Диагностирование двигателя
Классификация методов диагностирования автомобилей. Контроль объема избыточного давления и оценка интенсивности его падения в цилиндропоршневой группе двигателей. Определение параметров тепла работы сил трения при нагрузочном и скоростном режимах.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 12.01.2014 |
Размер файла | 224,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Диагностирование двигателя
2. Объекты диагностирования
Список использованной литературы
ВВЕДЕНИЕ
Методы диагностирования технического состояния автомобилей, агрегатов характеризуются физической сущностью и способом измерения диагностических параметров, наиболее приемлемых для использования в зависимости от задачи диагностирования. В настоящее время выделяют три основные группы методов диагностирования (рис. 1).
Рис. 1. Классификация методов диагностирования автомобилей.
Методы первой группы базируются на имитации скоростных и нагрузочных режимов работы автомобиля, определении при заданных условиях выходных параметров и сравнении их количественных значений с эталонными. Диагностирование проводится с использованием стендов с беговыми барабанами или непосредственно в процессе работы автомобиля. Методы широко применяются для общей оценки технического состояния автомобилей и агрегатов.
К методам диагностирования по параметрам сопутствующих процессов относятся:
Ш методы диагностирования по герметичности рабочих объемов. Сущность процесса диагностирования заключается в создании в контролируемом объеме избыточного давления (разряжения) и в оценке интенсивности их падения. Этим методом диагностируются цилиндропоршневая группа двигателя, пневматические приводы тормозов и др.;
Ш тепловой метод, заключающийся в определении параметров, характеризующих количество тепла, выделяемого в результате протекания процессов сгорания, работы сил трения при заданных скоростном и нагрузочном режимах. Такими параметрами могут быть температура нагрева, скорость ее изменения. Метод может применяться для диагностирования двигателя, агрегатов трансмиссии, подшипниковых узлов, однако широкого применения на автотранспорте пока не нашел;
Ш методы диагностирования узлов, систем по параметрам колебательных процессов широко используются при создании средств технического диагностирования автомобилей и их можно разделить на три подвида: методы, оценивающие колебания напряжения в электрических цепях (на этой основе созданы мотор-тестеры); по параметрам виброакустических сигналов, получаемых при работе зубчатых зацеплений, клапанных механизмов, подшипников и т.д.); по параметрам, оценивающим пульсацию давления в трубопроводах (на этой основе созданы дизель-тестеры для диагностирования дизельной топливной аппаратуры);
Ш методы, оценивающие состояние узлов и агрегатов по физико-химическому составу отработавших эксплуатационных материалов. Например, простейший экспресс-анализ отработанного масла на загрязнение, спектральный анализ проб масел, в результате проведения которого по наличию и концентрации различных химических элементов в масле можно поставить диагноз работоспособности отдельных узлов и сопряжений агрегата. Если в пробе картерного масла двигателя имеется высокое содержание свинца, это говорит об износе вкладышей шатунных и коренных подшипников, если высокое содержание железа - об износе гильз цилиндров, если высокое содержание кремния - о засорении воздушного фильтра и т.д.
Третья группа методов основывается на объективной оценке геометрических параметров (зазор, люфт, свободный ход, смещение и т.д.). Метод применим, когда указанные параметры легкодоступны для непосредственного измерения.
В настоящее время проводятся исследования по разработке новых и совершенствованию имеющихся методов диагностирования применительно к усложняющимся конструкциям автомобилей, изменению элементной базы микроэлектроники и микропроцессорной техники. Один и тот же диагностический признак чаще всего может быть установлен с помощью нескольких методов диагностирования. Вопрос выбора наиболее целесообразного из них в каждом конкретном случае решается с учетом: уровня информативности и точности, степени универсальности метода диагностирования, трудоемкости диагностирования, различных организационно-экономических факторов.
1. Диагностирование двигателя
Шумы (стуки) и вибрации, т.е. колебательные процессы упругой среды, возникающие при работе механизмов, используют для виброакустической диагностики двигателя и других агрегатов автомобиля. Источником этих колебаний являются газодинамические процессы (сгорание, выпуск, впуск), регулярные механические соударения в сопряжениях за счёт зазоров и неуравновешенности масс, а также хаотические колебания, обусловленные процессами трения. При работе двигателя все эти колебания накладываются друг на друга и, взаимодействуя, образуют случайную совокупность колебательных процессов, называемую спектром. Это усложняет виброакустическую диагностику из-за необходимости подавления помех, выделения полезных сигналов и расшифровки колебательного спектра.
