Correlation and regression analysis of tourists served by tourism entities in Ukraine: regional differences

Consideration of tourist flows that affect spatial differences in the functioning of destinations and cause territorial socio-economic inequality. The main use of econometric models for forecasting the development of the tourism industry in Ukraine.

Рубрика Спорт и туризм
Вид статья
Язык английский
Дата добавления 25.06.2024
Размер файла 109,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Uzhhorod National University

Uzhhorod Institute of Trade and Economics of State University of Trade and Economics

Department of Management of Tourism, Hotel and Restaurant Business

Correlation and regression analysis of tourists served by tourism entities in Ukraine: regional differences

Morokhovych Vasyl PhD, Associate Professor, Associate Professor

Hrabar Maryna

Associate Professor of the Department of Tourism

Kashka Mariia PhD, Associate Professor, Associate Professor

Uzhhorod

Abstract

Tourism is an important component of many countries, as the tourism sector works closely with other industries, attracting investment resources, strengthening the revenue side of the budget, improving the country's balance of payments, and promoting sustainable economic growth and welfare. The key indicator of the development of tourism is tourist flows that affect the spatial differences in the functioning of destinations and cause territorial socio-economic unevenness. The most significant determinants affecting the number of tourists serviced can be identified using correlation and regression analysis. The article analyzes the current state of the market of tourist services in Ukraine. The financial and economic crisis, which has intensified in recent years, the events related to the annexation of the Autonomous Republic of Crimea and the operation of the Joint Forces in the territory of Donetsk and Luhansk regions, led to a decrease in the inbound tourist flow in Ukraine. The factors that influence the development of the tourism market of Ukraine are studied. Using the correlation-regression analysis, a model of cause and effect relationships between the population of the region, its real incomes, the number of tourist enterprises and the resulting feature - the number of tourists served, have been formed. Econometric models indicate that number of tourist enterprises positively affects the resulting feature in 95.8% of the regions; the income per capita contributes to an increase in the number of tourists served in 91.7% of the regions; and the number of population affects an increase in the number of tourists in 66.7% of the regions. Thus, the hypothesis of factor variables has been confirmed in most regions of Ukraine. The study of the number of tourists serviced by enterprises of tourist industry in the regional context enables us to analyze the efficiency of their activities and to determine the parameters of the regions with greater mobility of the population, as well as to identify the regions that generate tourist flows. The practical importance of constructing econometric models lies in the possibility of using them to predict the development of the tourism industry in Ukraine.

Key words: tourism, tourism market, tourist flow, correlation and regression analysis, Ukraine.

Анотація

Морохович В. С

к.ф.-м.н., доцент, доцент кафедри менеджменту туристичного та готельно-ресторанного бізнесу, Ужгородський торговельно-економічний інститут Державного торговельно-економічного університету, м. Ужгород

Грабар М. В.

к.е.н., доцент кафедри туризму,

ДВНЗ «Ужгородський національний університет», м. Ужгород

Кашка М. Ю.

к.і.н., доцент кафедри туризму,

ДВНЗ «Ужгородський національний університет», м. Ужгород

КОРЕЛЯЦІЙНО-РЕГРЕСІЙНИЙ АНАЛІЗ ТУРИСТІВ, ЩО ОБСЛУГОВУЮТЬСЯ СУБ'ЄКТАМИ ТУРИСТИЧНОЇ ДІЯЛЬНОСТІ В УКРАЇНІ: РЕГІОНАЛЬНІ ВІДМІННОСТІ

Туризм є важливою складовою багатьох країн, оскільки суб'єкти туристичного сектору тісно співпрацюють з іншими галузями, забезпечуючи залучення інвестиційних ресурсів, зміцнюючи дохідну частину бюджету, покращуючи платіжний баланс країни, а також сприяє стійкому економічному зростанню та підвищенню добробуту населення. Ключовим показником розвитку туризму є туристичні потоки, які впливають на просторові відмінності у функціонуванні дестинацій та викликають територіальну соціально- економічну нерівномірність. Найбільш значущі детермінанти, що впливають на кількість обслуговуваних туристів, можна визначити за допомогою кореляційного та регресійного аналізу. У статті проведено аналіз сучасного стану ринку туристичних послуг в Україні. Фінансово-економічна криза, що загострилася останніми роками, та події, пов'язані з анексією АР Крим і дією Об'єднаних сил на території Донецької та Луганської областей, призвели до зменшення в'їзного туристичного потоку в Україні. Досліджено фактори, що впливають на розвиток туристичного ринку України. За допомогою кореляційно-регресій- ного аналізу сформовано модель причинно-наслідкових зв'язків між населенням регіону, його реальними доходами, кількістю туристичних підприємств та результуючою ознакою - кількістю обслуговуваних туристів. Економетричні моделі показують, що кількість туристичних підприємств позитивно впливає на результуючу ознаку в 95,8% регіонів; дохід на душу населення сприяє збільшенню кількості туристів, які обслуговуються в 91,7% регіонів; а чисельність населення впливає на збільшення кількості туристів у 66,7% регіонів. Таким чином, гіпотеза факторних змінних підтверджена в більшості регіонів України. Вивчення кількості туристів, що обслуговуються підприємствами туристичної індустрії в регіональному розрізі, дозволяє проаналізувати ефективність їх діяльності та визначити параметри регіонів з більшою мобільністю населення, а також визначити регіони, які генерують туристичні потоки. Практичне значення побудови економетричних моделей полягає в можливості їх використання для прогнозування розвитку туристичної галузі в Україні.

