The future of flight and airports

The history of aviation from the earliest kites and attempts at tower jumping to supersonic, and hypersonic flight by. History of cabin crew. Airport: ownership and operation, products and services, cargo and freight services. Airports traffic pattern.

Рубрика Транспорт
Вид отчет по практике
Язык английский
Дата добавления 08.04.2014
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Ministry of Education and Science of the Republic of Kazakhstan

The Academy of Civil Aviation

JSC «Aviation College»

Practice report

«The future of flight and airports»

Type of practice: Language practice in professional English

Location: JSC «Aviation College»

Done by Lysova A.O.

Course: 2, term: 4, group: TOP 129-2

Student's signature:

Checked up by Islamova G.T.

The purpose of teaching and language practice

The purpose of teaching and language practice - to form the oral skills of students, as well as the translation of literature, as well as business skills and companionship.

The tasks of language practice - to fix the basic theory and practice of translation and interpretation, expend and establish knowledge transfer of technical vocabulary, increase the spoken language, conversational from of communication in a foreign language.

History of aviation

French reconnaissance balloon L'Intrйpide of 1796, the oldest existing flying device, in the Heeresgeschichtliches Museum, Vienna.

Leonardo da Vinci's Ornithopter design.

The history of aviation has extended over more than two thousand years from the earliest kites and attempts at tower jumping to supersonic, and hypersonic flight by powered, heavier-than-air jets.

Kite flying in China dates back to several hundred years BC and is thought to be the earliest example of man-made flight. Some kites were capable of carrying a man into the air. The ancient Chinese also flew small hot-air lanterns and bamboo-copter toys with spinning rotors.

Leonardo da Vinci's 15th-century dream of flight found expression in several rational but unscientific designs, though he did not attempt to construct any of them.

Efforts to analyze the atmosphere from the 17th to 19th centuries led to the discovery of gases such as hydrogen, which in turn led to the invention of hydrogen balloons. Various theories in mechanics by physicists during the same period of time, notably fluid dynamics and Newton's laws of motion, led to the foundation of modern aerodynamics. Tethered balloons filled with hot air were used in the first half of the 19th century and saw considerable action in several mid-century wars, most notably the American Civil War, where balloons provided observation during the Battle of Petersburg.

The term aviation, noun of action from stem of Latin avis "bird" was coined in 1863 by French aviation pioneer Guillaume Joseph Gabriel de La Landelle (1812-1886) in "Aviation ou Navigation aйrienne".

Experiments with gliders provided the groundwork for heavier-than-air craft, and by the early 20th-century advances in engine technology and aerodynamics made controlled, powered flight possible for the first time.

History of cabin crew

The role of a flight attendant derives from that of similar positions on passenger ships or passenger trains, but it has more direct involvement with passengers because of the confined quarters on aircraft. Additionally, the job of a flight attendant revolves around safety to a much greater extent than those of similar staff on other forms of transportation. Flight attendants on board a flight collectively form a cabin crew, as distinguished from pilots and engineers in the cockpit.

Heinrich Kubis was Germany's (and the world's) first flight attendant, in 1912.

Origins of the word "steward" in transportation are reflected in the term "chief steward" as used in maritime transport terminology. The term purser and chief steward are often used interchangeably describing personnel with similar duties among seafaring occupations. This lingual derivation results from the international British maritime tradition (i.e. chief mate) dating back to the 14th century and the civilian United States Merchant Marine on which US aviation is somewhat modeled. Due to international conventions and agreements, in which all ships' personnel who sail internationally are similarly documented by their respective countries, the U.S. Merchant Marine assigns such duties to the chief steward in the overall rank and command structure of which pursers are not positionally represented or rostered.

Imperial Airways of the United Kingdom had "cabin boys" or "stewards"; in the 1920s. In the US, Stout Airways was the first to employ stewards in 1926, working on Ford Trimotor planes between Detroit and Grand Rapids, Michigan. Western Airlines (1928) and Pan American World Airways (Pan Am) (1929) were the first US carriers to employ stewards to serve food. Ten-passenger Fokker aircraft used in the Caribbean had stewards in the era of gambling trips to Havana, Cuba from Key West, Florida. Lead flight attendants would in many instances also perform the role of purser, steward, or chief steward in modern aviation terminology.

The first female flight attendant was a 25-year-old registered nurse named Ellen Church. Hired by United Airlines in 1930, she also first envisioned nurses on aircraft. Other airlines followed suit, hiring nurses to serve as flight attendants, then called "stewardesses" or "air hostesses", on most of their flights. In the United States, the job was one of only a few in the 1930s to permit women, which, coupled with the Great Depression, led to large numbers of applicants for the few positions available. Two thousand women applied for just 43 positions offered by Transcontinental and Western Airlines in December 1935.

Female flight attendants rapidly replaced male ones, and by 1936, they had all but taken over the role. They were selected not only for their knowledge but also for their characteristics. A 1936 New York Times article described the requirements:

The girls who qualify for hostesses must be petite; weight 100 to 118 pounds; height 5 feet to 5 feet 4 inches; age 20 to 26 years. Add to that the rigid physical examination each must undergo four times every year, and you are assured of the bloom that goes with perfect health.