Распространение колебаний в упругой среде (твёрдые тела, жидкости, газы) носит волновой характер. Параметрами колебательного процесса являются: частота (периодичность), уровень (амплитуда) и фаза, т.е. положение импульса колебательного процесса относительно опорной точки цикла работы механизма (например, в.м.т.).
Частоту измеряют герцами, а уровень - смещением, скоростью или ускорением частиц упругой среды, давлением (в барах), возникающим в ней, или же мощностью (в децибелах) колебательного процесса. Между перечисленными параметрами уровня колебаний существуют переводные масштабы. Воздушные колебания называют шумами (стуками), а колебания материала, из которого состоит механизм, - вибрациями. Шумы воспринимают при помощи микрофона, а параметры вибрации - при помощи пьезоэлектрических датчиков. Полученные таким образом сигналы усиливают, измеряют по масштабу и регистрируют. Средством регистрации может быть осциллограф (при визуальном наблюдении за процессом) или предельный индикатор, например устройство, в котором при достижении заданного уровня колебаний зажигается контрольная лампа. В простейших слуховых приборах (стетоскопах) вибрации воспринимают при помощи стержня и диафрагмы. цилиндропоршневой двигатель скоростной трение
Шумы подвержены значительным искажениям под влиянием внешней среды. Это усложняет их использование для диагностики двигателей. Вибрации воспринимаются непосредственно на поверхности диагностируемого механизма, благодаря чему дают более достоверную информацию о его техническом состоянии.
Возможность осуществления виброакустической диагностики двигателя, т.е. возможность расшифровки колебательных процессов, обусловлена следующими положениями. Колебания, возникающие при соударениях сопряжённых деталей, по своим параметрам резко отличаются как от колебаний газодинамического происхождения, так и от колебаний, обусловленных трением. Каждая соударяющаяся пара порождает свои собственные колебания. При изменении зазоров мощность колебаний резко изменяется вследствие изменения энергии соударения, при этом также изменяется длительность соударений. Принадлежность колебаний соударяющихся пар может быть определена по фазе относительно опорной точки (в.м.т., посадка клапана и др.). Величина параметров сигнала изменяется от скоростного и нагрузочного режимов работы двигателя.
Существует несколько методов виброакустической диагностики. Одним из них является регистрация при помощи осциллографа уровня колебательного процесса в виде мгновенного импульса в функции времени (или угла поворота коленчатого вала). Чтобы подавить помехи и конкретизировать наблюдение, процесс регистрируют, во-первых, в полосе частот, в которой неисправность данного механизма проявляется наиболее сильно, во-вторых, на узком участке, вблизи опорной точки (например, в.м.т.), в-третьих, используют наиболее выгодные для диагностики скоростные и нагрузочные режимы и места установки датчиков. О неисправностях диагностируемого сопряжения судят по уровню и характеру спада колебательного процесса, сравнивая его с нормативным.
Другим более универсальным методом виброакустической диагностики является регистрация и анализ всего спектра, т.е. всей совокупности колебательных процессов. Анализ спектра заключается в группировке по частотам его составляющих колебательных процессов при помощи фильтров (подобно настройке радиоприёмника на соответствующие волны). Колебательный спектр снимают на узком, характерном, участке процесса при соответствующем скоростном и нагрузочном режиме работы диагностируемого механизма. Дефект выявляют по максимальному или среднему уровню колебательного процесса в полосе частот, обусловленной работой диагностируемого сопряжения. Полученные результаты сравнивают с нормативами (эталонами). Нормативы определяют экспериментально, путём искусственного введения дефектов или путём накопления и статической обработки результатов эксплуатационных наблюдений.
При автоматизированном диагностическом заключении измеренные величины амплитуд и их смещений сравнивают при помощи логического устройства с эталонами, хранящимися в блоке памяти машины.
