Correlation and regression analysis of tourists served by tourism entities in Ukraine: regional differences
Consideration of tourist flows that affect spatial differences in the functioning of destinations and cause territorial socio-economic inequality. The main use of econometric models for forecasting the development of the tourism industry in Ukraine.
Рубрика | Спорт и туризм |
Вид | статья |
Язык | английский |
Дата добавления | 25.06.2024 |
Размер файла | 109,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Uzhhorod National University
Uzhhorod Institute of Trade and Economics of State University of Trade and Economics
Department of Management of Tourism, Hotel and Restaurant Business
Correlation and regression analysis of tourists served by tourism entities in Ukraine: regional differences
Morokhovych Vasyl PhD, Associate Professor, Associate Professor
Hrabar Maryna
Associate Professor of the Department of Tourism
Kashka Mariia PhD, Associate Professor, Associate Professor
Uzhhorod
Abstract
Tourism is an important component of many countries, as the tourism sector works closely with other industries, attracting investment resources, strengthening the revenue side of the budget, improving the country's balance of payments, and promoting sustainable economic growth and welfare. The key indicator of the development of tourism is tourist flows that affect the spatial differences in the functioning of destinations and cause territorial socio-economic unevenness. The most significant determinants affecting the number of tourists serviced can be identified using correlation and regression analysis. The article analyzes the current state of the market of tourist services in Ukraine. The financial and economic crisis, which has intensified in recent years, the events related to the annexation of the Autonomous Republic of Crimea and the operation of the Joint Forces in the territory of Donetsk and Luhansk regions, led to a decrease in the inbound tourist flow in Ukraine. The factors that influence the development of the tourism market of Ukraine are studied. Using the correlation-regression analysis, a model of cause and effect relationships between the population of the region, its real incomes, the number of tourist enterprises and the resulting feature - the number of tourists served, have been formed. Econometric models indicate that number of tourist enterprises positively affects the resulting feature in 95.8% of the regions; the income per capita contributes to an increase in the number of tourists served in 91.7% of the regions; and the number of population affects an increase in the number of tourists in 66.7% of the regions. Thus, the hypothesis of factor variables has been confirmed in most regions of Ukraine. The study of the number of tourists serviced by enterprises of tourist industry in the regional context enables us to analyze the efficiency of their activities and to determine the parameters of the regions with greater mobility of the population, as well as to identify the regions that generate tourist flows. The practical importance of constructing econometric models lies in the possibility of using them to predict the development of the tourism industry in Ukraine.
Key words: tourism, tourism market, tourist flow, correlation and regression analysis, Ukraine.
Анотація
Морохович В. С
к.ф.-м.н., доцент, доцент кафедри менеджменту туристичного та готельно-ресторанного бізнесу, Ужгородський торговельно-економічний інститут Державного торговельно-економічного університету, м. Ужгород
Грабар М. В.
к.е.н., доцент кафедри туризму,
ДВНЗ «Ужгородський національний університет», м. Ужгород
Кашка М. Ю.
к.і.н., доцент кафедри туризму,
ДВНЗ «Ужгородський національний університет», м. Ужгород
КОРЕЛЯЦІЙНО-РЕГРЕСІЙНИЙ АНАЛІЗ ТУРИСТІВ, ЩО ОБСЛУГОВУЮТЬСЯ СУБ'ЄКТАМИ ТУРИСТИЧНОЇ ДІЯЛЬНОСТІ В УКРАЇНІ: РЕГІОНАЛЬНІ ВІДМІННОСТІ
Туризм є важливою складовою багатьох країн, оскільки суб'єкти туристичного сектору тісно співпрацюють з іншими галузями, забезпечуючи залучення інвестиційних ресурсів, зміцнюючи дохідну частину бюджету, покращуючи платіжний баланс країни, а також сприяє стійкому економічному зростанню та підвищенню добробуту населення. Ключовим показником розвитку туризму є туристичні потоки, які впливають на просторові відмінності у функціонуванні дестинацій та викликають територіальну соціально- економічну нерівномірність. Найбільш значущі детермінанти, що впливають на кількість обслуговуваних туристів, можна визначити за допомогою кореляційного та регресійного аналізу. У статті проведено аналіз сучасного стану ринку туристичних послуг в Україні. Фінансово-економічна криза, що загострилася останніми роками, та події, пов'язані з анексією АР Крим і дією Об'єднаних сил на території Донецької та Луганської областей, призвели до зменшення в'їзного туристичного потоку в Україні. Досліджено фактори, що впливають на розвиток туристичного ринку України. За допомогою кореляційно-регресій- ного аналізу сформовано модель причинно-наслідкових зв'язків між населенням регіону, його реальними доходами, кількістю туристичних підприємств та результуючою ознакою - кількістю обслуговуваних туристів. Економетричні моделі показують, що кількість туристичних підприємств позитивно впливає на результуючу ознаку в 95,8% регіонів; дохід на душу населення сприяє збільшенню кількості туристів, які обслуговуються в 91,7% регіонів; а чисельність населення впливає на збільшення кількості туристів у 66,7% регіонів. Таким чином, гіпотеза факторних змінних підтверджена в більшості регіонів України. Вивчення кількості туристів, що обслуговуються підприємствами туристичної індустрії в регіональному розрізі, дозволяє проаналізувати ефективність їх діяльності та визначити параметри регіонів з більшою мобільністю населення, а також визначити регіони, які генерують туристичні потоки. Практичне значення побудови економетричних моделей полягає в можливості їх використання для прогнозування розвитку туристичної галузі в Україні.