Ключові слова: туризм, туристичний ринок, туристичний потік, кореляційно-регресійний аналіз, Україна.

Formulation of the problem

In many countries tourism is an important economic sector that connects societies. The key indicator of the development of tourism is tourist flows that affect the spatial differences in the functioning of destinations and cause territorial socio-economic unevenness. According to the basic tourism system the following destinations are distinguished: destinations generating tourist flows, transit destinations and hosting destinations. The uneven location of the latter from the standpoint of natural resource base is justified by the availability of tourist resources: natural, historical, cultural social, and event. These tourism resources are the core of growth, which stimulates the development of the surrounding material base. However, a logical issue arises regarding the peculiarities of the spatial disproportion of destinations generating tourist flows and businesses directly involved in servicing tourists. Tourist flows represent a significant source of income for the tourism sector. This is also confirmed by the fact that in 2018 tourism industry accounted for 10.4% of world GDP, 319 million jobs or 10% of total employment [16]. Thus, the study of the number of tourists serviced by tour operators, travel agents and the key factors influencing their volumes are currently being updated. tourist econometric inequality

The most significant determinants affecting the number of tourists serviced can be identified using correlation and regression analysis. This, in turn, will firstly help to form a clear picture of the number of tourists serviced in the context of the regions of Ukraine; and secondly, interpret the relationship between the number of tourist enterprises and the efficiency of their operation.

Therefore, it is important to analyze the determinants and the basic regularities of the formation of tourist flows. Hence the need for the construction of econometric models aiming to obtain statistically reliable results that fully describe the tourist flow and enable its forecasting.

Analysis of recent research and publications

Research of tourist flows on the example of France, which is one of the world's most visited destinations, was carried out by C. Terrier (2009). The research emphasizes the distinction between tourist flows along transport routes and intra-territorial flows. The author examines various systems used to measure tourist flows and discusses their usefulness and limitations, as well as presents the potential value of modern communication technologies for the study of population mobility. More specifically, the question is about establishing the correct balance between statistical accuracy and individual freedom.

T. Baldigara analyzes the determinants and basic regularities of tourism demand in Croatia. The main attention of the study was paid to the construction of an econometric model of tourism demand. It was suggested that the demand for tourism in Croatia can be approximated by the model of a second order polynomial regression (Baldigara & Koic, 2015).

Econometric models of tourism demand on the example of Greece were developed by N. Drit- sakis and I. Athanasiadis (2008). The research focuses on foreign tourism due to its impact on the socio-economic structure of the host country. The application of the econometric model of tourism demand in the developed tourism market involves improving the tourism product.

The application of the regression model is reflected in the scientific work studying the correlation between climate change and tourism industry (Sverko Grdic & Krstinic Nizic,. This research analyses the influence of temperature increase on the number of future tourist arrivals by 2025 through the regression model and exponential regression analysis, using one dependent variable (the number of tourists) and one independent variable (temperature). The model obtained in this paper shows that the temperature affects the number of tourists in the coastal and mountainous part of Croatia, while in the continental part (Zagreb) the temperature does not affect the tourist flow. It is stated that in the summer months climate change will reduce the demand in the coastal part and an increase in demand in the northern regions (mountainous areas) of Croatia.

The correlation-regression analysis is also applied in studies of such component of tourism as accommodation facilities (Pranic, Ketkar & Roehl, 2012). The analysis of business efficiency based on the correlation between the number of tourist arriving at the hotels and the number of nights is the best way to get good results (Popescu, 2016).

The use of models for forecasting tourist flows are illustrated on the example of the following destinations: Australia (Athanasopoulos & Hyndman, 2006), the Bahamas (Charles & Fullerton, 2011), Turkey (Yilmaz, 2015), Nepal (Subedi,, Zimbabwe (Makoni & Chikobvu, 2018), Cambodia (Chhorn & Chaiboonsri, 2018), India (Chandra & Kumari, 2018), Hong Kong (Choi, 2019) et al.