Диагностирование двигателя (в частности, его подшипников и клапанов) по виброакустическим сигналам основывается на следующем. Колебания, возникающие в результате ударных взаимодействий деталей двигателя (при посадке клапана на седло, перекладке поршня, изменении давления в камере сгорания, выборе зазора в шатунном подшипнике), проявляются при определенном угле поворота коленчатого вала двигателя. При этом они происходят с частотой, равной частоте вращения коленчатого вала или кратной ей. Исследование виброакустического сигнала в определенные моменты времени по углу поворота коленчатого вала и в диапазоне частоты собственных колебаний различных деталей (подшипников двигателя, клапанов и т.д.) или их гармоник позволяет осуществить диагностирование отдельных деталей двигателя (подшипников, клапанов) по параметрам вибраций.
Смещение этих процессов в ту или иную сторону (относительно определенного угла поворота коленчатого вала) будет свидетельствовать об отклонениях от нормы в работе механизма или о том, что в сопряжении имеются зазоры, не соответствующие номинальным. Наличие зазоров в значительной мере может влиять на изменение скорости тел в момент соударения, что в свою очередь вызовет изменение энергии колебаний. Упругие деформации, возникающие при соударении деталей в месте контакта, порождают волны колебаний, которые, передаваясь корпусу, вызывают его вибрацию. Колебания деталей происходят как с собственной (резонансной) частотой, так и с частотой, кратной ее гармоникам. При этом для основных деталей двигателя (подшипников, клапанов, колец, поршней) частоты собственных колебаний значительно различаются, что облегчает их выделение из общего спектра вибраций.
Практически диагностирование какого-либо сопряжения заключается в выделении присущего только ему импульсного сигнала из результирующего и затем в сравнении полученного сигнала с эталоном. Для съема сигнала используются, как правило, пьезоэлектрические датчики ускорений вибраций. Измерительное устройство включает усилитель мощности звуковых сигналов, полосовой фильтр, детектор, стробатор (устройство, пропускающее сигнал только в определенные промежутки времени), пороговое устройство, блоки измерения и выдачи результатов.
В связи с тем что виброакустический метод требует сложной контрольно-измерительной и регистрирующей аппаратуры, он не нашел пока широкого практического применения для диагностирования технического состояния двигателей, а также других агрегатов автомобилей.
Самым простым приемом диагностирования двигателей по шумам и вибрациям является прослушивание их с помощью акустического стетофонендоскопа. При этом звуковые волны передаются по слуховому стержню, приставляемому к конструкции, мембране, а от нее через слуховые трубки и наконечники к ушам контролера. Для каждого сопряжения имеют место характерные зоны прослушивания и режимы работы двигателя. Например, стук клапанов прослушивается в верхней части блока цилиндра при малой частоте вращения коленчатого вала на холостом ходу двигателя при небольшом увеличении частоты вращения. Стук шатунных подшипников коленчатого вала - звонкий, среднего тона, исчезающий при отключении свечи проверяемого цилиндра - прослушивается в зоне верхней мертвой точки при резком изменении режима работы двигателя.
Для оценки технического состояния двигателя по характеру стуков, установления конкретной их причины требуется большой практический опыт.
При обнаружении стука в клапанном механизме производится проверка и регулировка тепловых зазоров между торцами стержней клапанов и толкателями или носками коромысел (при верхнем расположении клапанов). Зазоры проверяют с помощью пластинчатого щупа при полностью закрытых клапанах. При-необходимости производится регулировка зазоров поочередно для каждого цилиндра в соответствии с порядком их работы (начиная с первого цилиндра).
При диагностике для оценки технического состояния автомобиля (агрегата) используют так называемые выходные процессы функционирующего механизма. Различают рабочие выходные процессы (например, потребление или отдача мощности, расход топлива, теплообмен с внешней средой) и сопутствующие (например, шумы, вибрации, световые явления и т.д.). Каждый из выходных процессов количественно оценивается с помощью соответствующих параметров (например, отдача мощности может быть оценена соответствующей величиной, темпом ее нарастания). Между структурными параметрами и параметрами выходных процессов существует функциональная связь, благодаря чему по значениям последних можно достаточно полно оценить техническое состояние автомобиля (агрегата), качество его функционирования. Номинальным значениям структурных параметров соответствуют номинальные значения параметров выходных процессов. По мере ухудшения технического состояния автомобиля (агрегата) параметры выходных процессов либо увеличиваются (например, вибрации, расход топлива), либо уменьшаются (давление масла). Предельное значение параметра выходного процесса свидетельствует о неисправном состоянии автомобиля, определяет необходимость ТО или ремонта. Зная характер, темп изменения параметра выходного процесса и его предельное значение, можно определить ресурс работы автомобиля до очередного ТО или ремонта.