Three decades later, a 1966 New York Times classified ad for stewardesses at Eastern Airlines listed these requirements:

A high school graduate, single (widows and divorcees with no children considered), 20 years of age (girls 19 1/2 may apply for future consideration). 5'2" but no more than 5'9", weight 105 to 135 in proportion to height and have at least 20/40 vision without glasses.

In the United States, they were required to be unmarried and were fired if they decided to wed. The requirement to be a registered nurse on an American airline was relaxed as more women were hired, and it disappeared almost entirely during World War II as many nurses enlisted in the armed forces. In 1962, Bona of Pisa, a 12th-century pilgrim, was canonised by Pope John XXIII as patron saint of air hostesses.

Airport - what it is?


Sample infrastructure of an airport

Airport distribution in 2008

Part of Terminal 3 of the Dubai International Airport

An airport is a location where aircraft such as fixed-wing aircraft, helicopters, and blimps take off and land. Aircraft may be stored or maintained at an airport. An airport consists of at least one surface such as a runway for a plane to take off and land, a helipad, or water for takeoffs and landings, and often includes buildings such as control towers, hangars and terminal buildings.

Larger airports may have fixed base operator services, seaplane docks and ramps, air traffic control, passenger facilities such as restaurants and lounges, and emergency services. A military airport, in the US, is known as an airbase or air station.

A seaplane base is an area of open water used regularly by seaplanes or amphibious aircraft for landing and taking off.

Infrastructure

The passenger terminal buildings at Incheon International Airport, Incheon, South Korea

Smaller or less-developed airports, which represent the vast majority, often have a single runway shorter than 1,000 m (3,300 ft). Larger airports for airline flights generally have paved runways 2,000 m (6,600 ft) or longer. Many small airports have dirt, grass, or gravel runways, rather than asphalt or concrete.

In the United States, the minimum dimensions for dry, hard landing fields are defined by the FAR Landing And Takeoff Field Lengths. These include considerations for safety margins during landing and takeoff. Heavier aircraft require longer runways.

The longest public-use runway in the world is at Qamdo Bangda Airport in China. It has a length of 5,500 m (18,045 ft). The world's widest paved runway is at Ulyanovsk Vostochny Airport in Russia and is 105 m (344 ft) wide.

As of 2009, the CIA stated that there were approximately 44,000 "... airports or airfields recognizable from the air" around the world, including 15,095 in the US, the US having the most in the world.

Airport ownership and operation

Most of the world's airports are owned by local, regional, or national government bodies who then lease the airport to private corporations who oversee the airport's operation. For example, in the United Kingdom the state-owned British Airports Authority originally operated eight of the nation's major commercial airports - it was subsequently privatized in the late 1980s, and following its takeover by the Spanish Ferrovial consortium in 2006, has been further divested and downsized to operating just five. Germany's Frankfurt Airport is managed by the quasi-private firm Fraport. While in India GMR Group operates, through joint ventures, Indira Gandhi International Airport and Rajiv Gandhi International Airport. Bengaluru International Airport and Chhatrapati Shivaji International Airport are controlled by GVK Group. The rest of India's airports are managed by the Airports Authority of India.

In the United States commercial airports are generally operated directly by government entities or government-created airport authorities (also known as port authorities), such as the Los Angeles World Airports authority that oversees several airports in the Greater Los Angeles area, including Los Angeles International Airport.

In Canada, the federal authority, Transport Canada, divested itself of all but the remotest airports in 1999/2000. Now most airports in Canada are owned and operated by individual legal authorities or are municipally owned.

Many US airports still lease part or all of their facilities to outside firms, who operate functions such as retail management and parking. In the US, all commercial airport runways are certified by the FAA under the Code of Federal Regulations Title 14 Part 139, "Certification of Commercial Service Airports" but maintained by the local airport under the regulatory authority of the FAA.

Despite the reluctance to privatize airports in the US (despite the FAA sponsoring a privatization program since 1996), the government-owned, contractor-operated (GOCO) arrangement is the standard for the operation of commercial airports in the rest of the world.

Airport structures

 

Terminal structures at Sheremetyevo International Airport

Airports are divided into landside and airside areas. Landside areas include parking lots, public transportation train stations and access roads. Airside areas include all areas accessible to aircraft, including runways, taxiways and ramps. Access from landside areas to airside areas is tightly controlled at most airports. Passengers on commercial flights access airside areas through terminals, where they can purchase tickets, clear security check, or claim luggage and board aircraft through gates. The waiting areas which provide passenger access to aircraft are typically called concourses, although this term is often used interchangeably with terminal.

The apron from the top floor observation room, Halifax International Airport, Canada

The area where aircraft park next to a terminal to load passengers and baggage is known as a ramp (or "the tarmac"). Parking areas for aircraft away from terminals are called aprons.

Airports can be towered or non-towered, depending on air traffic density and available funds. Due to their high capacity and busy airspace, many international airports have air traffic control located on site.

Airports with international flights have customs and immigration facilities. However, as some countries have agreements that allow travel between them without customs and immigrations, such facilities are not a definitive need for an international airport. International flights often require a higher level of physical security, although in recent years, many countries have adopted the same level of security for international and domestic travel.