As we see, econometric models are widely used in studies of international tourism; however, the problem is the lack of such research on the example of Ukraine. In addition, the study of regional differentiation will further contribute to the construction of reliable econometric models.

The purpose of the study is to carry out correlation and regression analysis of tourist flows serviced by tourism entities in the regions of Ukraine. This, in turn, will allow forming a model of causal relationships between the population of the region, its real incomes, the number of tourist enterprises and the resulting feature - the number of tourists serviced.

Presentation of the main research material

Ukraine is located in the center of Europe and has all the conditions for the proper development of the economy through tourism, but it is significantly behind the leading countries in the world in terms of the development of tourism infrastructure and quality of tourist services. The financial and economic crisis, which has intensified in recent years, the events related to the annexation of the Autonomous Republic of Crimea and the operation of the Joint Forces in the territory of Donetsk and Luhansk regions, led to a decrease in the inbound tourist flow, negatively affected the development of the tourism business in Ukraine.

According to the 2019 Tourism Competitiveness Report, Ukraine had the fastest growth rate in TTCI scores in the Eurasia sub-region, rising 10 places to rank 78th globally. In particular, as the country stabilized and recovered economically, Ukraine drastically improved its business environment (124th to 103 rd), safety and security (127th to 107th), international openness (78th to 55 th) and overall infrastructure (79th to 73 rd) [15].

The development of tourism in Ukraine is reflected in the dynamics of the number of participants in international tourism (Figure 1).

Analysis of the dynamics of tourist flows shows that in 2014 there was a sharp decline in the number of tourists who visited Ukraine. This is explained by political instability and hostilities in the east of the country and, accordingly, the loss of territories important for the development of the tourism industry. The number of foreign citizens who visited Ukraine this year has almost halved to 12.7 million. However, since 2015, there has been a slight positive trend in inbound tourism.

With regard to outbound tourism, this flow has a completely different dynamics. The number of Ukrainian citizens who went abroad during the analyzed period has been steadily increasing. The exception was 2014, which saw a slight drop in the numbers to 22.4 million people. Most often Ukrainian citizens in 2018 visited Poland, Hungary, Russia, Moldova, Belarus, Romania, Turkey, Egypt.

Tourism enterprises in Ukraine are economic entities that provide tourist services based on the use of tourist resources, as well as accommodation, catering and related infrastructure services.

Figure 1. Dynamics of tourist flows in Ukraine

Source: developed based on [12] (Indicated without taking into account the temporarily occupied territories of the Autonomous Republic of Crimea, Sevastopol and the temporarily occupied territories in Donetsk and Luhansk regions)

Figure 1 shows that only part of the international tourism participants were served by tour operators or travel agencies that are intermediaries in the tourist services market during the organization of the trips. In 2014, the number of tourists served by tourist enterprises in Ukraine decreased by 1.0 million, which is 29.8% compared to 2013, and in 2015 by another 0.4 million, ie 17%. Since 2016, there has been a positive trend in the number of tourists served by tourism enterprises.

In order to take into account the dynamics of changes in the number of tourists serviced - which is the basis of a successful tourism industry in the country and a key indicator of the production efficiency of the enterprises - econometric models on the basis of correlation-regression analysis were built in designing the development programs for the industry.

They use data on the number of tourists serviced by tour operators, travel agents in the regions of Ukraine during 2013-2018. These figures are the resulting features by the regions (T).

The following are taken as factors: the number of tourism entities (Af1), available income per capita (X,), the number of population (X3). The source data for correlation-regression analysis are given in Table 1.

The choice of the above factors is justified by the following hypotheses:

with a decrease in the number of tourism entities, the number of tourists serviced also reduces, since the reduction of production capacity limits the ability to serve a larger number of potential tourists;

with an increase in income the number of tourists also increases, as the availability of funds motivates for recreation and travel;

regions with more population generate a larger number of tourists.

The study of the statistical indicator Y showed some fluctuation in the regions. Thus, in 2018 there was an increase in this indicator in most regions: Vinnytsia, Volyn, Dnipropetrovsk, Donetsk, Zhytomyr, Zakarpattia, Zapor- izhia, Kyiv, Kirovohrad, Luhansk, Lviv, Mykolaiv, Odessa, Poltava, Rivne, Sumy, Ternopil, Kharkiv, Kherson, Cherkasy, Chernivtsi, Chernihiv, due to the popularization of domestic tourism and growth of incomes.

Preliminary analysis of the source data shows that the factor variable - the disposable income per capita - increased in all regions during the period under study. This was achieved by targeted government policy of raising the minimum wage level.

There are direct and inverse relationships between the resulting and factor variables, which are distinguished depending on the direction of change of the resulting variable. Thus, there is an inverse relationship between the number of tourists serviced and the number of tourist enterprises, and direct relationship between the number of tourists and disposable incomes.