В зависимости от количества информации, которую содержат параметры выходных процессов, они могут быть обобщенными или частными. Первые характеризуют техническое состояние автомобиля (агрегата) в целом (например, путь и время разгона автомобиля до заданной скорости, расход топлива на 100 км пути и др.), частные - техническое состояние конкретного механизма, системы (например, люфт рулевого колеса, стуки в кривошипно-шатунном механизме двигателя и т.д.).
Параметры выходных процессов в отличие от структурных, как правило, измеряются непосредственно на работающем автомобиле и используются для определения его технического состояния без разборки.
Выходные процессы, используемые для оценки технического состояния машины без ее разборки, называются диагностическими признаками, а параметры таких процессов -диагностическими параметрами. Не все выходные процессы могут служить в качестве диагностических признаков. Для того чтобы можно было использовать параметр выходного процесса в качестве диагностического, он должен удовлетворять следующим требованиям:
Ш быть функционально важным для оценки технического состояния автомобиля;
Ш быть однозначным, т.е. должен отсутствовать его переход от возрастающей функции к убывающей (или наоборот) в зависимости от наработки автомобиля или изменения его структурного параметра от начального до предельного значения (рис. 2, а). Этим обеспечивается соответствие каждому значению структурного параметра S только одного, вполне определенного значения параметра выходного процесса ц;
Ш быть чувствительным (информативным). Чувствительность характеризуется величиной и скоростью приращения выходного параметра Дц при достаточно малом изменении структурного параметра AS (рис. 2, б). Чем больше Ди. при определенном AS, тем выше чувствительность данного параметра выходного процесса;
Ш обладать стабильностью при многократных измерениях, характеризующейся степенью рассеивания значений относительно среднего значения параметра при постоянных условиях измерения;
Ш обладать дифференцирующей способностью, позволяющей разделять и локализовать неисправности различных элементов объекта по месту их возникновения (до составных частей элементов, до конкретного сопряжения, детали при наличии нескольких одноименных сопряжений, деталей в элементе);
Ш обеспечивать технологичность и экономичность, определяемые удобством определения параметра при диагностировании, соответствующими трудовыми и материальными затратами.
Достоверность результатов диагностирования в большой мере зависит от нагрузочного, скоростного и теплового режимов работы объекта. Поэтому с целью получения высококачественной диагностической информации применяют соответствующие устройства, задающие и поддерживающие оптимальные нагрузочные, скоростные и тепловые режимы.
Рис. 2. Диаграммы к определению понятия однозначности (а) и чувствительности (б) параметра выходного процесса.
2. Объекты диагностирования
Основные методы виброакустической диагностики рассчитаны на обнаружение зарождающихся дефектов в элементах и узлах машин и оборудования. Обнаруживаемые дефекты по характеру влияния на вибрацию и шум объекта диагностирования могут быть разделены на три основные группы.
К первой относятся дефекты, появление которых изменяет характеристики колебательных сил, являющихся причиной возникновения вибрации и шума.
Во вторую группу объединяются дефекты, которые не меняют характеристики колебательных сил, а изменяют механические свойства узлов, в которых они действуют.
К третьей группе относятся дефекты, приводящие к изменению механических свойств узлов и конструкции, по которым распространяется вибрация.
Методы функциональной диагностики позволяют эффективно обнаруживать дефекты первой группы. Методы тестовой диагностики эффективнее всего работают при поиске дефектов третьей группы. Дефекты второй группы могут обнаруживаться методами как функциональной, так и тестовой диагностики. Если же дефекты имеют свойства первой и второй групп, то для их обнаружения, как правило, следует использовать методы функциональной диагностики. И, наконец, дефекты всех трех групп на последних этапах своего развития оказывают существенное влияние на сигналы вибрации и (или) шума и поэтому могут быть обнаружены до момента возникновения аварийной ситуации системами мониторинга виброакустического состояния машин и оборудования.
