Двигатель автомобиля

Виды двигателей внутреннего сгорания и их характеристика. Кривошипно-шатунный и газораспределительный механизмы. Принципы действия систем впрыска топлива, турбонаддува, зажигания, смазки, охлаждения. Топливная система автомобиля. Функции трансмиссии.

Рубрика Транспорт
Вид шпаргалка
Язык русский
Дата добавления 27.01.2014
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для того, чтобы изолировать от вибрации двигателя конструктивные элементы выпускной системы используется виброизолирующая муфта. Сильфон представляет собой гибкий металлический шланг, закрытый стальной оболочкой.

Каталитический нейтрализатор предназначен для уменьшения концентрации вредных веществ в отработавших газах. В обиходе каталитический нейтрализатор называют катализатором. Разные модели автомобилей различаются конструкцией и расположением каталитических нейтрализаторов.

Другими экологическими системами современного автомобиля являются:

· система вентиляции картера;

· система рециркуляции отработавших газов;

· система улавливания паров бензина.

Кислородный датчик служит для управления составом топливно-воздушной смеси двигателя за счет измерения кислорода в отработавших газах. На современных автомобилях устанавливают два кислородных датчика - один перед каталитическим нейтрализатором, другой - за ним.

Глушитель, как следует из названия, предназначен для снижения шума и охлаждения отработавших газов. Ранее глушители состояли из трех частей. Сейчас глушитель включает два элемента: предварительный глушитель и основной глушитель. Снижение шума в глушителе происходит за счет многократного изменения направления и величины потока отработавших газов.

На спортивных автомобилях устанавливаются так называемые прямоточные глушители.

68. Каталитический нейтрализатор

Выпускная система современных автомобилей включает каталитический нейтрализатор. Каталитический нейтрализатор (обиходное название - катализатор) предназначен для снижения выброса вредных веществ в атмосферу с отработавшими газами.

Каталитический нейтрализатор применяется как на бензиновых, так и на дизельных двигателях. Нейтрализатор обычно устанавливается непосредственно за выпускным коллектором или перед глушителем.

Каталитический нейтрализатор имеет следующее устройство:

· блок-носитель;

· теплоизоляция;

· корпус.

Основным элементом каталитического нейтрализатора является блок-носитель, который служит основанием для катализаторов. Блок-носитель изготавливается из специальной огнеупорной керамики. Конструктивно блок-носитель состоит из множества продольных сот-ячеек, которые значительно увеличивают площадь соприкосновения с отработавшими газами.

На поверхность сот-ячеек тонким слоем наносятся вещества-катализаторы. В качестве таких веществ используются платина, палладий и родий. Катализаторы ускоряют протекание химических реакций в нейтрализаторе.

Платина и палладий относятся к окислительным катализаторам. Они способствуют окислению несгоревших углеводородов (СН) в водяной пар, оксида углерода (угарный газ, СО) в углекислый газ.

Родий является восстановительным катализатором. Он восстанавливает оксиды азота (NOx) в безвредный азот.

Таким образом, три катализатора снижают содержание в отработавших газах трех вредных веществ. Такой нейтрализатор называется трехкомпонентным каталитическим нейтрализатором.

Блок-носитель помещается в металлический корпус. Между ними обычно располагается слой теплоизоляции. В корпусе нейтрализатора устанавливается кислородный датчик.

Условием эффективной работы каталитического нейтрализатора является температура 300°С. При такой температуре задерживается порядка 90% вредных веществ. С целью быстрого прогрева нейтрализатора при запуске двигателя осуществляются следующие мероприятия:

· установка нейтрализатора непосредственно за выпускным коллектором;

· повышение температуры выхлопных газов за счет обогащения топливно-воздушной смеси.

69. Сажевый фильтр

На легковых автомобилях с дизельным двигателем с 2004 года применяется сажевый фильтр. Сажевый фильтр предназначен для снижения выброса сажевых частиц в атмосферу с отработавшими газами.

В выпускной системе дизельного двигателя сажевый фильтр обычно объединен с каталитическим нейтрализатором окислительного типа. Такой фильтр имеет название сажевый фильтр с каталитическим покрытием. Сажевый фильтр с каталитическим покрытием устанавливается за выпускным коллектором в непосредственной близости от двигателя.

Основным конструктивным элементом сажевого фильтра является т.н. матрица, которая изготавливается из керамики (карбида кремния). Керамическая матрица имеет ячеистую структуру, состоящую из каналов малого сечения, попеременно закрытых с одной и с другой стороны. Стенки каналов имеют пористую структуру и выполняют роль фильтра. На поверхность стенок нанесен тонкий слой катализатора - титана. Матрица помещена в металлический корпус.

70. Принцип действия сажевого фильтра

При прохождении отработавших газов через сажевый фильтр, частицы сажи задерживаются на поверхности стенок матрицы. Нанесенный на стенки матрицы катализатор способствует окислению несгоревших углеводородов и угарного газа.

Очистка фильтра от накопившейся сажи происходит путем регенерации. Различают активную и пассивную регенерацию сажевого фильтра.

При пассивной регенерации происходит непрерывное окисление сажи за счет действия катализатора и высокой температуры отработавших газов (350-500°С). Цепочка химических преобразований при пассивной регенерации имеет следующий вид:

· оксиды азота вступают в реакцию с кислородом в присутствии катализатора с образованием диоксида азота;

· диоксид азота вступает в реакцию с частицами сажи (углеродом) с образованием оксида азота и угарного газа;

· оксид азота и угарный газ вступают в реакцию с кислородом с образованием диоксида азота и углекислого газа.