The relationship between the number of tourists serviced and the number of tourist entities, disposable income per capita and the number of population is reflected in the multi-factor model (multiple correlation).

On the basis of correlation-regression analysis of the number of tourists serviced by tourist entities, the following data were obtained.

The qualitative estimation of the communication density of the multiple correlation R coefficient (based on the Chaddock scale) shows that a high correlation is observed in the following regions: Volyn (0.81), Ivano-Frankivsk (0.81), and Lviv (0.80). A very high correlation is observed in the following regions: Vinnytsia (0.99), Dnipropetrovsk (0.99), Donetsk (0.99), Zakarpattia (0.99), Kyiv (0.99), Luhansk (0.99), Odessa (0.99), Rivne (0.99), Sumy (0.99), Cherkasy (0.99), Zhytomyr (0.98), Mykolaiv (0.98), Poltava (0.98), Kharkiv (0.98), Chernihiv (0.98), Kirovohrad (0.97), Kherson (0.97), Khmelnytskyi (0.96), Zaporizhia (0.95), Chernivtsi (0.94), and Ternopil (0.91). Thus, in the existing model 12.5% are highly dependent and 87.5% have a very high dependence.

The determination coefficient in the range of 0.9-0.99 is characteristic of the following regions: Vinnytsia, Dnipropetrovsk, Donetsk, Zhytomyr, Zakarpattia, Kyiv, Kirovohrad, Luhansk, Mykolaiv, Odessa, Poltava, Rivne, Sumy, Kharkiv, Kherson, Khmelnytskyi, Cherkasy, and Chernihiv. That is, 90-99% of the feature is determined by the investigated factors. The least value of the coefficient was obtained in Volyn, Ivano- Frankivsk, and Lviv regions. For the rest of the regions (Ternopil, Chernivtsi, Zaporizhia) the determination varies in the range of 0.8-0.9, which indicates that 80-90% of the variation is explained by the linear model, which means the correct choice of factors. The value of the determination coefficient indicates that the source data and the regression model are consistent, since its value maximally approaches 1.

High values of correlation coefficients and determination indicate that this dependence is sufficiently regular. The obtained Fisher's criteria show that the regression equation is statistically significant and can be applied. Indicators of the reliability of the model show that all parameters of the regression equation are statistically significant and can not accept zero values. The obtained correlationregression analysis of the indicators enables us to construct a model of influence on the resulting variable - the number of tourists serviced.