Ключові слова: туризм, туристичний ринок, туристичний потік, кореляційно-регресійний аналіз, Україна.
Formulation of the problem
In many countries tourism is an important economic sector that connects societies. The key indicator of the development of tourism is tourist flows that affect the spatial differences in the functioning of destinations and cause territorial socio-economic unevenness. According to the basic tourism system the following destinations are distinguished: destinations generating tourist flows, transit destinations and hosting destinations. The uneven location of the latter from the standpoint of natural resource base is justified by the availability of tourist resources: natural, historical, cultural social, and event. These tourism resources are the core of growth, which stimulates the development of the surrounding material base. However, a logical issue arises regarding the peculiarities of the spatial disproportion of destinations generating tourist flows and businesses directly involved in servicing tourists. Tourist flows represent a significant source of income for the tourism sector. This is also confirmed by the fact that in 2018 tourism industry accounted for 10.4% of world GDP, 319 million jobs or 10% of total employment [16]. Thus, the study of the number of tourists serviced by tour operators, travel agents and the key factors influencing their volumes are currently being updated. tourist econometric inequality
The most significant determinants affecting the number of tourists serviced can be identified using correlation and regression analysis. This, in turn, will firstly help to form a clear picture of the number of tourists serviced in the context of the regions of Ukraine; and secondly, interpret the relationship between the number of tourist enterprises and the efficiency of their operation.
Therefore, it is important to analyze the determinants and the basic regularities of the formation of tourist flows. Hence the need for the construction of econometric models aiming to obtain statistically reliable results that fully describe the tourist flow and enable its forecasting.
Analysis of recent research and publications
Research of tourist flows on the example of France, which is one of the world's most visited destinations, was carried out by C. Terrier (2009). The research emphasizes the distinction between tourist flows along transport routes and intra-territorial flows. The author examines various systems used to measure tourist flows and discusses their usefulness and limitations, as well as presents the potential value of modern communication technologies for the study of population mobility. More specifically, the question is about establishing the correct balance between statistical accuracy and individual freedom.
T. Baldigara analyzes the determinants and basic regularities of tourism demand in Croatia. The main attention of the study was paid to the construction of an econometric model of tourism demand. It was suggested that the demand for tourism in Croatia can be approximated by the model of a second order polynomial regression (Baldigara & Koic, 2015).
Econometric models of tourism demand on the example of Greece were developed by N. Drit- sakis and I. Athanasiadis (2008). The research focuses on foreign tourism due to its impact on the socio-economic structure of the host country. The application of the econometric model of tourism demand in the developed tourism market involves improving the tourism product.
The application of the regression model is reflected in the scientific work studying the correlation between climate change and tourism industry (Sverko Grdic & Krstinic Nizic,. This research analyses the influence of temperature increase on the number of future tourist arrivals by 2025 through the regression model and exponential regression analysis, using one dependent variable (the number of tourists) and one independent variable (temperature). The model obtained in this paper shows that the temperature affects the number of tourists in the coastal and mountainous part of Croatia, while in the continental part (Zagreb) the temperature does not affect the tourist flow. It is stated that in the summer months climate change will reduce the demand in the coastal part and an increase in demand in the northern regions (mountainous areas) of Croatia.
The correlation-regression analysis is also applied in studies of such component of tourism as accommodation facilities (Pranic, Ketkar & Roehl, 2012). The analysis of business efficiency based on the correlation between the number of tourist arriving at the hotels and the number of nights is the best way to get good results (Popescu, 2016).
The use of models for forecasting tourist flows are illustrated on the example of the following destinations: Australia (Athanasopoulos & Hyndman, 2006), the Bahamas (Charles & Fullerton, 2011), Turkey (Yilmaz, 2015), Nepal (Subedi,, Zimbabwe (Makoni & Chikobvu, 2018), Cambodia (Chhorn & Chaiboonsri, 2018), India (Chandra & Kumari, 2018), Hong Kong (Choi, 2019) et al.
As we see, econometric models are widely used in studies of international tourism; however, the problem is the lack of such research on the example of Ukraine. In addition, the study of regional differentiation will further contribute to the construction of reliable econometric models.
The purpose of the study is to carry out correlation and regression analysis of tourist flows serviced by tourism entities in the regions of Ukraine. This, in turn, will allow forming a model of causal relationships between the population of the region, its real incomes, the number of tourist enterprises and the resulting feature - the number of tourists serviced.
Presentation of the main research material
Ukraine is located in the center of Europe and has all the conditions for the proper development of the economy through tourism, but it is significantly behind the leading countries in the world in terms of the development of tourism infrastructure and quality of tourist services. The financial and economic crisis, which has intensified in recent years, the events related to the annexation of the Autonomous Republic of Crimea and the operation of the Joint Forces in the territory of Donetsk and Luhansk regions, led to a decrease in the inbound tourist flow, negatively affected the development of the tourism business in Ukraine.
According to the 2019 Tourism Competitiveness Report, Ukraine had the fastest growth rate in TTCI scores in the Eurasia sub-region, rising 10 places to rank 78th globally. In particular, as the country stabilized and recovered economically, Ukraine drastically improved its business environment (124th to 103 rd), safety and security (127th to 107th), international openness (78th to 55 th) and overall infrastructure (79th to 73 rd) [15].
The development of tourism in Ukraine is reflected in the dynamics of the number of participants in international tourism (Figure 1).