При определенных режимах работы двигателя (небольшая нагрузка и др.) наблюдается недостаточно высокая температура отработавших газов и пассивная регенерация происходить не может. В этом случае осуществляется активная (принудительная) регенерация сажевого фильтра. Активная регенерация происходит при температуре 600-650°С, которая создается при помощи системы управления двигателем. При данной температуре частицы сажи вступают в реакцию с кислородом с образованием углекислого газа.

Управление активной регенерацией сажевого фильтра осуществляется с помощью следующих датчиков:

· расходомер воздуха;

· датчик температуры отработавших газов до сажевого фильтра;

· датчик температуры отработавших газов после сажевого фильтра;

· датчик перепада давления в сажевом фильтре.

На основании электрических сигналов датчиков электронный блок управления производит дополнительный впрыск топлива в камеру сгорания, а также снижает подачу воздуха в двигатель и прекращает рециркуляцию отработавших газов. При этом температура отработавших газов поднимается до требуемой величины.

71. Кислородный датчик

Кислородный датчик (другое наименование лямбда-зонд, датчик концентрации кислорода) служит для определения количества кислорода в отработавших газах.

Для обеспечения эффективной (экономичной и экологичной) работы двигателя внутреннего сгорания соотношение воздуха и топлива в топливно-воздушной смеси должно быть постоянным на всех режимах работы. Это достигается использованием кислородного датчика в выпускной системе. Сам процесс управления содержанием кислорода в выхлопных газах называется лямбда-регулирование.

Так, при недостатке воздуха в топливно-воздушной смеси, углеводороды и угарный газ полностью не окисляются. С другой стороны, при избытке воздуха оксиды азота полностью не разлагаются на азот и кислород.

Лямбда-зонд устанавливается в выпускной системе. На отдельных моделях автомобилей применяется два кислородных датчика: один устанавливается до каталитического нейтрализатора, другой - после. Применение двух кислородных датчиков усиливает контроль за составом отработавших газов и обеспечивает эффективную работу нейтрализатора.

В зависимости от конструкции различают два вида кислородных датчиков:

· двухточечный датчик;

· широкополосный датчик.

Двухточечный датчик устанавливается как перед нейтрализатором, так и за ним. Датчик фиксирует коэффициент избытка воздуха в топливно-воздушной смеси (л) по величине концентрации кислорода в отработавших газах.

Двухточечный датчик представляет собой керамический элемент, имеющий двухсторннее покрытие из диоксида циркония. Измерение осуществляется электрохимическим способом. Электрод одной стороной контактирует с выхлопными газами, друго - с атмосферой.

Принцип действия двухточечного кислородного датчика основан на измерении содержания кислорода в отработавших газах и атмосфере. При разной концентрации кислорода в отработавших газах и атмосфере на концах электрода создается напряжение. Чем выше содержание кислорода (обедненная топливно-воздушная смесь), тем ниже напряжение, чем ниже содержание кислорода (обогащенная топливно-воздушная смесь), тем выше напряжение.

Электрический сигнал от кислородного датчика поступает в электронный блок управления системы управления двигателем. В зависимости от величины сигнала блок управления воздействуют на исполнительные органы подконтрольных ему систем автомобиля.

Широкополосный датчик представляет собой современную конструкцию лямбда-зонда. Он применяется в качестве входного датчика каталитического нейтрализатора. В широкополосном датчике значение "лямбда" определяется с использованием силы тока закачивания.

В отличие от двухточечного датчика широкополосный датчик состоит из двух керамических элементов - двухточечного и закачивающего. Под закачиванием понимается физический процесс, при котором кислород из отработавших газов проходит через закачивающий элемент под воздействием определенной силы тока.

Принцип работы широкополосного датчика основан на поддержании постоянного напряжения (450 мВ) между электродами двухточечного элемента за счет изменения силы тока закачивания.

Снижение концентрации кислорода в отработавших газах (обогащенная топливно-воздушная смесь) сопровождается ростом напряжения между электродами двухточечного керамического элемента. Сигнал от элемента подается в электронный блок управления, на основании которого создается ток, определенной силы, на закачивающем элементе.

Ток, в свою очередь, обеспечивает закачку в измерительный зазор и напряжение достигает нормативного значения. Величина силы тока при этом является мерой концентрации кислорода в отработавших газах. Она анализируется электронным блоком управления и преобразуется в управляющие воздействия на исполнительные устройства системы впрыска.

При обеднении топливно-воздушной смеси работа широкополосного датчика осуществляется аналогичным образом. Отличие состоит в том, что под действием тока происходит выкачивание кислорода из измерительного зазора наружу.

Эффективная работа кислородного датчика осуществляется при температуре 300°С. Для скорейшего достижения рабочей температуры лямбда-зонд оборудуется нагревателем

72. Система рециркуляции отработавших газов

Система рециркуляции отработавших газов (EGR - Exhaust Gas Recirculation) предназначена для снижения в отработавших газах оксидов азота за счет возврата части газов во впускной коллектор.

Оксиды азота образуются в двигателе под действием высокой температуры. Чем выше температура в камерах сгорания, тем больше образуется оксидов азота. Возврат части отработавших газов во впускной коллектор позволяет снизить температуру сгорания топливно-воздушной смеси, и, тем самым, уменьшить образование оксидов азота. При этом соотношение компонентов в топливно-воздушной смеси остается неизменным, а мощностные характеристики двигателя изменяются незначительно.

Система рециркуляции отработавших газов применяется как на бензиновых, так и на дизельных двигателях. На бензиновых двигателях внутреннего сгорания, оборудованных турбонаддувом, система рециркуляции отработавших газов не применяется.