Ниже представлена краткая информация об особенностях диагностирования наиболее ответственных узлов различных видов машин с помощью методов функциональной диагностики.
Так, на начальном этапе развития виброакустической диагностики ее наибольшие успехи были связаны с диагностикой цилиндропоршневой группы двигателей внутреннего сгорания. Во время работы через определенные интервалы времени в двигателе формируются ударные импульсы, обусловленные особенностями сгорания топлива, работой поршней и распределительных клапанов. Сравнение возбуждаемой ударами вибрации разных цилиндров по времени начала, форме и амплитуде дает возможность выявить дефекты цилиндропоршневой группы, системы распределения и системы зажигания. Это можно сделать с помощью простейшей аппаратуры, а именно, датчика вибрации и осциллографа. Пример осциллограммы вибрации двигателя автомобиля, снятой с датчика, установленного между вторым и третьим цилиндром, приведен на рис.2. Сравнение параметров ударных импульсов по форме между собой дает возможность достаточно просто диагностировать узлы, являющиеся их источником. Но одновременно эти импульсы крайне затрудняют анализ вибрации, возбуждаемой другими узлами, например, подшипниками коленчатого вала. Поэтому при диагностировании двигателей внутреннего сгорания обычно не ограничиваются использованием только виброакустических технологий.
Следующим успешным этапом развития виброакустической диагностики можно считать разработку методов и средств диагностики подшипников качения по ударным импульсам. Следует отметить, что эти импульсы в подшипнике возникают только при появлении дефектов поверхностей качения и смазки.
В дальнейшем диагностика стала развиваться по пути анализа вибрации, возбуждаемой силами трения. Силы трения, и соответственно, возбуждаемая ими высокочастотная вибрация, в исправных подшипниках представляют собой случайные процессы с постоянной за время измерения мощностью. При возникновении дефектов поверхностей качения появляется периодическое изменение мощности этих процессов, т.е. появляется амплитудная модуляция сил трения и высокочастотной вибрации.
Частота модуляции определяет вид дефекта, глубина модуляции - степень развития дефекта. По составляющим спектра огибающей вибрации, определяющим изменение мощности сигнала во времени, в настоящее время идентифицируется вид и величина более десяти различных видов дефектов. На рис. 3а и рис. 3б приведены спектры огибающей высокочастотной вибрации подшипникового узла без дефектов и с износом наружного кольца, которые иллюстрируют возможности диагностирования подшипников.
Дефекты обнаруживаются на ранней стадии развития, за несколько месяцев до появления аварийно-опасного состояния. Современные системы автоматического диагностирования производства позволяют по измерениям, проводимым достаточно редко, определить дефектный подшипник, вид дефекта, степень его развития и выдают рекомендации по необходимому обслуживанию или замене подшипника, а также дату следующего измерения, если подшипник не подлежит замене. Это позволяет перейти от обслуживания по регламенту и плановых ремонтов к обслуживанию и ремонту по фактическому состоянию. При этом количество измерений составляет порядка десяти-пятнадцати за весь жизненный цикл подшипника, причем каждый интервал времени до следующего измерения задается системой в зависимости от результата диагноза, т.е. от реального состояния подшипника.
Рис. 3а Спектры огибающей высокочастотной вибрации подшипникового узла без дефектов.
Рис. 3б Спектры огибающей высокочастотной вибрации подшипникового узла с износом наружного кольца. BPFO - частота перекатывания тел качения по наружному кольцу.
В настоящее время получил развитие еще один метод - метод виброакустической диагностики, который широко применяют для общей оценки технического состояния двигателя (по уровню шума) и для локальной проверки кривошипно-шатунного и газораспределительного механизмов.
Возможность осуществления виброакустической диагностики двигателя, т.е. возможность расшифровки колебательных процессов, обусловлена следующими положениями. Колебания, возникающие при соударениях сопряженных деталей, по своим параметрам резко отличаются как от колебаний газодинамического происхождения, так и от колебаний, обусловленных трением. Каждая соударяющаяся пара порождает свои собственные колебания. При изменении зазоров мощность колебаний резко изменяется вследствие изменения энергии соударения, при этом также изменяется длительность соударений. Принадлежность колебаний соударяющихся пар может быть определена по фазе относительно опорной точки. Величина параметров сигнала изменяется от скоростного и нагрузочного режимов работы двигателя.