Some airport structures include on-site hotels built within or attached to a terminal building. Airport hotels have grown popular due to their convenience for transient passengers and easy accessibility to the airport terminal. Many airport hotels also have agreements with airlines to provide overnight lodging for displaced passengers.

"Floating airports" are being designed which could be located out at sea and which would use designs such as pneumatic stabilized platform technology.

Products and services

Food court and shops, Halifax Stanfield International Airport, Canada

Duty-free shop at Suvarnabhumi International Airport in Bangkok, Thailand

Most major airports provide commercial outlets for products and services. Most of these companies, many of which are internationally known brands, are located within the departure areas. These include clothing boutiques and restaurants. Prices charged for items sold at these outlets are generally higher than those outside the airport. However, some airports now regulate costs to keep them comparable to "street prices". This term is misleading as prices often match the manufacturers' suggested retail price (MSRP) but are almost never discounted.

Apart from major fast food chains, some airport restaurants offer regional cuisine specialties for those in transit so that they may sample local food or culture without leaving the airport.

Major airports in such countries as Russia and Japan offer miniature sleeping units within the airport that are available for rent by the hour. The smallest type is the capsule hotel popular in Japan. A slightly larger variety is known as a sleep box. An even larger type is provided by the company YOtel.

Premium and VIP services

Shahjalal International Airport's VIP Terminal, Dhaka, Bangladesh

Airports may also contain premium and VIP services. The premium and VIP services may include express check-in, dedicated check-in counters, separate These services are usually reserved for First and Business class passengers, premium frequent flyers, and members of the airline's clubs. Premium services may sometimes be open to passengers who are members of a different airline's frequent flyer program. This can sometimes be part of a reciprocal deal, as when multiple airlines are part of the same alliance, or as a ploy to attract premium customers away from rival airlines.

The waiting hall at the international departure lounge, Chennai International Airport, Chennai, India

Sometimes these premium services will be offered to a non-premium passenger if the airline has made a mistake in handling of the passenger, such as unreasonable delays or mishandling of checked baggage.

Airline lounges frequently offer free or reduced cost food, as well as alcoholic and non-alcoholic beverages. Lounges themselves typically have seating, showers, quiet areas, televisions, computer, Wi-Fi and Internet access, and power outlets that passengers may use for their electronic equipment. Some airline lounges employ baristas, bartenders and gourmet chefs.

Airlines sometimes operate multiple lounges within the one airport terminal allowing ultra-premium customers, such as first class customers, additional services, which are not available to other premium customers. Multiple lounges may also prevent overcrowding of the lounge facilities.

Cargo and freight services

In addition to people, airports move cargo around the clock. Cargo airlines often have their own on-site and adjacent infrastructure to transfer parcels between ground and air.

Cargo Terminal Facilities are areas where international airports export cargo has to be stored after customs clearance and prior to loading on the aircraft. Similarly import cargo that is offloaded needs to be in bond before the consignee decides to take delivery. Areas have to be kept aside for examination of export and import cargo by the airport authorities. Designated areas or sheds may be given to airlines or freight forward ring agencies.

Every cargo terminal has a landside and an airside. The landside is where the exporters and importers through either their agents or by themselves deliver or collect shipments while the airside is where loads are moved to or from the aircraft. In addition cargo terminals are divided into distinct areas - export, import and interline or transshipment

Support services

Recife International Airport in Recife, Brazil.

Aircraft maintenance, pilot services, aircraft rental, and hangar rental are most often performed by a fixed base operator (FBO). At major airports, particularly those used as hubs, airlines may operate their own support facilities.

Some airports, typically military airbases, have long runways used as emergency landing sites. Many airbases have arresting equipment for fast aircraft, known as arresting gear - a strong cable suspended just above the runway and attached to a hydraulic reduction gear mechanism. Together with the landing aircraft's arresting hook, it is used in situations where the aircraft's brakes would be insufficient by themselves.

In the United States, many larger civilian airports also host an Air National Guard base.

Airport access

Many large airports are located near railway trunk routes for seamless connection of multimodal transport, for instance Frankfurt Airport, Amsterdam Airport Schiphol, London Heathrow Airport, London Gatwick Airport and London Stansted Airport. It is also common to connect an airport and a city with rapid transit, light rail lines or other non-road public transport systems. Some examples of this would include the AirTrain JFK at John F. Kennedy International Airport in New York, Link Light Rail that runs from the heart of downtown Seattle to Seattle-Tacoma International Airport, and the Silver Line T at Boston's Logan International Airport by the Massachusetts Bay Transportation Authority (MBTA). Such a connection lowers risk of missed flights due to traffic congestion. Large airports usually have access also through controlled-access highways ('freeways' or 'motorways') from which motor vehicles enter either the departure loop or the arrival loop.

Internal transport

The distances passengers need to move within a large airport can be substantial. It is common for airports to provide moving walkways and buses. The Hartsfield-Jackson Atlanta International Airport has a tram that takes people through the concourses and baggage claim. Major airports with more than one terminal offer inter-terminal transportation, such as Mexico City International Airport, where the domestic building of Terminal 1 is connected by Aerotrйn to Terminal 2, on the other side of the airport.

History and development

The Kharkov Airport in Sokolniki, Ukraine (1924).