Analysis of the dynamics of tourist flows shows that in 2014 there was a sharp decline in the number of tourists who visited Ukraine. This is explained by political instability and hostilities in the east of the country and, accordingly, the loss of territories important for the development of the tourism industry. The number of foreign citizens who visited Ukraine this year has almost halved to 12.7 million. However, since 2015, there has been a slight positive trend in inbound tourism.
With regard to outbound tourism, this flow has a completely different dynamics. The number of Ukrainian citizens who went abroad during the analyzed period has been steadily increasing. The exception was 2014, which saw a slight drop in the numbers to 22.4 million people. Most often Ukrainian citizens in 2018 visited Poland, Hungary, Russia, Moldova, Belarus, Romania, Turkey, Egypt.
Tourism enterprises in Ukraine are economic entities that provide tourist services based on the use of tourist resources, as well as accommodation, catering and related infrastructure services.
Figure 1. Dynamics of tourist flows in Ukraine
Source: developed based on [12] (Indicated without taking into account the temporarily occupied territories of the Autonomous Republic of Crimea, Sevastopol and the temporarily occupied territories in Donetsk and Luhansk regions)
Figure 1 shows that only part of the international tourism participants were served by tour operators or travel agencies that are intermediaries in the tourist services market during the organization of the trips. In 2014, the number of tourists served by tourist enterprises in Ukraine decreased by 1.0 million, which is 29.8% compared to 2013, and in 2015 by another 0.4 million, ie 17%. Since 2016, there has been a positive trend in the number of tourists served by tourism enterprises.
In order to take into account the dynamics of changes in the number of tourists serviced - which is the basis of a successful tourism industry in the country and a key indicator of the production efficiency of the enterprises - econometric models on the basis of correlation-regression analysis were built in designing the development programs for the industry.
They use data on the number of tourists serviced by tour operators, travel agents in the regions of Ukraine during 2013-2018. These figures are the resulting features by the regions (T).
The following are taken as factors: the number of tourism entities (Af1), available income per capita (X,), the number of population (X3). The source data for correlation-regression analysis are given in Table 1.
The choice of the above factors is justified by the following hypotheses:
with a decrease in the number of tourism entities, the number of tourists serviced also reduces, since the reduction of production capacity limits the ability to serve a larger number of potential tourists;
with an increase in income the number of tourists also increases, as the availability of funds motivates for recreation and travel;
regions with more population generate a larger number of tourists.
The study of the statistical indicator Y showed some fluctuation in the regions. Thus, in 2018 there was an increase in this indicator in most regions: Vinnytsia, Volyn, Dnipropetrovsk, Donetsk, Zhytomyr, Zakarpattia, Zapor- izhia, Kyiv, Kirovohrad, Luhansk, Lviv, Mykolaiv, Odessa, Poltava, Rivne, Sumy, Ternopil, Kharkiv, Kherson, Cherkasy, Chernivtsi, Chernihiv, due to the popularization of domestic tourism and growth of incomes.
Preliminary analysis of the source data shows that the factor variable - the disposable income per capita - increased in all regions during the period under study. This was achieved by targeted government policy of raising the minimum wage level.
There are direct and inverse relationships between the resulting and factor variables, which are distinguished depending on the direction of change of the resulting variable. Thus, there is an inverse relationship between the number of tourists serviced and the number of tourist enterprises, and direct relationship between the number of tourists and disposable incomes.
The relationship between the number of tourists serviced and the number of tourist entities, disposable income per capita and the number of population is reflected in the multi-factor model (multiple correlation).
On the basis of correlation-regression analysis of the number of tourists serviced by tourist entities, the following data were obtained.
The qualitative estimation of the communication density of the multiple correlation R coefficient (based on the Chaddock scale) shows that a high correlation is observed in the following regions: Volyn (0.81), Ivano-Frankivsk (0.81), and Lviv (0.80). A very high correlation is observed in the following regions: Vinnytsia (0.99), Dnipropetrovsk (0.99), Donetsk (0.99), Zakarpattia (0.99), Kyiv (0.99), Luhansk (0.99), Odessa (0.99), Rivne (0.99), Sumy (0.99), Cherkasy (0.99), Zhytomyr (0.98), Mykolaiv (0.98), Poltava (0.98), Kharkiv (0.98), Chernihiv (0.98), Kirovohrad (0.97), Kherson (0.97), Khmelnytskyi (0.96), Zaporizhia (0.95), Chernivtsi (0.94), and Ternopil (0.91). Thus, in the existing model 12.5% are highly dependent and 87.5% have a very high dependence.
The determination coefficient in the range of 0.9-0.99 is characteristic of the following regions: Vinnytsia, Dnipropetrovsk, Donetsk, Zhytomyr, Zakarpattia, Kyiv, Kirovohrad, Luhansk, Mykolaiv, Odessa, Poltava, Rivne, Sumy, Kharkiv, Kherson, Khmelnytskyi, Cherkasy, and Chernihiv. That is, 90-99% of the feature is determined by the investigated factors. The least value of the coefficient was obtained in Volyn, Ivano- Frankivsk, and Lviv regions. For the rest of the regions (Ternopil, Chernivtsi, Zaporizhia) the determination varies in the range of 0.8-0.9, which indicates that 80-90% of the variation is explained by the linear model, which means the correct choice of factors. The value of the determination coefficient indicates that the source data and the regression model are consistent, since its value maximally approaches 1.
High values of correlation coefficients and determination indicate that this dependence is sufficiently regular. The obtained Fisher's criteria show that the regression equation is statistically significant and can be applied. Indicators of the reliability of the model show that all parameters of the regression equation are statistically significant and can not accept zero values. The obtained correlationregression analysis of the indicators enables us to construct a model of influence on the resulting variable - the number of tourists serviced.