Table 1 Source data for correlation-regression analysis

Years

Number of tourists serviced

TE*

Income per capita, UAH

Population, persons

Number of tourists serviced

TE*

Income per capita, UAH

Population, persons

Y

Х1

x2

Хз

Y

Х1

x2

Хз

Vinnytsia

Volyn

2013

29606

76

23000.6

1627038

19490

85

19804.9

1039958

2014

20744

69

23421.7

1618262

14593

80

20137.2

1041303

2015

22748

63

29637.1

1610573

15620

68

24979.9

1042918

2016

27485

68

34931.4

1602163

26526

69

30012.5

1042668

2017

38634

69

45436.2

1590357

17047

66

38514.0

1040954

2018

42178

87

54992.0

1575808

21807

74

46475.1

1038457

Dnipropetrovsk

Donetsk

2013

81249

487

30300.6

3307795

113917

355

31048.5

4375442

2014

56803

324

32036.2

3292431

14834

84

26234.4

4343882

2015

46121

294

39142.0

3276637

3297

23

21346.4

4297250

2016

57770

322

44365.9

3254884

10874

33

20927.0

4265145

2017

75526

325

57332.5

3230411

9231

42

25278.4

4244057

2018

116981

416

72883.4

3231140

28425

93

31888.0

4200461

Zhytomyr

Zakarpattia

2013

9613

58

21652.1

1268903

19892

82

17929.3

1254393

2014

6060

44

22102.1

1262512

11625

74

17358.1

1256850

2015

6283

47

27801.4

1255966

10656

67

22456.7

1259570

2016

8615

56

32979.1

1247549

11601

65

26856.2

1259158

2017

9516

47

42683.9

1240482

14652

63

33891.1

1258777

2018

17957

63

52135.9

1231239

25348

91

40471.6

1258155

Zaporizhia

Ivano-Frankivsk

2013

54415

250

28388.1

1785243

77666

112

20987.8

1381788

2014

39010

231

30181.8

1775833

63848

99

20356.7

1382096

2015

30922

140

36277.4

1765926

65885

83

26540.1

1382553

2016

40376

161

43461.6

1753642

79973

107

31718.9

1382352

2017

47675

160

54261.0

1739488

73309

105

40579.5

1379915

2018

56374

188

67982.5

1723171

55781

128

48367.7

1377496

Kyiv

Kirovohrad

2013

24459

134

27390.6

1722052

15036

70

21671.4

995171

2014

13143

104

28443.3

1725478

8484

56

21954.1

987565

2015

11560

90

33955.6

1729234

7830

46

27382.5

980579

2016

25008

119

40126.9

1732235

8854

47

32744.7

973150

2017

36983

116

50664.4

1734471

8436

43

42226.8

965456

2018

66385

217

63498.4

1754284

11556

54

51018.0

956250

Luhansk

Lviv

2013

34716

225

25590.3

2256551

188520

272

23138.3

2540702

2014

791

15

19788.3

2239473

92128

235

23595.2

2538436

2015

939

11

15633.6

2220151

112472

221

29542.2

2537799

2016

1896

19

13792.7

2205389

181827

272

35325.0

2534174

2017

2825

17

16416.4

2195290

175150

282

44981.0

2534027

2018

6261

29

20618.6

2167802

182255

342

55510.7

2529608

Mykolaiv

Odessa

2013

19003

75

23868.8

1173481

61589

302

25571.8

2395160

2014

9148

65

23458.5

1168372

43382

249

24242.0

2396493

2015

7464

60

29342.1

1164342

45809

245

32384.5

2396442

Years

Number of tourists serviced

TE*

Income per capita, UAH

Population, persons

Number of tourists serviced

TE*

Income per capita, UAH

Population, persons

Y

Х1

x2

Хз

Y

Х1

x2

Хз

2016

9023

69

34970.5

1158207

59077

268

39132.1

2390289

2017

11805

63

45355.7

1150126

72302

264

50111.1

2386516

2018

19002

87

55543.9

1141324

81381

270

61165.6

2383075

Poltava

Rivne

2013

20125

130

25371.2

1467821

13545

78

21165.0

1156868

2014

12947

110

26195.7

1458205

8936

69

21781.0

1158851

2015

9497

91

31996.5

1448975

6640

59

26707.7

1161151

2016

14608

88

37938.4

1438948

9022

66

31294.8

1161811

2017

19032

93

48663.0

1426828

11168

60

40325.4

1162763

2018

32007

155

60217.5

1413829

22027

93

47729.1

1160647

Sumy

Ternopil

2013

13498

59

23558.6

1143249

13490

70

18993.8

1077327

2014

8574

51

23938.1

1132957

9066

49

18400.5

1073327

2015

7567

53

30572.3

1123448

6668

43

24040.1

1069936

2016

8819

57

36084.4

1113256

7536

53

28194.7

1065709

2017

11185

58

45852.3

1104529

9558

45

36203.8

1059192

2018

16178

79

55934.4

1094284

13103

63

43512.5

1052312

Kharkiv

Kherson

2013

91648

358

26098.2

2744419

16112

69

21724.0

1078232

2014

71437

309

26274.0

2737242

15818

70

20727.9

1072567

2015

31233

264

32197.9

2731302

11720

53

27880.0

1067876

2016

40429

255

38196.6

2718616

16584

72

32967.9

1062356

2017

51929

263

48370.4

2701188

20278

67

41695.0

1055649

2018

62232

266

60117.7

2694007

26130

80

50109.4

1046981

Khmelnyts

kyi

Cherkasy

2013

24402

100

22789.0

1313964

15984

99

21633.2

1268888

2014

19027

84

22686.1

1306992

9694

82

21760.5

1259957

2015

25426

78

29291.9

1301242

8520

75

26969.7

1251816

2016

19885

89

34394.5

1294413

11684

86

32327.2

1242965

2017

26829

90

43638.1

1285267

20953

92

41853.5

1231207

2018

25738

89

52487.6

1274409

26383

101

50292.6

1220363

Chernivtsi

Chernihiv

2013

18578

121

19438.2

907163

9424

59

23599.7

1077802

2014

16560

68

18475.6

908508

7689

57

23093.4

1066826

2015

15662

65

23929.0

909965

7052

55

28440.4

1055673

2016

19415

66

28360.8

909893

11698

51

33231.3

1044975

2017

20341

65

36214.5

908120

15974

51

42501.2

1033412

2018

29562

77

42850.4

906701

22306

58

50895.4

1020078

TE* - tourist entities

Source: formed according to the data [12]

Table 2 The complex interaction of all factors (xbx2,...,xM) with the resultant index (T) can be described by the equation of the linear multivariable regression of the type:

Mu

tifactor regression equation

Region

Linear multifactor regression equation

Vinnytsia

Y = -2007295,42 +37,06x1 + 2,35x2 + 1,22x3

Volyn

Y = -9589833,64 + 2045,58x1 + 1,6x2 + 9,04x3

Dnipropetrovsk

Y = -1039910,4 + 186,52x1 + 1,65x2 + 0,3x3

Donetsk

Y = 518661,49 + 402,3x1 - 1,33x2 - 0,12x3

Zhytomyr

Y = -456696,75 + 249,86x1 + 0,62x2 + 0,35x3

Zakarpattia

Y = 1834767,83 + 247,35x1 + 0,43x2 - 1,47x3

Zaporizhia

Y = -2451041,85 + 101,93x1 + 2,44x2 + 1,35x3

Ivano-Frankivsk

Y = -12613815,02 + 522,72x1 + 0,68x2 + 9,13x3

Kyiv

Y = 1707745,34 + 325,99x1 + 1,32x2 - 1,02x3

Kirovohrad

Y = -351010,99 + 188,06x1 + 0,46x2 + 0,34x3

Luhansk

Y = 88974,59 + 160,4x1 + 0,13x2 - 0,04x3

Lviv

Y = -17053194,78 + 1017,33x1 + 0,82x2 + 6,67x3

Mykolaiv

Y = -1777212,99 + 289,95x1 + 1,4x2 + 1,48x3

Odessa

Y = 1804150,45 + 315,88x1 + 0,6x2 - 0,77x3

Poltava

Y = -910537,27 + 114,76x1 + 1,21x2 + 0,6x3

Rivne

Y = 1978552,07 + 107,58x1 + 0,52x2 - 1,72x3

Sumy

Y = -476726,38 + 161,93x1 + 0,61x2 + 0,41x3

Ternopil

Y = -184014,17 + 215,92x1 + 0,22x2 + 0,17x3

Kharkiv

Y = 2580653,69 + 736,26x1 - 0,51x2 - x3

Kherson

Y = -241324,54 + 304,99x1 + 0,45x2 + 0,21x3

Khmelnytskyi

Y = -2279056,79 - 396,59x1 + 2,24x2 + 1,74x3

Cherkasy

Y = -689552,82 + 207,83x1 + 1,22x2 + 0,52x3

Chernivtsi

Y = 1139311,09 + 20,57x1 + 0,39x2 - 1,25x3

Chernihiv

Y = -205755,35 + 141,37x1 + 0,84x2 + 0,17x3

The following regression equations were obtained in the regions of Ukraine (Table 2). Econometric models indicate that factor variable Х1 (the number of tourist enterprises) has a positive effect on the resulting variable in 95.8% of the regions; Х2 (income per capita) contributes to an increase in the number of tourists serviced in 91.7% of the regions; Х3 (the number of population) affects the growth of the number of tourists serviced in 66.7% of the regions.

One of the key indicators of the quality of the model is the independence of its residuals. If this condition is violated, there is autocorrelation resulting from the existence of a dependence between the preceding and the following values of the effective indicator. Let us check the model of the number of tourists serviced for the autocorrelation using the Durbin-Watson criterion (Table 3).

The presence or absence of autocorrelation of the residuals is checked by comparing the actual value of the DW with the critical ones found in a special table depending on the level of signify cance of the DW, the number of factors m and the number of observations n.

Using the table of critical values of the Darwin- Watson criterion, we will find the value d = 0-82, du = 1.75 (a = 0.05, n = 6, k = 3). The obtained criterion values for all regions are DW > 1.75, which makes it possible to state that there is no correlation. The condition of independence of residuals is observed, therefore the regression parameters are reasonable and efficient. Since DW > DWu (upper limit) we conclude that there is no correlation between the following residuals and the previous ones.

Table 3 Evaluation of the quality of the models according to the Darwin-Watson criterion in the regions of Ukraine