На разных конструкциях двигателей система рециркуляции отработавших газов имеет различное устройство. Вместе с тем, можно выделить общие конструктивные элементы данной системы:

· клапан рециркуляции;

· управляющий клапан;

· воздушные патрубки.

Рис. 32 Схема системы рециркуляции отработавших газов

Клапан рециркуляции непосредственно осуществляет перепускание отработавших газов из выпускной системы во впускной коллектор. Работа клапана основана на разряжении, возникающем во впускном коллекторе. За счет разряжения вакуумный преобразователь перемещает вал клапана. Величина открытия клапана определяет объем отработавших газов, поданных к впускному коллектору.

Управляющий клапан (другое наименование - активатор) регулирует величину разряжения, подающегося на клапан рециркуляции. Управляющий клапан представляет собой электромагнитный клапан. Работа клапана осуществляется по команде электронного блока управления в зависимости от режимов работы двигателя.

73. Принцип действия системы рециркуляции отработавших газов

На основании электрического сигнала от электронного блока управления открывается электромагнитный клапан. Разряжение из впускного коллектора подается на вакуумный преобразователь. Клапан рециркуляции открывается на определенную величину, и часть отработавших газов направляется во впускной коллектор.

Система рециркуляции отработавших газов не работает на холостом ходу, при холодном двигателе, а также при полностью открытой дроссельной заслонке.

На современных двигателях рециркуляция отработавших газов производится под контролем системы управления двигателем. Конструктивно такая система рециркуляции включает дроссельный клапан с элетроприводом. Срабатывание системы происходит по команде блока управления двигателем на основании показаний входных датчиков. По сигналу включается электродвигатель и открывает дроссельную заслонку. Положение дроссельной заслонки контролируется потенциометрическим датчиком. Сигнал от датчика используется для определения величины перепускаемых газов.

На отдельных двигателях в системе рециркуляции отработавших газов применяется охлаждение газов. Охлаждение отработавших газов дополнительно снижает температуру сгорания и, тем самым, уменьшает образование оксидов азота. Охлаждение производится путем прохождения охлаждающей жидкости через клапан рециркуляции. Реже в системе рециркуляции отработавших газов используется специальный радиатор, включенный в систему охлаждения.

74. Система вентиляции картера

Система вентиляции картера предназначена для уменьшения выброса вредных веществ из картера двигателя в атмосферу. При работе двигателя из камер сгорания в картер могут просачиваться отработавшие газы. В картере также находятся пары масла, бензина и воды. Все вместе они называются картерными газами. Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя.

На современных двигателях применяется принудительная система вентиляции картера закрытого типа. Система вентиляции картера у разных производителей и на разных двигателях может иметь различную конструкцию. Вместе с тем можно выделить следующие общие конструктивные элементы данной системы:

· маслоотделитель;

· клапан вентиляции картера;

· воздушные патрубки.

Рис. 33 Схема системы вентиляции картера

Маслоотделитель предотвращает попадание паров масла в камеру сгорания двигателя, тем самым уменьшает образование сажи. Различают лабиринтный и циклический способы отделения масла от газов. Современные двигатели оборудованы маслоотделителем комбинированного действия.

В лабиринтном маслоотделителе (другое наименование успокоитель) замедляется движение картерных газов, за счет чего крупные капли масла оседают на стенках и стекают в картер двигателя.

Центробежный маслоотделитель производит дальнейшее отделение масла от картерных газов. Картерные газы, проходя через маслоотделитель, приходят во вращательное движение. Частицы масла под действием центробежной силы оседают на стенках маслоотделителя и стекают в картер двигателя.

Для предотвращения турбулентности картерных газов после центробежного маслоотделителя применяется выходной успокоитель лабиринтного типа. В нем происходит окончательное отделение масла от газов.

Клапан вентиляции картера служит для регулирования давления поступающих во впускной коллектор картерных газов. При незначительном разряжении клапан открыт. При значительном разряжении во впускном канале клапан закрывается.

Работа системы вентиляции картера основана на использовании разряжения, возникающего во впускном коллекторе двигателя. Посредством разряжения газы выводятся из картера. В маслоотделителе картерные газы очищаются от масла. После чего, газы по патрубкам направляются во впускной коллектор, где смешиваются с воздухом и сжигаются в камерах сгорания.

В двигателях с турбонаддувом осуществляется дроссельное регулирование вентиляции картера.

75. Система улавливания паров бензина

Система улавливания паров бензина (EVAP - Evaporative Emission Control) предназначена для предотвращения утечки паров бензина в атмосферу. Система применяется на всех современных моделях бензиновых двигателей.

Система улавливания паров бензина имеет следующее устройство:

· угольный фильтр (адсорбер);

· запорный клапан;

· соединительные шланги и патрубки.

Рис. 34 Схема системы улавливания паров бензина

Основу конструкции системы составляет адсорбер, который собирает пары бензина из топливного бака. Адсорбер имеет соединение с воздушным фильтром.

Освобождение адсорбера от паров бензина осуществляется с помощью электромагнитного запорного клапана. На клапан воздействует электронный блок управления.

двигатель топливо турбонаддув трансмиссия

76. Работа системы улавливания паров бензина

По команде электронного блока управления запорный клапан открывается. В адсорбере пары бензина продуваются за счет разряжения и направляются во впускной коллектор. Далее они сжигаются в камерах сгорания двигателя.

В двигателях с турбонаддувом продувка адсорбера производится при отсутствии давления наддува непосредственно в впускной коллектор. С ростом давления наддува срабатывает обратный клапан и пары бензина поступают в турбонагнетатель.