Существует несколько методов виброакустической диагностики. Одним из них является регистрация при помощи осциллографа уровня колебательного процесса в виде мгновенного импульса в функции времени (или угла поворота коленчатого вала). Чтобы подавить помехи и конкретизировать наблюдение, процесс регистрируют, во-первых, в полосе частот, в которой неисправность данного механизма проявляется наиболее сильно, во-вторых, на узком участке, вблизи опорной точки, в-третьих, используют наиболее выгодные для диагностики скоростные и нагрузочные режимы и места установки датчиков. О неисправностях диагностируемого сопряжения судят по уровню и характеру спада колебательного процесса, сравнивая его с нормативным.
Другим более универсальным методом виброакустической диагностики является регистрация и анализ всего спектра, т.е. всей совокупности колебательных процессов. Анализ спектра заключается в группировке по частотам его составляющих колебательных процессов при помощи фильтров. Колебательный спектр снимают на узком, характерном, участке процесса при соответствующем скоростном и нагрузочном режиме работы диагностируемого механизма. Дефект выявляют по максимальному или среднему уровню колебательного процесса в полосе частот, обусловленной работой диагностируемого сопряжения. Полученные результаты сравнивают с нормативами. Нормативы определяют экспериментально, путем искусственного введения дефектов или путем накопления и статической обработки результатов эксплуатационных наблюдений.
Для определения состояния деталей ЦПГ необходимы следующие инструменты: акселерометр, используемый для измерения вибрации узлов машины; ультразвуковой течеискатель, который позволяет разделить высокочастотные составляющие, обусловленные движением газов, и низкочастотный шум механической природы; индуктивный датчик; датчик давления (тензодатчик, или датчик пьезоэлектрического типа).
В настоящее время методы виброакустической диагностики и прогнозирования остаточного ресурса широко используются в судостроении, авиастроении, энергетике.
Данный метод расширил возможности существующих методов неразрушающего контроля, позволил решать практические задачи долгосрочного прогноза состояния агрегатов и механизмов и, как следствие, переходить на их обслуживание и ремонт по фактическому состоянию.
Список использованной литературы
1. Статья "Современное состояние виброакустической диагностики машин" на http://www.masters.donntu.edu.ua/2004/fizmet/kvasov/library/lib4.htm
2. Статья "Сущность и физические основы диагностики" на http://www.usecar.ru/page51.html
3. Статья "Контрольно-диагностические и регулировочные работы" на http://www.usecar.ru/page49.html
4. Статья "Методы диагностики двигателей" на http://fcior.edu.ru/card/6904/metody-diagnostiki-dvigateley.html
Размещено на Allbest.ru
...Подобные документы
Назначение системы питания дизельного двигателя. Методы, средства и оборудование для диагностирования системы питания дизельного двигателя грузовых автомобилей. Принцип работы турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей.
курсовая работа [812,2 K], добавлен 11.04.2015Субъективные и инструментальные методы диагностирования двигателей. Описание внешних проявлений неисправностей деталей цилиндропоршневой группы. Выявление скрытых дефектов путем применения физико-химического и спектрального анализов картерного масла.
курсовая работа [813,0 K], добавлен 17.03.2011Диагностирование как один из элементов процесса технического обслуживания и ремонта автомобилей. Характеристика автомобиля ГАЗ-2410. Проектирование поста диагностирования, расчет годовой производственной программы, объема работ и численности рабочих.
курсовая работа [137,8 K], добавлен 07.10.2011Обоснование мощности проектируемой станции технического обслуживания автомобилей. Расчет годового объема станции технического обслуживания и определение числа производственных рабочих. Разработка технологического процесса диагностирования двигателей.
дипломная работа [228,2 K], добавлен 14.07.2014Техническое обслуживание и ремонт подвижного состава автомобильного транспорта. Диагностирование и применение современного технологического оборудования, определение неисправностей механизмов и агрегатов автомобиля. Порядок диагностирования анализатором.