Table 1 Source data for correlation-regression analysis
Years |
Number of tourists serviced |
TE* |
Income per capita, UAH |
Population, persons |
Number of tourists serviced |
TE* |
Income per capita, UAH |
Population, persons |
|
Y |
Х1 |
x2 |
Хз |
Y |
Х1 |
x2 |
Хз |
||
Vinnytsia |
Volyn |
||||||||
2013 |
29606 |
76 |
23000.6 |
1627038 |
19490 |
85 |
19804.9 |
1039958 |
|
2014 |
20744 |
69 |
23421.7 |
1618262 |
14593 |
80 |
20137.2 |
1041303 |
|
2015 |
22748 |
63 |
29637.1 |
1610573 |
15620 |
68 |
24979.9 |
1042918 |
|
2016 |
27485 |
68 |
34931.4 |
1602163 |
26526 |
69 |
30012.5 |
1042668 |
|
2017 |
38634 |
69 |
45436.2 |
1590357 |
17047 |
66 |
38514.0 |
1040954 |
|
2018 |
42178 |
87 |
54992.0 |
1575808 |
21807 |
74 |
46475.1 |
1038457 |
|
Dnipropetrovsk |
Donetsk |
||||||||
2013 |
81249 |
487 |
30300.6 |
3307795 |
113917 |
355 |
31048.5 |
4375442 |
|
2014 |
56803 |
324 |
32036.2 |
3292431 |
14834 |
84 |
26234.4 |
4343882 |
|
2015 |
46121 |
294 |
39142.0 |
3276637 |
3297 |
23 |
21346.4 |
4297250 |
|
2016 |
57770 |
322 |
44365.9 |
3254884 |
10874 |
33 |
20927.0 |
4265145 |
|
2017 |
75526 |
325 |
57332.5 |
3230411 |
9231 |
42 |
25278.4 |
4244057 |
|
2018 |
116981 |
416 |
72883.4 |
3231140 |
28425 |
93 |
31888.0 |
4200461 |
|
Zhytomyr |
Zakarpattia |
||||||||
2013 |
9613 |
58 |
21652.1 |
1268903 |
19892 |
82 |
17929.3 |
1254393 |
|
2014 |
6060 |
44 |
22102.1 |
1262512 |
11625 |
74 |
17358.1 |
1256850 |
|
2015 |
6283 |
47 |
27801.4 |
1255966 |
10656 |
67 |
22456.7 |
1259570 |
|
2016 |
8615 |
56 |
32979.1 |
1247549 |
11601 |
65 |
26856.2 |
1259158 |
|
2017 |
9516 |
47 |
42683.9 |
1240482 |
14652 |
63 |
33891.1 |
1258777 |
|
2018 |
17957 |
63 |
52135.9 |
1231239 |
25348 |
91 |
40471.6 |
1258155 |
|
Zaporizhia |
Ivano-Frankivsk |
||||||||
2013 |
54415 |
250 |
28388.1 |
1785243 |
77666 |
112 |
20987.8 |
1381788 |
|
2014 |
39010 |
231 |
30181.8 |
1775833 |
63848 |
99 |
20356.7 |
1382096 |
|
2015 |
30922 |
140 |
36277.4 |
1765926 |
65885 |
83 |
26540.1 |
1382553 |
|
2016 |
40376 |
161 |
43461.6 |
1753642 |
79973 |
107 |
31718.9 |
1382352 |
|
2017 |
47675 |
160 |
54261.0 |
1739488 |
73309 |
105 |
40579.5 |
1379915 |
|
2018 |
56374 |
188 |
67982.5 |
1723171 |
55781 |
128 |
48367.7 |
1377496 |
|
Kyiv |
Kirovohrad |
||||||||
2013 |
24459 |
134 |
27390.6 |
1722052 |
15036 |
70 |
21671.4 |
995171 |
|
2014 |
13143 |
104 |
28443.3 |
1725478 |
8484 |
56 |
21954.1 |
987565 |
|
2015 |
11560 |
90 |
33955.6 |
1729234 |
7830 |
46 |
27382.5 |
980579 |
|
2016 |
25008 |
119 |
40126.9 |
1732235 |
8854 |
47 |
32744.7 |
973150 |
|
2017 |
36983 |
116 |
50664.4 |
1734471 |
8436 |
43 |
42226.8 |
965456 |
|
2018 |
66385 |
217 |
63498.4 |
1754284 |
11556 |
54 |
51018.0 |
956250 |
|
Luhansk |
Lviv |
||||||||
2013 |
34716 |
225 |
25590.3 |
2256551 |
188520 |
272 |
23138.3 |
2540702 |
|
2014 |
791 |
15 |
19788.3 |
2239473 |
92128 |
235 |
23595.2 |
2538436 |
|
2015 |
939 |
11 |
15633.6 |
2220151 |
112472 |
221 |
29542.2 |
2537799 |
|
2016 |
1896 |
19 |
13792.7 |
2205389 |
181827 |
272 |
35325.0 |
2534174 |
|
2017 |
2825 |
17 |
16416.4 |
2195290 |
175150 |
282 |
44981.0 |
2534027 |
|
2018 |
6261 |
29 |
20618.6 |
2167802 |
182255 |
342 |
55510.7 |
2529608 |
|
Mykolaiv |
Odessa |
||||||||
2013 |
19003 |
75 |
23868.8 |
1173481 |
61589 |
302 |
25571.8 |
2395160 |
|
2014 |
9148 |
65 |
23458.5 |
1168372 |
43382 |
249 |
24242.0 |
2396493 |
|
2015 |
7464 |
60 |
29342.1 |
1164342 |
45809 |
245 |
32384.5 |
2396442 |
|
Years |
Number of tourists serviced |
TE* |
Income per capita, UAH |
Population, persons |
Number of tourists serviced |
TE* |
Income per capita, UAH |
Population, persons |
|
Y |
Х1 |
x2 |
Хз |
Y |
Х1 |
