора. Техника разводки печатных плат.

    дипломная работа [2,5 M], добавлен 25.02.2014

  • Основные параметры схемы электрического принципиального блока управления стабилизатора переменного напряжения. Технология изготовления печатных плат, их трассировка и компоновка. Расчет себестоимости блока управления стабилизатора переменного напряжения.

    курсовая работа [1,1 M], добавлен 14.06.2014

  • Экспериметальный расчет усилителя напряжения разностным уравнением в векторно-матричной форме. Подтверждение результатов моделью, собранной в среде Simulink математического пакета Matlab. Разведение печатных плат с помощью пакета программ P-Cad 2001.

    дипломная работа [549,4 K], добавлен 28.09.2010

  • Произведение расчета собственных частот колебаний резистора, инерционной силы, изгибающих моментов, максимальных допустимых напряжений в местах крепления и виброперегрузок для оценки прочности конструкций электрорадиоэлементов на примере печатных плат.

    курсовая работа [203,5 K], добавлен 26.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.