На холостом ходу и при холодном двигателе продувка паров бензина из адсорбера во впускной коллектор не производится.

77. Трансмиссия автомобиля

Все, что связывает двигатель с ведущими колесами, составляет трансмиссию автомобиля. Трансмиссия в автомобиле выполняет, как правило, следующие функции:

· передает крутящий момент от двигателя к ведущим колесам;

· изменяет величину и направление крутящего момента;

· перераспределяет крутящий момент между ведущими колесами.

В зависимости от вида преобразуемой энергии различают следующие виды трансмиссии:

· механическая трансмиссия (передает и преобразует механическую энергию);

· электрическая трансмиссия (преобразует механическую энергию в электрическую и после передачи к ведущим колесам - электрическую в механическую энергию);

· гидрообъемная трансмиссия (преобразует механическую энергию в энергию потока жидкости и после передачи к ведущим колесам - энергию потока жидкости в механическую энергию);

· комбинированная трансмиссия (электромеханическая, гидромеханическая - т.н. «гибриды»).

Наибольшее применение на современных автомобилях нашла механическая трансмиссия. Механическая (гидромеханическая) трансмиссия, изменение крутящего момента в которой происходит автоматически, называется автоматической трансмиссией.

В конструкции трансмиссии в качестве ведущих колес могут использоваться передние, задние, а также и передние, и задние колеса. Если в качестве ведущих колес используются задние колеса, автомобиль имеет задний привод, а если передние - передний привод. Привод на передние и задние колеса имеют полноприводные автомобили.

У автомобилей с разными типами привода конструкция трансмиссии имеет существенные различия, как по составу элементов, так и по их устройству. Трансмиссия заднеприводного автомобиля имеет следующее устройство:

· сцепление;

· коробка передач;

· карданная передача;

· главная передача;

· дифференциал;

· полуоси.

Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок.

Коробка передач служит для изменения крутящего момента, скорости и направления движения автомобиля, а также длительного разъединения двигателя от трансмиссии.

Карданная передача обеспечивает передачу крутящего момента от вторичного вала коробки передач на вал главной передачи, расположенных под углом друг к другу.

Главная передача служит для увеличения крутящего момента и передаче его на полуоси ведущих колес. На заднеприводных автомобилях применяется гипоидная главная передача (оси шестерен не пересекаются).

Дифференциал предназначен для распределения крутящего момента между ведущими колесами. Он позволяет полуосям вращаться с разными угловыми скоростями, что необходимо при повороте автомобиля.

Трансмиссия переднеприводного автомобиля имеет следующее устройство:

· сцепление;

· коробка передач;

· главная передача;

· дифференциал;

· шарниры равных угловых скоростей;

· приводные валы (полуоси).

На переднеприводных автомобилях главная передача и дифференциал размещаются в картере коробки передач.

Шарниры равных угловых скоростей (ШРУС) служат для передачи крутящего момента от дифференциала к ведущим колесам. В конструкции трансмиссии используется, как правило, два шарнира для соединения с дифференциалом (внутренние шарниры) и два шарнира для соединения с колесами (внешние шарниры).

Между шарнирами располагаются приводные валы.

Трансмиссия полноприводных автомобилей может иметь различные конструкции. В совокупности они образуют системы полного привода.

78. Системы полного привода

Трансмиссии полноприводных автомобилей имеют различные конструкции. В совокупности они образуют системы полного привода. Различают следующие виды систем полного привода:

· постоянный полный привод;

· полный привод подключаемый автоматически;

· полный привод подключаемый вручную.

Разные виды систем полного привода имеют, как правило, разное предназначение. Вместе с тем можно выделить следующие общие преимущества данных систем, определяющие область их применение:

· эффективное использование мощности двигателя;

· лучшая управляемость и курсовая устойчивость на скользком покрытии;

· повышенная проходимость автомобиля.

79. Система постоянного полного привода

Система постоянного полного привода (другое наименование - система полного привода Full Time, в переводе «полное время») обеспечивает постоянную передачу крутящего момента на все колеса автомобиля.

Система имеет следующее общее устройство:

· сцепление;

· коробка передач;

· раздаточная коробка;

· карданные передачи задней и передней оси;

· главные передачи задней и передней оси;

· мелколесные дифференциалы задней и передней оси;

· полуоси колес.

Постоянный полный привод применяется как на автомобилях с заднеприводной компоновкой (продольное расположение двигателя и коробки передач), так и на автомобилях с переднеприводной компоновкой (поперечное расположение двигателя и коробки передач). Такие системы различаются в основном по конструкции раздаточной коробки и карданных передач.

Рис. 35 Схема системы постоянного полного привода

Известными системами постоянного полного привода являются система Quattro от Audi, xDrive от BMW, 4Matic от Mercedes.

Сцепление обеспечивает кратковременное отсоединение двигателя от трансмиссии при переключении передач, а также предохранение элементов трансмиссии от перегрузок.

Коробка передач служит для изменения крутящего момента, скорости и направления движения автомобиля. В автоматической коробке передач функцию сцепления выполняет гидротрансформатор.

Раздаточная коробка предназначена для распределения крутящего момента по осям автомобиля и его увеличения при необходимости. Современная раздаточная коробка включает цепную передачу (зубчатую передачу), обеспечивающую передачу крутящего момента на переднюю ось, понижающую передачу в виде планетарного редуктора (в отдельных конструкциях) и межосевой дифференциал.

Наличие межосевого дифференциала является отличительной особенностью раздаточной коробки системы постоянного полного привода. Для полной реализации полноприводных возможностей в конструкции системы предусматривается блокировка межосевого дифференциала.