The earliest aircraft takeoff and landing sites were grassy fields. The plane could approach at any angle that provided a favorable wind direction. A slight improvement was the dirt-only field, which eliminated the drag from grass. However, these only functioned well in dry conditions. Later, concrete surfaces would allow landings, rain or shine, day or night.

The title of "world's oldest airport" is disputed, but College Park Airport in Maryland, US, established in 1909 by Wilbur Wright, is generally agreed to be the world's oldest continually operating airfield, although it serves only general aviation traffic. Bisbee-Douglas International Airport in Arizona was declared "the first international airport of the Americas" by US president Franklin D. Roosevelt in 1943. Pearson Field Airport in Vancouver, Washington had a dirigible land in 1905 and planes in 1911 and is still in use. Bremen Airport opened in 1913 and remains in use, although it served as an American military field between 1945 and 1949. Amsterdam Airport Schiphol opened on September 16, 1916 as a military airfield, but only accepted civil aircraft from December 17, 1920, allowing Sydney Airport in Sydney, Australia--which started operations in January 1920--to claim to be one of the world's oldest continually operating commercial airports.[7] Minneapolis-Saint Paul International Airport in Minneapolis-Saint Paul, Minnesota, opened in 1920 and has been in continuous commercial service since. It serves about 35,000,000 passengers each year and continues to expand, recently opening a new 11,000 foot (3,355 meter) runway. Of the airports constructed during this early period in aviation, it is one of the largest and busiest that is still currently operating. Rome Ciampino Airport, opened 1916, is also a contender. Increased aircraft traffic during World War I led to the construction of landing fields. Aircraft had to approach these from certain directions and this led to the development of aids for directing the approach and landing slope.

The New Orleans International Airport passenger terminal building in New Orleans (1960s).

Following the war, some of these military airfields added civil facilities for handling passenger traffic. One of the earliest such fields was Paris - Le Bourget Airport at Le Bourget, near Paris. The first airport to operate scheduled international commercial services was Hounslow Heath Aerodrome in August 1919, but it was closed and supplanted by Croydon Airport in March 1920.[8] In 1922, the first permanent airport and commercial terminal solely for commercial aviation was opened at Flughafen Devau near what was then Kцnigsberg, East Prussia. The airports of this era used a paved "apron", which permitted night flying as well as landing heavier aircraft.

The first lighting used on an airport was during the latter part of the 1920s; in the 1930s approach lighting came into use. These indicated the proper direction and angle of descent. The colours and flash intervals of these lights became standardized under the International Civil Aviation Organization (ICAO). In the 1940s, the slope-line approach system was introduced. This consisted of two rows of lights that formed a funnel indicating an aircraft's position on the glideslope. Additional lights indicated incorrect altitude and direction.

The Bender Qassim International Airport in Bosaso, Somalia (2007).

After World War II, airport design became more sophisticated. Passenger buildings were being grouped together in an island, with runways arranged in groups about the terminal. This arrangement permitted expansion of the facilities. But it also meant that passengers had to travel further to reach their plane.

An improvement in the landing field was the introduction of grooves in the concrete surface. These run perpendicular to the direction of the landing aircraft and serve to draw off excess water in rainy conditions that could build up in front of the plane's wheels.

Airport construction boomed during the 1960s with the increase in jet aircraft traffic. Runways were extended out to 3,000 m (9,800 ft). The fields were constructed out of reinforced concrete using a slip-form machine that produces a continual slab with no disruptions along the length. The early 1960s also saw the introduction of jet bridge systems to modern airport terminals, an innovation which eliminated outdoor passenger boarding. These systems became commonplace in the United States by the 1970s.

Airport designation and naming

Further information: List of airports

Airports are uniquely represented by their IATA airport code and ICAO airport code.

Most airport names include the location. Many airport names honour a public figure, commonly a politician (e.g. Paris-Charles de Gaulle Airport) or a prominent figure in aviation history of the region (e.g. Will Rogers World Airport).

Some airports have unofficial names, possibly so widely circulated that its official name is little used or even known.

Some airport names include the word "International" to indicate their ability to handle international air traffic. This includes some airports that do not have scheduled airline services (e.g. Texel International Airport).

Airport security

Baggage is scanned using X-ray machines, passengers walk through metal detectors

Airport security normally requires baggage checks, metal screenings of individual persons, and rules against any object that could be used as a weapon. Since the September 11, 2001 attacks, airport security has dramatically increased.

Airport operations

Air traffic control

The majority of the world's airports are non-towered, with no air traffic control presence. However, at particularly busy airports, or airports with other special requirements, there is an air traffic control (ATC) system whereby controllers (usually ground-based) direct aircraft movements via radio or other communications links. This coordinated oversight facilitates safety and speed in complex operations where traffic moves in all three dimensions. Air traffic control responsibilities at airports are usually divided into at least two main areas: ground and tower, though a single controller may work both stations. The busiest airports also have clearance delivery, apron control, and other specialized ATC stations.