x2 |
Хз |
||
2016 |
9023 |
69 |
34970.5 |
1158207 |
59077 |
268 |
39132.1 |
2390289 |
|
2017 |
11805 |
63 |
45355.7 |
1150126 |
72302 |
264 |
50111.1 |
2386516 |
|
2018 |
19002 |
87 |
55543.9 |
1141324 |
81381 |
270 |
61165.6 |
2383075 |
|
Poltava |
Rivne |
||||||||
2013 |
20125 |
130 |
25371.2 |
1467821 |
13545 |
78 |
21165.0 |
1156868 |
|
2014 |
12947 |
110 |
26195.7 |
1458205 |
8936 |
69 |
21781.0 |
1158851 |
|
2015 |
9497 |
91 |
31996.5 |
1448975 |
6640 |
59 |
26707.7 |
1161151 |
|
2016 |
14608 |
88 |
37938.4 |
1438948 |
9022 |
66 |
31294.8 |
1161811 |
|
2017 |
19032 |
93 |
48663.0 |
1426828 |
11168 |
60 |
40325.4 |
1162763 |
|
2018 |
32007 |
155 |
60217.5 |
1413829 |
22027 |
93 |
47729.1 |
1160647 |
|
Sumy |
Ternopil |
||||||||
2013 |
13498 |
59 |
23558.6 |
1143249 |
13490 |
70 |
18993.8 |
1077327 |
|
2014 |
8574 |
51 |
23938.1 |
1132957 |
9066 |
49 |
18400.5 |
1073327 |
|
2015 |
7567 |
53 |
30572.3 |
1123448 |
6668 |
43 |
24040.1 |
1069936 |
|
2016 |
8819 |
57 |
36084.4 |
1113256 |
7536 |
53 |
28194.7 |
1065709 |
|
2017 |
11185 |
58 |
45852.3 |
1104529 |
9558 |
45 |
36203.8 |
1059192 |
|
2018 |
16178 |
79 |
55934.4 |
1094284 |
13103 |
63 |
43512.5 |
1052312 |
|
Kharkiv |
Kherson |
||||||||
2013 |
91648 |
358 |
26098.2 |
2744419 |
16112 |
69 |
21724.0 |
1078232 |
|
2014 |
71437 |
309 |
26274.0 |
2737242 |
15818 |
70 |
20727.9 |
1072567 |
|
2015 |
31233 |
264 |
32197.9 |
2731302 |
11720 |
53 |
27880.0 |
1067876 |
|
2016 |
40429 |
255 |
38196.6 |
2718616 |
16584 |
72 |
32967.9 |
1062356 |
|
2017 |
51929 |
263 |
48370.4 |
2701188 |
20278 |
67 |
41695.0 |
1055649 |
|
2018 |
62232 |
266 |
60117.7 |
2694007 |
26130 |
80 |
50109.4 |
1046981 |
|
Khmelnyts |
kyi |
Cherkasy |
|||||||
2013 |
24402 |
100 |
22789.0 |
1313964 |
15984 |
99 |
21633.2 |
1268888 |
|
2014 |
19027 |
84 |
22686.1 |
1306992 |
9694 |
82 |
21760.5 |
1259957 |
|
2015 |
25426 |
78 |
29291.9 |
1301242 |
8520 |
75 |
26969.7 |
1251816 |
|
2016 |
19885 |
89 |
34394.5 |
1294413 |
11684 |
86 |
32327.2 |
1242965 |
|
2017 |
26829 |
90 |
43638.1 |
1285267 |
20953 |
92 |
41853.5 |
1231207 |
|
2018 |
25738 |
89 |
52487.6 |
1274409 |
26383 |
101 |
50292.6 |
1220363 |
|
Chernivtsi |
Chernihiv |
||||||||
2013 |
18578 |
121 |
19438.2 |
907163 |
9424 |
59 |
23599.7 |
1077802 |
|
2014 |
16560 |
68 |
18475.6 |
908508 |
7689 |
57 |
23093.4 |
1066826 |
|
2015 |
15662 |
65 |
23929.0 |
909965 |
7052 |
55 |
28440.4 |
1055673 |
|
2016 |
19415 |
66 |
28360.8 |
909893 |
11698 |
51 |
33231.3 |
1044975 |
|
2017 |
20341 |
65 |
36214.5 |
908120 |
15974 |
51 |
42501.2 |
1033412 |
|
2018 |
29562 |
77 |
42850.4 |
906701 |
22306 |
58 |
50895.4 |
1020078 |
TE* - tourist entities
Source: formed according to the data [12]
Table 2 The complex interaction of all factors (xbx2,...,xM) with the resultant index (T) can be described by the equation of the linear multivariable regression of the type:
Mu |
tifactor regression equation |
|
Region |
Linear multifactor regression equation |
|
Vinnytsia |
Y = -2007295,42 +37,06x1 + 2,35x2 + 1,22x3 |
|
Volyn |
Y = -9589833,64 + 2045,58x1 + 1,6x2 + 9,04x3 |
|
Dnipropetrovsk |
Y = -1039910,4 + 186,52x1 + 1,65x2 + 0,3x3 |
|
Donetsk |
Y = 518661,49 + 402,3x1 - 1,33x2 - 0,12x3 |
|
Zhytomyr |
Y = -456696,75 + 249,86x1 + 0,62x2 + 0,35x3 |
|
Zakarpattia |
Y = 1834767,83 + 247,35x1 + 0,43x2 - 1,47x3 |
|
Zaporizhia |
Y = -2451041,85 + 101,93x1 + 2,44x2 + 1,35x3 |
|
Ivano-Frankivsk |
Y = -12613815,02 + 522,72x1 + 0,68x2 + 9,13x3 |
|
Kyiv |
Y = 1707745,34 + 325,99x1 + 1,32x2 - 1,02x3 |
|
Kirovohrad |
Y = -351010,99 + 188,06x1 + 0,46x2 + 0,34x3 |
|
Luhansk |
Y = 88974,59 + 160,4x1 + 0,13x2 - 0,04x3 |
|
Lviv |