Блокировка дифференциала может осуществляться автоматически или вручную. Современными конструкциями автоматической блокировки межосевого дифференциала является вискомуфта, самоблокирующийся дифференциал Torsen, многодисковая фрикционная муфта.

Ручная (принудительная) блокировка дифференциала производится водителем с помощью механического, пневматического, электрического или гидравлического привода.

На некоторых конструкциях раздаточной коробки предусмотрены функции как автоматической, так и ручной блокировки межосевого дифференциала.

Карданные передачи обеспечивают передачу крутящего момента от вторичных валов раздаточной коробки на валы главных передач.

Главная передача служит для увеличения крутящего момента и его передачи на полуоси колес.

Межколесный дифференциал обеспечивает распределение крутящего момента между ведущими колесами и позволяет полуосям вращаться с различными угловыми скоростями. В системах полного привода межколесный дифференциал применяется на передней и задней оси.

Для реализации полноприводных возможностей один или оба дифференциала имеют возможность блокировки. Блокировка межколесного дифференциала может осуществляться вручную или автоматически (вискомуфта, дифференциал Torsen). На современных автомобилях применяется электронная блокировка дифференциала.

Принцип работы системы постоянного полного привода заключается в следующем. Крутящий момент от двигателя передается на коробку передач и далее на раздаточную коробку. В раздаточной коробке момент распределяется по осям. При необходимости водителем может быть включена понижающая передача. Далее крутящий момент через карданные валы передается на главную передачу и межосевой дифференциал каждой из осей. От дифференциала крутящий момент через полуоси передается на ведущие колеса. При проскальзывании колес одной из осей автоматически или принудительно производится блокировка межосевого и межколесного дифференциалов.

80. Система полного привода, подключаемого автоматически

Система полного привода подключаемого автоматически (другое наименование - система полного привода On demand, в переводе «по требованию») является перспективным направлением развития полного привода легковых автомобилей. Данная система обеспечивает подключение колес одной из осей в случае проскальзывания колес другой оси. В обычных условиях эксплуатации автомобиль является передне- или заднеприводным.

Практически все ведущие автопроизводители имеют в своем модельном ряду автомобили с автоматически подключаемым полным приводом. Известной системой полного привода подключаемого автоматически является 4Motion от Volkswagen.

Система полного привода подключаемого автоматически имеет следующее общее устройство:

· сцепление;

· коробка передач;

· главная передача передней оси;

· межколесный дифференциал передней оси;

· раздаточная коробка;

· карданная передача;

· муфта подключения задней оси;

· главная передача задней оси;

· межколесный дифференциал задней оси;

· полуоси.

Рис. 36 Схема системы полного привода подключаемого автоматически

Раздаточная коробка в системе автоматически подключаемого полного привода представляет собой, как правило, конический редуктор. Понижающая передача и межосевой дифференциал отсутствуют.

В качестве муфты подключения задней оси используются следующие устройства:

· вискомуфта;

· электронноуправляемая фрикционная муфта.

Известной фрикционной муфтой является муфта Haldex, которая используется в системе полного привода 4Motion концерна Volkswagen.

Принцип работы системы полного привода подключаемого автоматически, оборудованного фрикционной муфтой, заключается в следующем. Крутящий момент от двигателя, через сцепление, коробку передач, главную передачу и дифференциал передается на переднюю ось автомобиля. Крутящий момент через раздаточную коробку и карданные валы также передается на фрикционную муфту. В нормальном положении фрикционная муфта имеет минимальное сжатие, при котором на заднюю ось передается до 10% крутящего момента. При проскальзывании колес передней оси по команде электронного блока управления срабатывает фрикционная муфта и передает крутящий момент на заднюю ось. Величина передаваемого на заднюю ось крутящего момента может изменяться в определенных пределах.

81. Система полного привода подключаемого вручную

Система полного привода подключаемого вручную (другое наименование - система полного привода Part Time, в переводе «частичное время») в настоящее время практически не применяется, т.к. является низкоэффективной. Вместе с тем, именно эта система обеспечивает жесткую связь передней и задней оси, передачу крутящего момента в соотношении 50:50 и поэтому является по настоящему внедорожной.

Устройство системы полного привода подключаемого вручную в целом аналогично системе постоянного полного привода. Основные отличия - отсутствие межосевого дифференциала и возможность подключения переднего моста в раздаточной коробке. Необходимо отметить, что в ряде конструкций постоянного полного привода используется функция отключения переднего моста. Правда в данном случае отключение и подключение это не одно и то же.

82. Система полного привода 4Motion

Система полного привода 4Motion относится к т.н. системам полного привода подключаемым автоматически. В данной системе крутящий момент двигателя распределяется по осям в зависимости от дорожной ситуации. Система 4Motion устанавливается на автомобили концерна Volkswagen с 1998 года. Название 4Motion является зарегистрированным товарным знаком.

Система полного привода 4Motion имеет следующее устройство:

· коробка передач;

· дифференциал передней оси;

· раздаточная коробка;

· карданная передача привода задней оси;

· многодисковая фрикционная муфта;

· главная передача и дифференциал задней оси.

Рис. 37 Схема системы полного привода 4Motion

Дифференциал передней оси обеспечивает передачу крутящего момента от коробки передач к передним ведущим колесам. Корпус дифференциала передней оси соединен с раздаточной коробкой полым валом.

Раздаточная коробка представляет собой коническую передачу, с помощью которой крутящий момент передается под углом 90 град. Карданная передача привода задней оси соединяет раздаточную коробку и фрикционную муфту.

Карданная передача состоит из двух валов, соединенных шарниром равных угловых скоростей. К раздаточной коробке и фрикционной муфте валы присоединяются с помощью упругих муфт. Задний карданный вал имеет промежуточную опору.