Ground Control is responsible for directing all ground traffic in designated "movement areas", except the traffic on runways. This includes planes, baggage trains, snowplows, grass cutters, fuel trucks, stair trucks, airline food trucks, conveyor belt vehicles and other vehicles. Ground Control will instruct these vehicles on which taxiways to use, which runway they will use (in the case of planes), where they will park, and when it is safe to cross runways. When a plane is ready to takeoff it will stop short of the runway, at which point it will be turned over to Tower Control. After a plane has landed, it will depart the runway and be returned to Ground Control.

Tower Control controls aircraft on the runway and in the controlled airspace immediately surrounding the airport. Tower controllers may use radar to locate an aircraft's position in three-dimensional space, or they may rely on pilot position reports and visual observation. They coordinate the sequencing of aircraft in the traffic pattern and direct aircraft on how to safely join and leave the circuit. Aircraft which are only passing through the airspace must also contact Tower Control in order to be sure that they remain clear of other traffic.

Traffic pattern

All airports use a traffic pattern (often called a traffic circuit outside the U.S.) to assure smooth traffic flow between departing and arriving aircraft. Generally, this pattern is a circuit consisting of five "legs" that form a rectangle (two legs and the runway form one side, with the remaining legs forming three more sides). Each leg is named (see diagram), and ATC directs pilots on how to join and leave the circuit. Traffic patterns are flown at one specific altitude, usually 800 or 1,000 ft (244 or 305 m) above ground level (AGL). Standard traffic patterns are left-handed, meaning all turns are made to the left. Right-handed patterns do exist, usually because of obstacles such as a mountain, or to reduce noise for local residents. The predetermined circuit helps traffic flow smoothly because all pilots know what to expect, and helps reduce the chance of a mid-air collision.

At extremely large airports, a circuit is in place but not usually used. Rather, aircraft (usually only commercial with long routes) request approach clearance while they are still hours away from the airport, often before they even takeoff from their departure point. Large airports have a frequency called Clearance Delivery which is used by departing aircraft specifically for this purpose. This then allows aircraft to take the most direct approach path to the runway and land without worrying about interference from other aircraft. While this system keeps the airspace free and is simpler for pilots, it requires detailed knowledge of how aircraft are planning to use the airport ahead of time and is therefore only possible with large commercial airliners on pre-scheduled flights. The system has recently become so advanced that controllers can predict whether an aircraft will be delayed on landing before it even takes off; that aircraft can then be delayed on the ground, rather than wasting expensive fuel waiting in the air.

Navigational aids

Standard Visual Approach Slope Indicator

There are a number of aids available to pilots, though not all airports are equipped with them. A Visual Approach Slope Indicator (VASI) helps pilots fly the approach for landing. Some airports are equipped with a VHF omnidirectional range (VOR) to help pilots find the direction to the airport. VORs are often accompanied by a distance measuring equipment (DME) to determine the distance to the VOR. VORs are also located off airports, where they serve to provide airways for aircraft to navigate upon. In poor weather, pilots will use an instrument landing system (ILS) to find the runway and fly the correct approach, even if they cannot see the ground. The number of instrument approaches based on the use of the Global Positioning System (GPS) is rapidly increasing and may eventually be the primary means for instrument landings.

Larger airports sometimes offer precision approach radar (PAR), but these systems are more common at military air bases than civilian airports. The aircraft's horizontal and vertical movement is tracked via radar, and the controller tells the pilot his position relative to the approach slope. Once the pilots can see the runway lights, they may continue with a visual landing.

Taxiway signs

Airport guidance signs provide direction and information to taxiing aircraft and airport vehicles. Smaller aerodromes may have few or no signs, relying instead on diagrams and charts.

Lighting

Many airports have lighting that help guide planes using the runways and taxiways at night or in rain or fog.

On runways, green lights indicate the beginning of the runway for landing, while red lights indicate the end of the runway. Runway edge lighting consists of white lights spaced out on both sides of the runway, indicating the edge. Some airports have more complicated lighting on the runways including lights that run down the centerline of the runway and lights that help indicate the approach (an approach lighting system, or ALS). Low-traffic airports may use pilot controlled lighting to save electricity and staffing costs.

Along taxiways, blue lights indicate the taxiway's edge, and some airports have embedded green lights that indicate the centerline.

Weather observations

Weather observations at the airport are crucial to safe takeoffs and landings. In the US and Canada, the vast majority of airports, large and small, will either have some form of automated airport weather station, whether an AWOS, ASOS, or AWSS, a human observer or a combination of the two. These weather observations, predominantly in the METAR format, are available over the radio, through Automatic Terminal Information Service (ATIS), via the ATC or the Flight Service Station.

Planes take-off and land into the wind in order to achieve maximum performance. Because pilots need instantaneous information during landing, a windsock is also kept in view of the runway.

Safety management

"FLF Panther" airport crash tender in Germany

Air safety is an important concern in the operation of an airport, and almost every airfield includes equipment and procedures for handling emergency situations. Airport crash tender crews are equipped for dealing with airfield accidents, crew and passenger extractions, and the hazards of highly flammable aviation fuel. The crews are also trained to deal with situations such as bomb threats, hijacking, and terrorist activities.

Hazards to aircraft include debris, nesting birds, and reduced friction levels due to environmental conditions such as ice, snow, or rain. Part of runway maintenance is airfield rubber removal which helps maintain friction levels. The fields must be kept clear of debris using cleaning equipment so that loose material does not become a projectile and enter an engine duct (see foreign object damage). In adverse weather conditions, ice and snow clearing equipment can be used to improve traction on the landing strip. For waiting aircraft, equipment is used to spray special deicing fluids on the wings.