Y = -17053194,78 + 1017,33x1 + 0,82x2 + 6,67x3 |
|
Mykolaiv |
Y = -1777212,99 + 289,95x1 + 1,4x2 + 1,48x3 |
|
Odessa |
Y = 1804150,45 + 315,88x1 + 0,6x2 - 0,77x3 |
|
Poltava |
Y = -910537,27 + 114,76x1 + 1,21x2 + 0,6x3 |
|
Rivne |
Y = 1978552,07 + 107,58x1 + 0,52x2 - 1,72x3 |
|
Sumy |
Y = -476726,38 + 161,93x1 + 0,61x2 + 0,41x3 |
|
Ternopil |
Y = -184014,17 + 215,92x1 + 0,22x2 + 0,17x3 |
|
Kharkiv |
Y = 2580653,69 + 736,26x1 - 0,51x2 - x3 |
|
Kherson |
Y = -241324,54 + 304,99x1 + 0,45x2 + 0,21x3 |
|
Khmelnytskyi |
Y = -2279056,79 - 396,59x1 + 2,24x2 + 1,74x3 |
|
Cherkasy |
Y = -689552,82 + 207,83x1 + 1,22x2 + 0,52x3 |
|
Chernivtsi |
Y = 1139311,09 + 20,57x1 + 0,39x2 - 1,25x3 |
|
Chernihiv |
Y = -205755,35 + 141,37x1 + 0,84x2 + 0,17x3 |
The following regression equations were obtained in the regions of Ukraine (Table 2). Econometric models indicate that factor variable Х1 (the number of tourist enterprises) has a positive effect on the resulting variable in 95.8% of the regions; Х2 (income per capita) contributes to an increase in the number of tourists serviced in 91.7% of the regions; Х3 (the number of population) affects the growth of the number of tourists serviced in 66.7% of the regions.
One of the key indicators of the quality of the model is the independence of its residuals. If this condition is violated, there is autocorrelation resulting from the existence of a dependence between the preceding and the following values of the effective indicator. Let us check the model of the number of tourists serviced for the autocorrelation using the Durbin-Watson criterion (Table 3).
The presence or absence of autocorrelation of the residuals is checked by comparing the actual value of the DW with the critical ones found in a special table depending on the level of signify cance of the DW, the number of factors m and the number of observations n.
Using the table of critical values of the Darwin- Watson criterion, we will find the value d = 0-82, du = 1.75 (a = 0.05, n = 6, k = 3). The obtained criterion values for all regions are DW > 1.75, which makes it possible to state that there is no correlation. The condition of independence of residuals is observed, therefore the regression parameters are reasonable and efficient. Since DW > DWu (upper limit) we conclude that there is no correlation between the following residuals and the previous ones.
Table 3 Evaluation of the quality of the models according to the Darwin-Watson criterion in the regions of Ukraine
№ |
Forecast |
Residuals |
e |
( Є - et _! ) 2 |
Forecast |
Residuals |
(e - e,-i)2 |
||
Vinnytsia |
Volyn |
||||||||
1 |
29669.25 |
-63.25 |
4000.15 |
- |
16245.83 |
3244.17 |
10524624.86 |
- |
|
2 |
19717.05 |
1026.95 |
1054627.44 |
1188530.16 |
18708.06 |
-4115.06 |
16933744.72 |
54158280,51 |
|
3 |
24719.99 |
-1971.99 |
3888741.09 |
8993639.17 |
16516.67 |
-896.67 |
804025.85 |
10358023.0 |
|
4 |
27091.92 |
393.08 |
154512.09 |
5593553.14 |
24363.73 |
2162.27 |
4675421.44 |
9357157.82 |
|
5 |
37407.9 |
1226.1 |
1503323.7 |
693923.59 |
16351.48 |
695.52 |
483747.21 |
2151364.09 |
|
6 |
42788.9 |
-610.9 |
373193.87 |
3374557.88 |
22897.22 |
-1090.22 |
1188582.82 |
3188870.33 |
|
Total |
6978398.34 |
19844203.94 |
Total |
34610146.91 |
79213695.75 |
||||
DW |
2.84 |
DW |
2.29 |
||||||
Dnipropetrovsk |
Donetsk |
||||||||
1 |
82514.66 |
-1265.66 |
1601884.4 |
- |
113954.62 |
-37.62 |
1415.4 |
- |
|
2 |
50409.72 |
6393.28 |
40874016.4 |
58659281.07 |
14997.83 |
-163.83 |
26839.7 |
15928.09 |
|
3 |
51828.81 |
-5707.81 |
32579124.09 |
146436416.73 |
2365.98 |
931.02 |
866791.29 |
1198684.57 |
|
4 |
59198.61 |
-1428.61 |
2040913.69 |