В системе полного привода 4Motion применяется многодисковая фрикционная муфта Haldex. Муфта обеспечивает управляемую передачу крутящего момента (величина передаваемого крутящего момента определяется степенью замыкания муфты) от передней к задней оси автомобиля. Муфта Haldex встроена в картер дифференциала задней оси.

В настоящее время в системе полного привода 4Motion используется муфта Haldex четвертого поколения (автомобили Volkswagen Tiguan), которая имеет более простую конструкцию в сравнении с предшественниками. До этого устанавливались муфты первого и второго поколений (автомобили Volkswagen Golf IV, V - опционально, Volkswagen Transporter).

Конструктивно муфта Haldex включает:

· пакет фрикционных дисков;

· систему управления;

· насос;

· аккумулятор давления;

· масляный фильтр;

· масляные магистрали.

Рис. 38 Схема фрикционной муфты Haldex

Пакет фрикционных дисков представляет собой набор из фрикционных и стальных дисков. Фрикционные диски имеют внутреннее зацепление со ступицей. Стальные диски имеют внешнее зацепление с барабаном. Количество дисков определяет величину передаваемого крутящего момента (больше дисков - больше момент). Диски сжимаются поршнями.

Муфта Haldex имеет электронное управление, включающее входные датчики, блок управления и исполнительные устройства. Входным датчиком системы управления является датчик температуры масла.

Блок управления преобразует входящую информацию в управляющие воздействия на исполнительное устройство. Помимо датчика температуры масла электронный блок управления использует информацию от блока управления двигателем, блока управления системы ABS, получаемую по CAN-шине.

Исполнительным устройством системы управления является клапан управления, регулирующий давление сжатия фрикционных дисков от 0 до 100% максимальной величины. Величина давления определяется положением клапана. Насос и аккумулятор давления обеспечивают поддержание давления масла в системе на уровне 3 МПа.

83. Принцип работы системы полного привода 4Motion

Работа системы 4Motion определяется алгоритмом работы муфты Haldex, в котором можно выделить следующие характерные режимы:

· начало движения;

· начало движения с пробуксовкой;

· движение с постоянной скоростью;

· движение с пробуксовкой;

· торможение.

При трогании с места и разгоне автомобиля клапан управления закрыт, диски муфты максимально сжаты. На задние колеса передается максимальный крутящий момент.

Если движение начинается с пробуксовкой обоих передних колес, клапан управления закрывается, фрикционные диски муфты сжимаются. Крутящий момент полностью передается на заднюю ось. При пробуксовке одного из передних колес в работу системы вначале включается электронная блокировка дифференциала.

При движении с постоянной скоростью клапан открывается, а диски сжимаются в зависимости от условий движения. На заднюю ось крутящий момент передается в определенных (незначительных) пределах.

Пробуксовка в движении автомобиля определяется на основании сигналов от блока управления системы ABS. При этом клапан открывается в зависимости от условий движения (какая ось и какие колеса буксуют).

При торможении клапан управления открыт, фрикционные диски муфты полностью разжаты. Крутящий момент на заднюю ось не передается.

84. Система полного привода Quattro

Система полного привода Quattro является системой постоянного полного привода, в которой крутящий момент постоянно передается на все колеса автомобиля. С 1980 года название Quattro используется автопроизводителем Audi для обозначения системы полного привода своих автомобилей и является зарегистрированным товарным знаком. Отличительной особенностью системы Quattro является продольное расположение двигателя и элементов трансмиссии, которое характерно для большинства автомобилей Audi.

Несмотря на различия в конструкции систем полного привода конкретных автомобилей, можно выделить следующее общее устройство системы Quattro:

· коробка передач;

· раздаточная коробка;

· карданная передача привода задней оси;

· главная передача и задний межколесный дифференциал;

· вал привода передней оси;

· главная передача и передний межколесный дифференциал.

Рис. 39 Схема системы полного привода Quattro

В трансмиссии Quattro может устанавливаться как механическая коробка передач, так и коробка-автомат.

Раздаточная коробка непосредственно присоединена к коробке передач. Конструктивно она включает межосевой дифференциал, распределяющий крутящий момент на переднюю и заднюю оси. Корпус дифференциала имеет механическое соединение с коробкой передач. Распределение крутящего момента на оси в зависимости от конструкции раздаточной коробки может осуществляться непосредственно через приводные валы или отдельную зубчатую передачу.

В качестве межосевого дифференциала в системе полного привода Quattro использовались и используются:

· с 1981 года - свободный межосевой дифференциал с механической блокировкой;

· с 1988 года - самоблокирующийся симметричный дифференциал Torsen с возможностью перераспределения крутящего момента на ось с лучшим сцеплением до 80%. Расположение сателлитов перпендикулярно приводным валам (Torsen Т-1);

· с 2007 года - самоблокирующийся несимметричный дифференциал Torsen с распределением крутящего момента по осям в стандартном положении 40:60 и с возможностью перераспределения крутящего момента на ось с лучшим сцеплением до 70% - на переднюю ось и до 80% - на заднюю ось. Расположение сателлитов параллельно приводным валам (Torsen Т-3).

· с 2010 года - самоблокирующийся несимметричный дифференциал с коронными шестернями с распределением крутящего момента по осям в стандартном положении 40:60 и с возможностью перераспределения крутящего момента на ось с лучшим сцеплением до 70% - на переднюю ось и до 85% - на заднюю ось (Audi RS5).

Раздаточная коробка автомобиля Audi Allroad дополнительно оснащается пониженной передачей.