Many airports are built near open fields or wetlands. These tend to attract bird populations, which can pose a hazard to aircraft in the form of bird strikes. Airport crews often need to discourage birds from taking up residence.

Some airports are located next to parks, golf courses, or other low-density uses of land. Other airports are located near densely populated urban or suburban areas.

An airport can have areas where collisions between aircraft on the ground tend to occur. Records are kept of any incursions where aircraft or vehicles are in an inappropriate location, allowing these "hot spots" to be identified. These locations then undergo special attention by transportation authorities (such as the FAA in the US) and airport administrators.

During the 1980s, a phenomenon known as microburst became a growing concern due to aircraft accidents caused by microburst wind shear, such as Delta Air Lines Flight 191. Microburst radar was developed as an aid to safety during landing, giving two to five minutes warning to aircraft in the vicinity of the field of a microburst event.

Some airfields now have a special surface known as soft concrete at the end of the runway (stopway or blastpad) that behaves somewhat like styrofoam, bringing the plane to a relatively rapid halt as the material disintegrates. These surfaces are useful when the runway is located next to a body of water or other hazard, and prevent the planes from overrunning the end of the field.

Airport ground crew

An aircraft tow tractor moving a KLM Boeing 777

Most airports have groundcrew handling the loading and unloading of passengers, crew, baggage and other services. Some groundcrew are linked to specific airlines operating at the airport.

Many groundcrew at the airport work at the aircraft. A tow tractor pulls the aircraft to one of the airbridges. The ground power unit is plugged in. It keeps the electricity running in the plane when it stands at the terminal. The engines are not working, therefore they do not generate the electricity, as they do in flight. The passengers disembark using the airbridge. Mobile stairs can give the ground crew more access to the aircraft's cabin. There is a cleaning service to clean the aircraft after the aircraft lands. Flight catering provides the food and drinks on flights. A toilet waste truck removes the human waste from the tank which holds the waste from the toilets in the aircraft. A water truck fills the water tanks of the aircraft. A fuel transfer vehicle transfers aviation fuel from fuel tanks underground, to the aircraft tanks. A tractor and its dollies bring in luggage from the terminal to the aircraft. They also carry luggage to the terminal if the aircraft has landed, and is being unloaded. Hi-loaders lift the heavy luggage containers to the gate of the cargo hold. The ground crew push the luggage containers into the hold. If it has landed, they rise, the ground crew push the luggage container on the hi-loader, which carries it down. The luggage container is then pushed on one of the tractors dollies. The conveyor, which is a conveyor belt on a truck, brings in the awkwardly shaped, or late luggage. The airbridge is used again by the new passengers to embark the aircraft. The tow tractor pushes the aircraft away from the terminal to a taxi area. The aircraft should be off of the airport and in the air in 90 minutes. The airport charges the airline for the time the aircraft spends at the airport.

Military airbase

Fighter aircraft at an airbase in Lithuania

An airbase, sometimes referred to as an air station or airfield, provides basing and support of military aircraft. Some airbases, known as military airports, provide facilities similar to their civilian counterparts. For example, RAF Brize Norton in the UK has a terminal which caters to passengers for the Royal Air Force's scheduled TriStar flights to the Falkland Islands. Some airbases are co-located with civilian airports, sharing the same ATC facilities, runways, taxiways and emergency services, but with separate terminals, parking areas and hangars. Bardufoss Airport and Bardufoss Air Station in Norway are an example of this.

An aircraft carrier is a warship that functions as a mobile airbase. Aircraft carriers allow a naval force to project air power without having to depend on local bases for land-based aircraft. After their development in World War I, aircraft carriers replaced the battleship as the centrepiece of a modern fleet during World War II.

The future of aviation

In the 2011 State of the Union speech, President Obama described the development of clean energy and transport technologies as the Apollo projects of our time. It was disappointing that Obama's speech did not mention clean aviation. Electric aviation can replace our oil-based transport with a system that is faster, cleaner and cheaper using existing technology. No advanced batteries are required to build this system!

In 2008, NASA funded several teams to design aircraft with 70 percent lower fuel consumption and a 71-decibel reduction below current FAA noise standards. The teams were led by General Electric, M.I.T., Northrop Grumman and The Boeing Company. The Boeing team designed a hybrid electric aircraft to reduce noise and fuel consumption. The team's report concluded that hybrid electric engine technology “is a clear winner, because it can potentially improve performance relative to all of the NASA goals.” The major limitation of electric aircraft continues to be the weight and cost of batteries. Current electric aircraft have low payloads and speeds due to limited battery power. The Chinese company, Yuneec, demonstrated its E430 electric aircraft in 2009. The single-seat aircraft flies with lithium batteries for up to three hours with a maximum take-off weight of 1034 lb. The light sport aircraft is promising, but has a maximum speed of just 150 km/h.