18311612.93 |
10661.77 |
212.23 |
45040.75 |
516656.49 |
|
5 |
73849.09 |
1676.91 |
2812027.67 |
9644227.51 |
10922.91 |
-1691.91 |
2862549.97 |
3625731.06 |
|
6 |
116649.12 |
331.88 |
110147.4 |
1809093.7 |
27674.89 |
750.11 |
562669.37 |
5963462.17 |
|
Total |
80018113.64 |
234860631.94 |
Total |
4365306.47 |
11320462.38 |
||||
DW |
2.94 |
DW |
2.59 |
||||||
Zhytomyr |
Zakarpattia |
||||||||
1 |
10081.94 |
-468.94 |
219900.25 |
- |
19016.89 |
875.11 |
765818.17 |
- |
|
2 |
4649.94 |
1410.06 |
1988265.97 |
3530618.75 |
13179.42 |
-1554.42 |
2416235.18 |
5902639.15 |
|
3 |
6642.19 |
-359.19 |
129015.33 |
3130231.01 |
9656.43 |
999.57 |
999140.31 |
6522887.66 |
|
4 |
9165.35 |
-550.35 |
302888.87 |
36544.58 |
11671.27 |
-70.27 |
4937.69 |
1144554.93 |
|
5 |
10443.94 |
-927.94 |
861065.18 |
142568.6 |
14781.05 |
-129.05 |
16654.59 |
3455.56 |
|
6 |
17060.65 |
896.35 |
803448.33 |
3328029.53 |
25468.93 |
-120.93 |
14625.2 |
65.9 |
|
Total |
4304583.93 |
10167992.48 |
Total |
4217411.13 |
13573603.2 |
||||
DW |
2.36 |
DW |
3.22 |
||||||
Zaporizhia |
Ivano-Frankivsk |
||||||||
1 |
52124.83 |
2290.17 |
5244868.17 |
- |
72479.56 |
5186.44 |
26899149.56 |
- |
|
2 |
41879.33 |
-2869.33 |
8233059.67 |
26620425.72 |
68064.55 |
-4216.55 |
17779298.98 |
88416213.57 |
|
3 |
34141.62 |
-3219.62 |
10365934.73 |
122700.49 |
68096.78 |
-2211.78 |
4891970.84 |
4019105.1 |
|
4 |
37274.87 |
3101.13 |
9616982.36 |
39951794.0 |
82345.21 |
-2372.21 |
5627398.88 |
25739.04 |
|
5 |
44481.41 |
3193.59 |
10198988.24 |
8548.76 |
65107.11 |
8201.89 |
67271046.96 |
111811734.8 |
|
6 |
58869.93 |
-2495.93 |
6229672.24 |
32370599.37 |
60368.79 |
-4587.79 |
21047792.82 |
163575920.76 |
|
Total |
49889505.4 |
99074068.34 |
Total |
143516658.05 |
367848713.27 |
||||
DW |
1.99 |
DW |
2.56 |
||||||
Kyiv |
Kirovohrad |
||||||||
1 |
24504.3 |
-45.3 |
2052.35 |
- |
14637.72 |
398.28 |
158629.11 |
- |
|
2 |
12607.59 |
535.41 |
286663.89 |
337227.51 |
9516.89 |
-1032.89 |
1066857.79 |
2048249.8 |
|
3 |
11480.43 |
79.57 |
6331.96 |
207786.81 |
7726.06 |
103.94 |
10803.29 |
1292375.56 |
|
4 |
26014.5 |
-1006.5 |
1013043.11 |
1179556.88 |
7820.99 |
1033.01 |
1067113.95 |
863176.99 |
|
5 |
36668.25 |
314.75 |
99069.11 |
1745709.18 |
8777.44 |
-341.44 |
116581.81 |
1889120.66 |
|
6 |
66262.93 |
122.07 |
14900.4 |
37127.6 |
11716.9 |
-160.9 |
25890.35 |
32593.24 |
|
Total |
1422060.83 |
3507407.98 |
Total |
2445876.3 |
6125516.26 |
||||
DW |
2.47 |
DW |
2.5 |
||||||
Luhansk |
Lviv |
||||||||
1 |
34702.03 |
13.97 |
195.2 |
- |
179499.69 |
9020.31 |
81365946.57 |
- |
|
2 |
960.83 |
-169.83 |
28843.79 |
33784.67 |
127126.45 |
-34998.45 |
1224891650.1 |
1937651193.6 |
|
3 |
573.24 |
365.76 |
133782.96 |
286865.35 |
113501.48 |
-1029.48 |
1059828.75 |
1153891076.66 |
|
4 |
2226.59 |
-330.59 |
109290.89 |
484910.64 |
145949.63 |
35877.37 |
1287185361.9 |
1362115240.31 |
|
5 |
2671.81 |
153.19 |
23466.85 |
234043.73 |
163040.59 |
12109.41 |
146637699.07 |
564915931.9 |
|
6 |
6293.5 |
-32.5 |
1056.09 |
34479.49 |
203234.15 |
-20979.15 |
440124587.39 |
1094852265.89 |
|
Total |
296635.79 |
1074083.89 |
Total |
3181265073.8 |
6113425708.36 |
||||
DW |
3.62 |
DW |
1.92 |
||||||
№ |
Forecast |
Residuals |
el |
( Є - Є, _! ) 2 |
Forecast |
Residuals |
2 |
(e - )2 |
|
Mykolaiv |
Odesa |
||||||||
1 |
18920.6 |
82.4 |
6790.2 |
- |
61029.21 |
559.79 |
313365.92 ... |
Подобные документы
Historical development in travel and tourism industry, its structure. The impact of national economic policy in Scotland for success in this area. The function of government, state bodies in the industry. Factors affecting tourism demand in the country.