Forecast

Residuals

e

( Є - et _! ) 2

Forecast

Residuals

(e - e,-i)2

Vinnytsia

Volyn

1

29669.25

-63.25

4000.15

-

16245.83

3244.17

10524624.86

-

2

19717.05

1026.95

1054627.44

1188530.16

18708.06

-4115.06

16933744.72

54158280,51

3

24719.99

-1971.99

3888741.09

8993639.17

16516.67

-896.67

804025.85

10358023.0

4

27091.92

393.08

154512.09

5593553.14

24363.73

2162.27

4675421.44

9357157.82

5

37407.9

1226.1

1503323.7

693923.59

16351.48

695.52

483747.21

2151364.09

6

42788.9

-610.9

373193.87

3374557.88

22897.22

-1090.22

1188582.82

3188870.33

Total

6978398.34

19844203.94

Total

34610146.91

79213695.75

DW

2.84

DW

2.29

Dnipropetrovsk

Donetsk

1

82514.66

-1265.66

1601884.4

-

113954.62

-37.62

1415.4

-

2

50409.72

6393.28

40874016.4

58659281.07

14997.83

-163.83

26839.7

15928.09

3

51828.81

-5707.81

32579124.09

146436416.73

2365.98

931.02

866791.29

1198684.57

4

59198.61

-1428.61

2040913.69

18311612.93

10661.77

212.23

45040.75

516656.49

5

73849.09

1676.91

2812027.67

9644227.51

10922.91

-1691.91

2862549.97

3625731.06

6

116649.12

331.88

110147.4

1809093.7

27674.89

750.11

562669.37

5963462.17

Total

80018113.64

234860631.94

Total

4365306.47

11320462.38

DW

2.94

DW

2.59

Zhytomyr

Zakarpattia

1

10081.94

-468.94

219900.25

-

19016.89

875.11

765818.17

-

2

4649.94

1410.06

1988265.97

3530618.75

13179.42

-1554.42

2416235.18

5902639.15

3

6642.19

-359.19

129015.33

3130231.01

9656.43

999.57

999140.31

6522887.66

4

9165.35

-550.35

302888.87

36544.58

11671.27

-70.27

4937.69

1144554.93

5

10443.94

-927.94

861065.18

142568.6

14781.05

-129.05

16654.59

3455.56

6

17060.65

896.35

803448.33

3328029.53

25468.93

-120.93

14625.2

65.9

Total

4304583.93

10167992.48

Total

4217411.13

13573603.2

DW

2.36

DW

3.22

Zaporizhia

Ivano-Frankivsk

1

52124.83

2290.17

5244868.17

-

72479.56

5186.44

26899149.56

-

2

41879.33

-2869.33

8233059.67

26620425.72

68064.55

-4216.55

17779298.98

88416213.57

3

34141.62

-3219.62

10365934.73

122700.49

68096.78

-2211.78

4891970.84

4019105.1

4

37274.87

3101.13

9616982.36

39951794.0

82345.21

-2372.21

5627398.88

25739.04

5

44481.41

3193.59

10198988.24

8548.76

65107.11

8201.89

67271046.96

111811734.8

6

58869.93

-2495.93

6229672.24

32370599.37

60368.79

-4587.79

21047792.82

163575920.76

Total

49889505.4

99074068.34

Total

143516658.05

367848713.27

DW

1.99

DW

2.56

Kyiv

Kirovohrad

1

24504.3

-45.3

2052.35

-

14637.72

398.28

158629.11

-

2

12607.59

535.41

286663.89

337227.51

9516.89

-1032.89

1066857.79

2048249.8

3

11480.43

79.57

6331.96

207786.81

7726.06

103.94

10803.29

1292375.56

4

26014.5

-1006.5

1013043.11

1179556.88

7820.99

1033.01

1067113.95

863176.99

5

36668.25

314.75

99069.11

1745709.18

8777.44

-341.44

116581.81

1889120.66

6

66262.93

122.07

14900.4

37127.6

11716.9

-160.9

25890.35

32593.24

Total

1422060.83

3507407.98

Total

2445876.3

6125516.26

DW

2.47

DW

2.5

Luhansk

Lviv

1

34702.03

13.97

195.2

-

179499.69

9020.31

81365946.57

-

2

960.83

-169.83

28843.79

33784.67

127126.45

-34998.45

1224891650.1

1937651193.6

3

573.24

365.76

133782.96

286865.35

113501.48

-1029.48

1059828.75

1153891076.66

4

2226.59

-330.59

109290.89

484910.64

145949.63

35877.37

1287185361.9

1362115240.31

5

2671.81

153.19

23466.85

234043.73

163040.59

12109.41

146637699.07

564915931.9

6

6293.5

-32.5

1056.09

34479.49

203234.15

-20979.15

440124587.39

1094852265.89

Total

296635.79

1074083.89

Total

3181265073.8

6113425708.36

DW

3.62

DW

1.92

Forecast

Residuals

el

( Є - Є, _! ) 2

Forecast

Residuals

2

(e - )2

Mykolaiv

Odesa

1

18920.6

82.4

6790.2

-

61029.21

559.79

313365.92

...

Подобные документы

  • Historical development in travel and tourism industry, its structure. The impact of national economic policy in Scotland for success in this area. The function of government, state bodies in the industry. Factors affecting tourism demand in the country.

    реферат [13,2 K], добавлен 11.11.2015

  • The value of domestic tourism for the Russian economy: an increase in jobs in hotels, restaurants, food industry and transport. Stages of development of domestic tourism in post-revolutionary and Soviet periods. Treatment, athletic and business tourism.

    реферат [20,0 K], добавлен 04.03.2012

  • Official statistics of tourism in Switzerland. Notable tourist destinations: Alpine (Grisons, Engadin, Davos, Wildhaus, Jungfrau, Grindelwald, Zermatt) and Cities (Zurich, Bern, Lucerne, Basel, Geneva, Lausanne, Canton Ticino, Locarno, Lugano, Ascona).