In the 1950s, the missionary pilot Nate Saint pioneered the use of circular flights for retrieving payloads from the ground using fixed wing aircraft. A bucket trailing the aircraft on a cable was lowered to the ground and kept stationary by flying in a circle. After the payload had been transferred to the bucket, the aircraft would revert to straight flight and the payload would ascend on the cable. Modern pilots have demonstrated the technique which can be viewed online.

An electric takeoff system can be built using the same principle for much greater payloads. Electric tow planes would circle a hub at an existing airport with one rotation every two minutes. Payload aircraft would attach to a winch cable at the hub using a three-point harness. The winch motors in the hub would immediately tow the payload to altitude with acceleration similar to an electric elevator. The take-off would be silent and smooth for the passengers.

At the top of the winch cable, the payload aircraft would be travelling as fast as the tow planes and with an altitude of 30,000 feet or more. The harness could be detached when the aircraft is travelling in the desired direction. For higher altitudes including suborbital flights, the payload would detach from the winch and continue along the extended cable using centripetal force. As the cable travels in a circle, the payload would be accelerated towards the outside of the cable. To avoid drag, the cable would fly at high altitudes using its own lift. Centripetal force would cause longer cables to extend outside the atmosphere due to the curvature of the Earth.

Any new transportation system should be evaluated on the key criteria of economics, market and safety. Basic economic modeling shows that the electric take-off system would be cheaper than conventional aviation and trucking for freight. Electric power prices are generally lower and more stable than oil prices. For a typical aircraft, electric take-off and climb would be complete in less than three minutes compared to fifteen minutes for a conventional take-off. A Boeing 737 consumes about 5000 lb of jet fuel in an average takeoff and climb to cruise altitude. That fuel cost is $2000 at current jet fuel prices compared to a projected $650 for an electric take-off. There is a strong business case for airports and airlines to deploy the technology to reduce their consumption of jet fuel.

airport aviation service

Electric Takeoff

The global aviation industry spends approximately $200 billion on aviation fuel based on current prices. A significant fraction of that fuel is spent on taxi, take-off and climb as they are the least fuel-efficient phases of any flight. By retrofitting aircraft for electric take-off assist, much of this fuel cost could be saved. In addition, cheap electric air freight would capture market share from the trucking industry thanks to lower fuel costs. The trucking industry is estimated to contribute 5% of America's GDP. The development of electric take-off would be motivated by fuel cost savings in the aviation sector and it could potentially replace a large share of America's freight industry with electric transport.

Take-off is the most expensive and dangerous phases of any flight. An engine failure in the first minute of flight gives the pilots little time to respond. Electric take-off has the potential to be safer than conventional aviation through the use of reliable electric motors and redundant tow planes. In the event of a power failure, the electric tow planes could be landed at the airport under battery power. The winch cable could be fitted with parachutes at regular intervals to be deployed in case of a broken cable. Residents living near airports should welcome the electric system as it will eliminate aircraft take-off noise. The tow planes will fly at high altitude and will not be audible from the ground.

The electric take-off system has the potential to be safe, economical and to capture a large share of the aviation market. The system hub would be constructed adjacent to existing airport runways. The tow planes would take-off and land under electric power in the same way as normal aircraft. The airspace around existing airports is tightly controlled by the FAA and airport authorities. Air traffic controllers should be able to schedule landings to avoid the short period when the cable will overfly the runway. Overall airport capacity will be increased as take-offs will no longer require use of the runway.

Cheap access to space and suborbital flight would be a simple extension of the infrastructure. As suborbital vehicles become available, they could be launched by extending the length of existing cables used for aviation. The cables can be constructed from commercially available HMPE fiber that is currently used in the oil and gas industry. Lift would be generated by the tow aircraft flying in circles and the cable would be shaped like a wing to generate additional lift as it travelled through the air. A 1000km cable could accelerate the payload to a speed of 8 km/s at the tip which would allow suborbital flight and the potential to reach low Earth orbit. For suborbital flights, the system would be much cleaner, safer and quieter than a rocket launch. The design is discussed in a 2009 book by Michel Van Pelt titled “Space Tethers and Space Elevators“.

President Obama has called for Apollo projects to deliver clean energy transportation to America. Electric aviation can deliver cheap, clean transport for passengers and cargo without the political controversies of high-speed rail. There is a strong business case for airlines and airports to deploy the electric take-off system to reduce fuel costs. The system could reduce aviation's dependence on expensive oil and capture freight market share from the trucking industry. The aviation industry should take the lead in developing and deploying this clean transport technology.

Themes, made in the course of education practice

General management curriculum of language practice by the head of the practice, which is responsible for the content and timing of practice, holds a general meeting for practice, where inform students about the content and timing of practice, is a calendar-subject plan of practice decides on the issues individual practical training.

Conclusion

During the passage of language practice I attached the basic theory and practice of translation and interpretation, expanded and strengthened technical translation skills vocabulary, increase vocabulary for aviation terminology, developed and strengthened the spoken language, the dialogue form of communication in the foreign language.

References

Internet: http://en.wikipedia.org/wiki/Main_Page

«Наземное обслуживание пассажиров на воздушном транспорте» Байсек М.И.

«Учебное пособие по английскому языку»

Размещено на Allbest.ru

...