Передача крутящего момента на заднюю ось осуществляется с помощью карданной передачи, состоящей из двух валов, трех шарниров равных угловых скоростей и одной промежуточной опоры.

Главная передача и задний межколесный дифференциал выполнены в отдельном картере. В разное время в системе Quattro использовались следующие конструкции задних дифференциалов:

· с 1981 года - свободный дифференциал с механической блокировкой (ручной или электропневматической);

· с 1988 года - самоблокирующийся симметричный дифференциал Torsen (Audi V8);

· с 1995 года - свободный дифференциал с электронной блокировкой.

Вал привода передней оси обеспечивает передачу крутящего момента от раздаточной коробки к главной передаче и межколесному дифференциалу передней оси. Он помещен в отдельный кожух. На последних моделях автомобилей Audi, оснащенных системой Quattro, коробка передач, раздаточная коробка, вал привода, главная передача и дифференциал передней оси объединены в одном корпусе.

В качестве переднего межколесного дифференциала используется сободный дифференциал, к которому с 1995 года добавлена функция электронной блокировки дифференциала.

На автомобилях Audi с поперечным расположением двигателя (Audi A3/S3, Audi TT) используется система полного привода подключаемого автоматически, аналогичная системе 4Motion.

Перспективная версия системы полного привода от Audi основана на использовании гибридной силовой установки и носит название E-tron quattro. Данную систему планируется устанавливать на серийные автомобили с 2014 года.

Рис. 40 Схема системы полного привода E-tron quattro

Конструктивно система E-tron quattro включает в дополнение к двигателю внутреннего сгорания и коробке передач два электродвигателя - мощностью 33 кВт на передней оси и 60 кВТ - на задней. При этом задняя ось имеет только электрический привод. Питание электродвигателей осуществляется от литий-ионной аккумуляторной батареи, установленной в центральном тоннеле автомобиля.

85. Система полного привода 4Matic

Система полного привода 4Matic является разработкой Mercedes-Benz и устанавливается на некоторые модели легковых автомобилей. Название 4Matic - зарегистрированный товарный знак. Трансмиссия автомобилей с системой 4Matic имеет только автоматическую коробку передач.

Таблица 4 История системы полного привода 4Matic включает три поколения:

Поколение, автомобили

Характеристика привода

1 поколение (с 1986 года) Е-класс (тип 124)

полный привод подключаемый автоматически, механические блокировки межосевого и заднего межколесного дифференциалов, управление приводом с помощью двух гидравлических муфт, при срабатывании системы ABS отключение полного привода

2 поколение (с 1997 года) Е-класс (тип 210)

постоянный полный привод, межосевой и межколесные дифференциалы свободного типа, блокировка межколесных дифференциалов симулируется с помощью системы контроля тягового усилия

3 поколение (с 2002 года) С-класс (тип 203) Е-класс (тип 211) S-класс (тип 220)

постоянный полный привод, межосевой и межколесные дифференциалы свободного типа, контроль за движением с помощью системы курсовой устойчивости, включающей систему контроля тягового усилия

Система полного привода 4Matic последнего поколения имеет следующее устройство:

· автоматическая коробка передач;

· раздаточная коробка;

· карданная передача привода передней оси;

· главная передача и передний межколесный дифференциал;

· приводные валы с шарнирами равных угловых скоростей;

· карданная передача привода задней оси;

· главная передача и задний межколесный дифференциал;

· полуоси задних колес.

Рис. 41 Схема системы полного привода 4Matic

Центральным конструктивным элементом системы 4Matic является раздаточная коробка, которая осуществляет бесступенчатое распределение крутящего момента по осям автомобиля.

Раздаточная коробка включает:

· приводной вал;

· сдвоенный планетарный редуктор;

· вал привода задней оси;

· вал привода передней оси;

· цилиндрические шестерни.

Рис. 42 Схема раздаточной коробки системы 4Matic

Планетарный редуктор выполняет в коробке функцию несимметричного межосевого дифференциала. Передача крутящего момента происходит таким образом, что на переднюю ось приходится 40% его номинальной величины, на заднюю ось - 60% (на некоторых моделях это соотношение 45:55).

Приводной вал соединен с водило планетарного редуктора. Вал привода задней оси вращается от солнечной шестерни большего диаметра. Вал привода передней оси полый, соединен с солнечной шестерней малого диаметра, с другой стороны с помощью цилиндрических шестерен соединен с карданной передачей передней оси.

В системе 4Matic не предусмотрено блокировок межосевого и межколесных дифференциалов. Автоматический контроль устойчивости при движении автомобиля обеспечивает система курсовой устойчивости ESP, которая включает систему контроля тягового усилия ETS, антипробуксовочную систему ASR и антиблокировочную систему тормозов ABS.

Система ETS (Electric Traction System) по конструкции аналогична электронной блокировке дифференциала. При срабатывании система симулирует блокировку межколесных дифференциалов путем подтормаживания буксующих колес. При этом крутящий момент на колесе с лучшим сцеплением увеличивается, чем достигается уверенный разгон с места, ускорение на дорогах с плохим покрытием, т.е., устойчивое управление автомобилем в сложных условиях.

Размещено на Allbest.ru

...

Подобные документы

  • Роль автомобильного транспорта в народном хозяйстве. Двигатель грузового автомобиля ЗиЛ-130: кривошипно-шатунный и газораспределительный механизмы, системы охлаждения, смазки, питания и зажигания. Основные неисправности и методы ремонта системы двигателя.

    дипломная работа [12,1 M], добавлен 24.06.2010

  • Блок двигателя и кривошипно-шатунный механизм автомобиля НИССАН. Газораспределительный механизм, системы смазки, охлаждения и питания. Комплексная система управления двигателем. Подсистемы управления впрыском топлива и углом опережения зажигания.