    реферат [2,3 M], добавлен 13.03.2015

  • A specific feature of services. The main form of supply of services abroad. A need for international regulation of trade in services. Operations on foreign tourism. International tourism as a form of foreign economic activity. World Tourism Organization.

    реферат [1,2 M], добавлен 30.09.2014

  • Tourism as an invisible export. The British Tourist Authority and the English Tourism Council. The competition between National Bus and private companies. The Act about wholesale de-regulation. The Package Holidays and Package Tours Regulations.

    презентация [785,1 K], добавлен 31.03.2014

  • Consideration of geographical location, topography, climatic conditions in Argentina. Introduction to the country's main tourist attractions - museums in Buenos Aires, Iguazu Falls. Walking through the city of Mendoza and hiking in the Andes mountains.

    презентация [8,7 M], добавлен 02.12.2011

  • Finland is a wonderful Nordic country and a priority of tourists which can estimate the nature. Progress of eco-tourism in Finland. The unique lakes and wildelife are objectives of travelers. New Year in Finland, which is the home of Santa Claus.

    презентация [1,5 M], добавлен 17.06.2013

  • General information about geography and population of Canada. Ontario as one of the provinces of the country. Place of the tourism in the economy of Quebec. Royal Manitoba Theatre Centre. Natural beauty of British Columbia. The Vancouver Maritime Museum.

    контрольная работа [4,0 M], добавлен 30.09.2012

  • Psychology of the incentive. Benefits of Incentive Travel. Group and Individual Incentives. Cruise Incentives. Travel incentives are a reward subset of an incentive, recognition or a loyalty program. The growing importance of religious tourism.

    реферат [19,3 K], добавлен 26.12.2013

  • The largest city in the Midwest. The ideal time to visit the Windy City. The main tourist attractions. Best time to visit Chikago. MileNorth Hotel, The Silversmith Hotel & Suites, Manilow Suites Corporate Housing, Fairmont Chicago at Millennium Park.

    презентация [1,0 M], добавлен 17.03.2013

  • Description of the Golden Ring of Russia as a group of tourist routes through the ancient Russian city. Historical facts and architectural attractions of Vladimir, Suzdal, Ivanovo, Kostroma, Sergiev Posad, Yaroslavl, Pereslavl, Rostov (Yaroslavl region).

    реферат [55,2 K], добавлен 13.01.2016

  • History of sports betting. The "cash out" option in sports betting. The main determinants of the betting process. To test the hypothesis that the risk-aversion as the factor that makes individuals accept the amount to "cash out" proposed by a bookmaker.

    дипломная работа [651,3 K], добавлен 04.11.2015

  • Территория развлекательного комплекса Disneyland Resort. Main street USA - главная улица Диснейленда, ее развлекательные мероприятия. Часть парка AdventureLand, полная сюрпризов и экзотики далеких стран. Главная достопримечательность Critter Country.

    презентация [1,3 M], добавлен 21.02.2015

  • Kent is county in South East England. Visit in a cathedral as to meet face to face with the charm and magic of architecture. The Cathedral’s history. Naves is the main body of the church. The Childhood home of Anne Boleyn. The gardens of the rose.

    презентация [51,0 M], добавлен 27.05.2015

  • Prospects for reformation of economic and legal mechanisms of subsoil use in Ukraine. Application of cyclically oriented forecasting: modern approaches to business management. Preconditions and perspectives of Ukrainian energy market development.

    статья [770,0 K], добавлен 26.05.2015

  • Politics ukrainization, conducted by the bolsheviks. National and spiritual revival of Ukraine after the First World War. Proofs of regional revitalization movement. Museum of local traffic as a kind of excursion. Preferential tourist activities.

    реферат [17,9 K], добавлен 10.05.2011

  • Canada and its neighboring countries. Canada as a country with developed tourism industry. Primary modes of transportation in Canada, hotel services, restaurants, main sectors within the catering industry, tourism industry and domestic tourism demand.

    курсовая работа [38,0 K], добавлен 18.07.2009

  • Geographical position (nature, coasts, relief, climate), historic territory and counties of the United Kingdom. Promoting British tourism. Profit from tourist industry in the economy of country. Visitors are the lifeblood of Britain's tourism industry.

    контрольная работа [20,1 K], добавлен 18.07.2009

  • Tourism is one of the world’s fastest growing industries as income is generated by the spending of goods and services required by tourists. Some of the most popular types of tourism worldwide where tourists are categorized by the purpose of their visit.

    реферат [12,8 K], добавлен 10.02.2014

  • Modern Austria and its monarchy, the military and political weakness of the empire. The tourism industry as a major part of the Austrian economy: the organizational structure, economic significance, trends in tourism and the tourism labour market.

    курсовая работа [107,9 K], добавлен 18.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.