Подобные документы

  • The airplane in straight-and-level unaccelerated flight is acted on by four forces. The four forces are lift, gravity, thrust and drag. Flight Control Surfaces. The primary flight controls are the ailerons, elevator and rudder. Laminar Flow Airfoil.

    реферат [517,8 K], добавлен 08.07.2009

  • Construction of zone and flight plan. Modeling of zone in experimental program "Potok". Analysis of main flow direction of modeled airspace. Analysis of modeled airspace "Ivlieva_South" and determination of main flow direction, intensity, density.

    курсовая работа [2,0 M], добавлен 21.11.2014

  • International airports serving Moscow. A special program of creating night bus and trolleybus routes. The formation of extensive tram system to transport people. The development of the subway to transport passengers to different sides of the capital.

    презентация [4,7 M], добавлен 08.08.2015

  • The inventors of the first airplane - brothers Wright. The famous Russian and soviet aircraft designers. A. Tupolev. S.V. Ilyushin. Pavel Osipovich Sukhoi. Inventors that continued to improve airplanes, which are used by military and commercial airlines.

    презентация [3,0 M], добавлен 06.05.2015

  • Learning the capabilities and uses of the tractor. The history of the development of the tractor; classification according to their use: wheeled, tracklaying, general-purpose, industrial, garden and large field. Maintenance and repair of tractors.

    презентация [6,5 M], добавлен 18.10.2015

  • The first rapid-transit system. History Metropolitan Railway. Network topologies, construction stages of London's Metropolitan Railway. Safety and security. Infrastructure 5-Line of Metro de Santiago (Chile), The Soviet Union's stations, Stockholm metro.

    презентация [1,2 M], добавлен 13.05.2014

  • History, basic stages and directions of development of the first aircraft, its operating principle and internal structure. The study of this subject the Wright brothers, assessment of their contribution to the development of aircraft, its evolution.

    презентация [1,8 M], добавлен 05.03.2015

  • Причины появления авиационных альянсов, вырабатывающих общие принципы организации перевозок и перечень услуг по доставке грузов. Грузовой сервис "Sky Team Cargo". Появление альянсов грузовых авиаперевозчиков в странах СНГ, координация деятельности членов.

    реферат [13,3 K], добавлен 14.09.2014

  • The popular explanation of lift The wing as a pump. Lift as a function of angle of attack. The wing as air "scoop". Axis of Rotation Forces. Flight Control Surfaces. History of Laminar Flow. The B-24 bomber's "Davis" airfoil was a laminar flow airfoil.

    курсовая работа [3,4 M], добавлен 08.07.2009

  • The banks history. Origin of the word. The earliest evidence of money-changing activity. A bank as an institution that deals in money and its substitutes and provides other financial services. Types of banking institutions. Loans, checks and savings.

    реферат [884,8 K], добавлен 19.04.2011

  • Property and socio-economic relations. The history of the ownership, their classification and forms. Property as an economic category. Change of ownership is an essential condition for the formation of the market. Ownership in transition economies.

    курсовая работа [37,9 K], добавлен 27.09.2010

  • The current status of our business. Products and services. Benefits of location and challenges. Number of patients who received dental services in 2013. Impact from industry changes. Market description and characteristics. Market niche and share.

    бизнес-план [302,5 K], добавлен 02.10.2014

  • London - capital of England, its geographical position, the population and history. London and its sights, outstanding monuments: The Tower of London. St Pauls Cathedral. Trafalgar Square. The river Thames as city centre, history of its bridges.

    реферат [15,3 K], добавлен 28.02.2010

  • A specific feature of services. The main form of supply of services abroad. A need for international regulation of trade in services. Operations on foreign tourism. International tourism as a form of foreign economic activity. World Tourism Organization.

    реферат [1,2 M], добавлен 30.09.2014

  • Description the National Health Service (NHS) in Great Britain: the first is the hospital services, the second is the medical practice services and the third is public health. Free services and contributory services. The good and weak points of the NHS.

    реферат [17,5 K], добавлен 01.12.2010

  • The main objectives promotion as the process. Overview and the Unique Aspects of Financial Services Industry. Financial Services, Customer Trust and Loyalty, Relationship Building. Aims of the DRIP elements as a "communication flow" model of promotion.

    курсовая работа [119,9 K], добавлен 25.04.2015

  • The Industrial Revolution was a period in history when mankind found innovative and efficient ways of producing goods, manufacturing services and creating new methods of transportation.

    реферат [15,7 K], добавлен 28.04.2002

  • History of life of Ann Saks, its monogynopaedium. Creation of authoress in a military period. Features of the fairy-tale world of childhood, beauty of recitals of colors, folk wisdom, flight of fantasy and imagination in the fairy-tales of authoress.

    презентация [1,5 M], добавлен 26.05.2010

  • Travel on the most well-known sights of London: Tower Bridge, The Houses of Parliament, St. Paul’s Cathedral, Big Ben, Buckingham Palace, Westminster Abbey. History of their creation. The Tower of London is one of the world’s most famous buildings.

    презентация [1,9 M], добавлен 04.02.2011

  • The influence of other languages and dialects on the formation of the English language. Changes caused by the Norman Conquest and the Great Vowel Shift.Borrowing and influence: romans, celts, danes, normans. Present and future time in the language.

    реферат [25,9 K], добавлен 13.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.