реферат [6,2 M], добавлен 24.05.2009Изучение конструкции и работы двигателя при различных режимах эксплуатации. Построение развернутой диаграммы нагрузки на поверхность шатунной шейки. Тепловой и динамический расчеты систем двигателя, участка подвода тепла, параметров отработавших газов.
курсовая работа [718,5 K], добавлен 08.04.2012Проектирование поста общего диагностирования на 308 автомобилей ЗИЛ-131Н. Расчет производственной программы, годового объема работ, численности выпускающих рабочих и подбор оборудования. Составление технологической карты на виды работ по диагностированию.
дипломная работа [250,6 K], добавлен 07.10.2011АТП на 240 легковых автомобилей ГАЗ-24: разработка рациональной планировки производственных подразделений; применение прогрессивных форм и методов ТО и ТР подвижного состава; современные средства диагностирования технического состояния автомобилей.
курсовая работа [137,2 K], добавлен 07.01.2011Основные понятия о диагностике. Методы, средства и процессы диагностирования автомобилей. Диагностические параметры и нормативы. Диагностирование электронных систем управления автомобиля. Считывание диагностических кодов. Удаление кодов неисправности.
курсовая работа [615,2 K], добавлен 23.09.2014Проектирование поста общего диагностирования на 647 автомобилей, его производственной программы, годового объема работ и численности производственных рабочих. Технологическая карта на виды работ по диагностированию. Приспособление для снятия барабана.
курсовая работа [128,6 K], добавлен 07.10.2011Назначение контрольно-измерительного инструмента, диагностического и технологического оборудования. Внешние проявления неисправностей деталей цилиндропоршневой группы. Диагностирование основных дефектов кривошипно-шатунного механизма и его ремонт.
курсовая работа [342,6 K], добавлен 12.09.2015Диагностирование как процесс определения технического состояния автомобиля без разборки. Классификация видов диагностирования по назначению, объёму работ, месту в технологическом процессе технического осмотра и ремонта. Оснащение рабочего места.
контрольная работа [10,8 M], добавлен 06.03.2010Общие положения неразрушающего контроля, система технического диагностирования вагонов и локомотивов, оценка технического состояния сборочных единиц и деталей. Магнитный вид неразрушающего контроля. Функциональные и тестовые средства диагностирования.
контрольная работа [466,5 K], добавлен 09.02.2010Статистика дефектов функциональных систем автомобилей ВАЗ. Основные методы и алгоритм для диагностирования электрооборудования автомобиля в условиях массового промышленного производства. Исследования переходного процесса в изделии электрооборудования.
презентация [352,2 K], добавлен 16.10.2013Принципы работы двигателей внутреннего сгорания. Классификация видов авиационных двигателей. Строение винтомоторных двигателей. Звездообразные четырехтактные двигатели. Классификация поршневых двигателей. Конструкция ракетно-прямоточного двигателя.
реферат [2,6 M], добавлен 30.12.2011Разработка технологического процесса ремонта цилиндропоршневой группы двигателя и приспособления для выпрессовки поршневых пальцев. Диагностика неисправностей двигателя по состоянию выхлопа. Расчет прочностных характеристик проектируемого приспособления.
дипломная работа [2,1 M], добавлен 08.07.2013Закономерности изменения параметров технического состояния автомобилей по наработке (времени или пробегу). Вероятность безотказной работы агрегата. Методы диагностирования технического состояния объекта с использованием экономико-вероятностного метода.
методичка [2,3 M], добавлен 14.11.2011Организационная структура управления предприятием. Организация работ на постах техобслуживания, инженерно-технической службы, диагностирования и контроля технического состояния автомобилей, шинного хозяйства. Технология ремонта и обкатки двигателей.
отчет по практике [1,7 M], добавлен 27.06.2014Назначение и содержание планового диагностирования машин. Диагностирование по потребности и ресурсное определение технического состояния транспортных средств. Возможные неисправности основных сборочных машин. Группы параметров технического состояния.
контрольная работа [29,9 K], добавлен 06.04.2011Технологический расчёт реконструкции предприятия. Современные методы диагностирования дизельных двигателей. Технология производства двухрядной звездочки, привода газораспределительного механизма. Расчёт сроков окупаемости и эффективности данного проекта.
дипломная работа [11,4 M], добавлен 19.06.2011