реферат [13,2 K], добавлен 11.11.2015The value of domestic tourism for the Russian economy: an increase in jobs in hotels, restaurants, food industry and transport. Stages of development of domestic tourism in post-revolutionary and Soviet periods. Treatment, athletic and business tourism.
реферат [20,0 K], добавлен 04.03.2012Official statistics of tourism in Switzerland. Notable tourist destinations: Alpine (Grisons, Engadin, Davos, Wildhaus, Jungfrau, Grindelwald, Zermatt) and Cities (Zurich, Bern, Lucerne, Basel, Geneva, Lausanne, Canton Ticino, Locarno, Lugano, Ascona).
реферат [2,3 M], добавлен 13.03.2015A specific feature of services. The main form of supply of services abroad. A need for international regulation of trade in services. Operations on foreign tourism. International tourism as a form of foreign economic activity. World Tourism Organization.
реферат [1,2 M], добавлен 30.09.2014Tourism as an invisible export. The British Tourist Authority and the English Tourism Council. The competition between National Bus and private companies. The Act about wholesale de-regulation. The Package Holidays and Package Tours Regulations.
презентация [785,1 K], добавлен 31.03.2014Consideration of geographical location, topography, climatic conditions in Argentina. Introduction to the country's main tourist attractions - museums in Buenos Aires, Iguazu Falls. Walking through the city of Mendoza and hiking in the Andes mountains.
презентация [8,7 M], добавлен 02.12.2011Finland is a wonderful Nordic country and a priority of tourists which can estimate the nature. Progress of eco-tourism in Finland. The unique lakes and wildelife are objectives of travelers. New Year in Finland, which is the home of Santa Claus.
презентация [1,5 M], добавлен 17.06.2013General information about geography and population of Canada. Ontario as one of the provinces of the country. Place of the tourism in the economy of Quebec. Royal Manitoba Theatre Centre. Natural beauty of British Columbia. The Vancouver Maritime Museum.
контрольная работа [4,0 M], добавлен 30.09.2012Psychology of the incentive. Benefits of Incentive Travel. Group and Individual Incentives. Cruise Incentives. Travel incentives are a reward subset of an incentive, recognition or a loyalty program. The growing importance of religious tourism.
реферат [19,3 K], добавлен 26.12.2013The largest city in the Midwest. The ideal time to visit the Windy City. The main tourist attractions. Best time to visit Chikago. MileNorth Hotel, The Silversmith Hotel & Suites, Manilow Suites Corporate Housing, Fairmont Chicago at Millennium Park.
презентация [1,0 M], добавлен 17.03.2013Description of the Golden Ring of Russia as a group of tourist routes through the ancient Russian city. Historical facts and architectural attractions of Vladimir, Suzdal, Ivanovo, Kostroma, Sergiev Posad, Yaroslavl, Pereslavl, Rostov (Yaroslavl region).
реферат [55,2 K], добавлен 13.01.2016History of sports betting. The "cash out" option in sports betting. The main determinants of the betting process. To test the hypothesis that the risk-aversion as the factor that makes individuals accept the amount to "cash out" proposed by a bookmaker.
дипломная работа [651,3 K], добавлен 04.11.2015Территория развлекательного комплекса Disneyland Resort. Main street USA - главная улица Диснейленда, ее развлекательные мероприятия. Часть парка AdventureLand, полная сюрпризов и экзотики далеких стран. Главная достопримечательность Critter Country.
презентация [1,3 M], добавлен 21.02.2015Kent is county in South East England. Visit in a cathedral as to meet face to face with the charm and magic of architecture. The Cathedral’s history. Naves is the main body of the church. The Childhood home of Anne Boleyn. The gardens of the rose.
презентация [51,0 M], добавлен 27.05.2015Prospects for reformation of economic and legal mechanisms of subsoil use in Ukraine. Application of cyclically oriented forecasting: modern approaches to business management. Preconditions and perspectives of Ukrainian energy market development.
статья [770,0 K], добавлен 26.05.2015Politics ukrainization, conducted by the bolsheviks. National and spiritual revival of Ukraine after the First World War. Proofs of regional revitalization movement. Museum of local traffic as a kind of excursion. Preferential tourist activities.
реферат [17,9 K], добавлен 10.05.2011Canada and its neighboring countries. Canada as a country with developed tourism industry. Primary modes of transportation in Canada, hotel services, restaurants, main sectors within the catering industry, tourism industry and domestic tourism demand.
курсовая работа [38,0 K], добавлен 18.07.2009Geographical position (nature, coasts, relief, climate), historic territory and counties of the United Kingdom. Promoting British tourism. Profit from tourist industry in the economy of country. Visitors are the lifeblood of Britain's tourism industry.
контрольная работа [20,1 K], добавлен 18.07.2009Tourism is one of the world’s fastest growing industries as income is generated by the spending of goods and services required by tourists. Some of the most popular types of tourism worldwide where tourists are categorized by the purpose of their visit.
реферат [12,8 K], добавлен 10.02.2014Modern Austria and its monarchy, the military and political weakness of the empire. The tourism industry as a major part of the Austrian economy: the organizational structure, economic significance, trends in tourism and the tourism labour market.
курсовая работа [107,9 K], добавлен 18.07.2009