    контрольная работа [6,7 M], добавлен 08.06.2009

  • Расчёт массы деталей кривошипно-шатунного механизма, силы давления на поршень. Схема уравновешивания двигателя. Описание конструкции и систем двигателя: кривошипно-шатунный, газораспределительный механизмов, систем смазки, охлаждения, питания, зажигания.

    курсовая работа [1,3 M], добавлен 28.10.2015

  • Карбюраторные поршневые двигатели. Кривошипно-шатунный механизм. Газораспределительный механизм. Система питания, выпуска отработавших газов, зажигания, охлаждения, смазки двигателя. Электронная бесконтактная система зажигания. Работа масляного насоса.

    реферат [4,2 M], добавлен 06.03.2009

  • Назначение, устройство и принцип действия управляемых электроникой систем многоточечного (распределенного) прерывистого впрыска топлива. Достоинства систем: увеличение экономичности, снижение токсичности отработавших газов, улучшение динамики автомобиля.

    контрольная работа [1,2 M], добавлен 14.11.2010

  • Характеристика систем центрального и многоточечного впрыска топлива. Принцип работы плунжерного насоса, применение электромагнитных форсунок. Особенности топливного насоса с электрическим приводом. Причины неисправности систем впрыска топлива Bosch.

    дипломная работа [4,3 M], добавлен 06.02.2012

  • Топливо, состав горючей смеси и продуктов сгорания. Параметры окружающей среды. Процесс сжатия, сгорания и расширения. Кинематика и динамический расчет кривошипно-шатунного механизма. Четырёхцилиндровый двигатель для легкового автомобиля ЯМЗ-236.

    курсовая работа [605,6 K], добавлен 23.08.2012

  • Расчет необходимой номинальной мощности и рабочего цикла двигателя внутреннего сгорания автомобиля. Определение среднего индикаторного давления и теплового баланса двигателя. Вычисление сил и моментов, воздействующих на кривошипно-шатунный механизм.

    курсовая работа [159,9 K], добавлен 12.11.2011

  • Механизмы и системы двигателя автомобиля, техническое обслуживание. Назначение, устройство и работа кривошипно-шатунного механизма. Механизм газораспределения, его составные части. Назначение системы питания. Устройство системы смазки и охлаждения.

    контрольная работа [6,0 M], добавлен 18.07.2010

  • Двигатель внутреннего сгорания. Простейшая принципиальная схема привода автомобиля. Кинематический и динамический анализ кривошипно-шатунного механизма. Силовой расчет трансмиссии автомобиля. Прочностной расчет поршня и поршневого пальца двигателя.

    курсовая работа [31,6 K], добавлен 06.06.2010

  • Кривошипно-шатунный и газораспределительный механизмы двигателя. Назначение и типы механизмов, их общее устройство, принцип действия и характеристики. Устройство деталей, материалы, из которых они изготовлены. Способы крепление автомобильных двигателей.

    реферат [536,4 K], добавлен 24.01.2010

  • Техническая характеристика автомобиля ЗИЛ-4334. Общая характеристика двигателя, кривошипно-шатунный механизм. Система охлаждения. Компрессор и тормозная система автомобиля. Схема пневматического привода тормозов. Классификация карданных шарниров.

    курсовая работа [1,6 M], добавлен 02.06.2015

  • Система управления двигателем. Топливная система: общее понятие, устройство. Принцип действия системы впрыска и выпуска бензиновых двигателей. Главное назначение датчиков. Электронная система зажигания: общий вид, конструкция, особенности работы.

    презентация [695,4 K], добавлен 08.12.2014

  • Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.

    презентация [990,4 K], добавлен 18.01.2012

  • Краткая характеристика двигателя внутреннего сгорания. Основные подвижные и неподвижные детали. Устройство системы смесеобразования и газораспределения. Топливная система. Циркуляционная система смазки главного судового двигателя, система охлаждения.

    презентация [178,5 K], добавлен 12.03.2015

  • Показатели эффективной работы и определение основных параметров впуска, сжатия и процессов сгорания в двигателе. Составление уравнения теплового баланса и построение индикаторной диаграммы. Динамическое исследование кривошипно-шатунного механизма.

    курсовая работа [253,7 K], добавлен 16.09.2010

  • Понятие фрикций как процесса трения деталей. Фрикци в двигателях внутреннего сгорания как причина износа деталей и уменьшение коэффициента полезного действия двигателя. Применение системы смазки трущихся деталей для уменьшения фрикционного износа.

    реферат [3,3 M], добавлен 01.04.2018

  • Кинематика и динамика кривошипно-шатунного механизма. Типичные схемы КШМ автомобильных двигателей и характерные для них соотношения. Силы, действующие в КШМ. Уравновешивание поршневых двигателей. Четырехцилиндровый однорядный двигатель с кривошипами.

    курсовая работа [3,6 M], добавлен 23.03.2011

  • Двигатели внутреннего сгорания (ДВС) широко применяются во всех областях народного хозяйства и являются практически единственным источником энергии в автомобилях. Расчет рабочего цикла, динамики, деталей и систем двигателей внутреннего сгорания.

    курсовая работа [2,5 M], добавлен 07.03.2008

  • Компоновка кривошипно-шатунного механизма. Система охлаждения двигателя. Температурный режим двигателя внутреннего сгорания. Схема системы холостого хода карбюратора. Работа и устройство топливоподкачивающего насоса. Типы фильтров очистки топлива.

    контрольная работа [3,8 M], добавлен 20.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.