Типы автомобилей и тракторов, применяющихся в строительстве

Классификация современных строительных машин. Тягачи на пневмоколесном ходу. Кинематические схемы грузовых автомобилей. Основные узлы пневмоколесных и гусеничных строительных тракторов. Различные виды сменного оборудования одноосных и двухосных тягачей.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 29.04.2014
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Одесская государственная академия строительства и архитектуры

Факультет гидротехнического и дорожного строительства

Кафедра «Подъёмно-транспортных, строительных и дорожных машин»

Курсовая работа

По дисциплине: «Строительная техника»

«Типы автомобилей и тракторов, применяющихся в строительстве»

Выполнил студента

группы ПГС - 221 Буравиковой Е.Б.

Проверил

к.т.н. кафедры ПТСДМ Колин В.М.

Одесса 2012

1. Классификация строительных машин

строительный автомобиль пневмоколесный тягач

В современном строительстве применяется большое количество разнообразных машин и механизмов, различающихся между собой конструктивным исполнением механизмов и рабочих органов, размерами и мощностью силовой установки.

По производственному (технологическому) признаку все строительные машины и механизмы могут быть разделены на следующие основные группы:

1) грузоподъемные;

2) транспортирующие;

3) погрузочно-разгрузочные;

4) для подготовительных и вспомогательных работ;

5) для земляных работ;

6) бурильные;

7) сваебойные;

8) дробильно-сортировочные;

9) смесительные;

10) машины для транспортирования бетонных смесей и растворов;

11) машины для укладки и уплотнения бетонной смеси;

12) дорожные;

13) отделочные;

14) механизированный инструмент.

Дорожные и другие строительные машины, не приведенные в перечне, в учебнике не рассматриваются, поскольку изучение их программой курса «Строительные машины и их эксплуатация» не предусмотрено.

Каждая из названных групп машин в свою очередь может быть разделена по способу выполнения работ и виду рабочего органа на несколько подгрупп, например машины для производства земляных работ могут быть разделены на следующие подгруппы:

а) землеройно-транспортные машины: бульдозеры, скреперы, автогрейдеры, грейдер-элеваторы и др.;

б) одноковшовые и многоковшовые экскаваторы; землеройно-фрезерные машины, планировщики с телескопической стрелой и др.;

в) оборудование для гидромеханического способа разработки грунтов: гидромониторы, землесосные и землечерпательные снаряды и др.

г) грунтоуплотнительные машины: катки, виброуплотнительные машины, трамбовки и др.

Машины в подгруппе, в свою очередь, различаются по данным, составляющим производственную характеристику (мощность, емкость ковша, грузоподъемность, тяговое усилие, производительность и т. д.).

Отдельные виды строительных машин различаются по ходовому устройству (гусеничный ход или колесный), по типу базовой машины (автомобиль, трактор, пневмоколесный тягач), по конструктивным особенностям и видам двигателя.

Все строительные машины по источнику энергии могут быть разделены на две группы: машины, работающие от собственной энергетической установки, и машины, использующие энергию, подведенную извне.

К первой группе относятся машины с двигателями внутреннего сгорания, ко второй -- машины с электрическими двигателями, питаемыми током от внешней сети, и машины с пневматическим приводом.

2. Общие требования к строительным машинам

Условия эксплуатации строительных машин отличаются определенной сложностью. Строительные машины должны обеспечивать необходимую производительность под открытым небом, в любую погоду, в любое время года; перемещаться по грунтовым дорогам и по бездорожью, в стесненных условиях строительной площадки. Поэтому исходя из конкретных условий эксплуатации к той или иной машине предъявляется ряд требований, и чем полнее отвечает машина всем требованиям эксплуатации, тем более пригодна она для использования в строительном производстве.

Каждая машина должна быть надежна в работе, долговечна и приспособлена к изменению условий работы; должна быть удобной в управлении, простой в обслуживании, ремонте, монтаже, демонтаже и транспортировании, экономична в эксплуатации, т. е. расходовать минимальное количество электроэнергии или топлива на единицу вырабатываемой продукции. Машина должна обеспечивать безопасность труда и удобство работы обслуживающего персонала, достигаемое соответствующим размещением приборов, управления, хорошим обзором фронта работ, автоматической очисткой смотровых стекол кабины, системой пневмо- или гидроуправления, помогающими уменьшить усилия на рычагах управления, изоляцией кабины от воздействия шума, вибрации и пыли. Машина должна иметь красивые внешние формы, хорошую отделку и стойкую окраску.

Машины, работающие в условиях низких или, наоборот, повышенных температур, должны быть приспособлены для работы в заданных условиях.

Часто перебазируемые несамоходные строительные машины должны иметь минимальный вес, удобства для монтажа, демонтажа и транспортирования.

К самоходным машинам, часто меняющим место работы, в числе предъявляемых требований обязательными являются маневренность, проходимость машины и устойчивость.

Маневренность (подвижность) машины -- это способность передвигаться и разворачиваться в стесненных условиях, а также перемещаться по строительному участку и вне его с достаточной по производственным условиям скоростью.

Проходимость машины -- это способность преодолевать'неровности местности и неглубокие водные преграды, проходить по влажным и рыхлым грунтам, снежному покрову и т. д. Проходимость определяется в основном удельным давлением на грунт, величиной дорожного просвета (клиренса)--с продольным Ri и поперечным Яг радиусами проходимости колесных машин ( 1), минимальным радиусом поворота.

Устойчивость машины -- это способность противостоять действию сил, стремящихся ее опрокинуть. Чем ниже центр тяжести машины и чем больше ее опорная база, тем устойчивей машина.

Производительность машины -- это количество продукции (выраженное в весе, объеме, или штуках), вырабатываемой в единицу времени -- час, смену, год. Различают производительность: теоретическую (расчетную, конструктивную), техническую и эксплуатационную. Условия производства и эксплуатации строительных машин требуют, чтобы их конструкция была технологичной, т. е. соответствовала возможности применения прогрессивной технологии при изготовлении ее деталей, сборке узлов и машины в целом

3. Пневмоколесные тягачи

Тягачи на пневмоколесном ходу приходят на смену гусеничным машинам. Такие тягачи и агрегатные шасси предназначены для работы с навесным и прицепным оборудованием различных видов.

Пневмоколесные тягачи по сравнению с гусеничными тракторами более просты по конструкции, имеют меньшую массу, дешевле в изготовлении и эксплуатации. Большие скорости тягачей, достигающие 40--50 км/ч, хорошая маневренность в значительной мере способствуют повышению производительности работающих с ними машин.

Предусматривается выпуск двухосных тягачей мощностью 12--500 кВт и одноосных тягачей мощностью от 60 до 1000 кВт.

Кинематические схемы двухосного и одноосного пневмоколесных тягачей.

От двигателя внутреннего сгорания через гидротрансформатор и коробку перемены передач вращение передается переднему и заднему мостам колесного хода. Поворотными являются задние колеса тягача. Для гидравлического привода навесного оборудования служат гидронасосы.

В одноосном тягаче вращение от двигателя через коробку перемены передач, раздаточную коробку передается ведущему мосту тягача. Для привода гидронасосов служит коробка отбора мощности.

Грузовые автомобили обладают сравнительно большой скоростью передвижения (до 80 км/ч), маневренностью, малым радиусом поворота, могут преодолевать довольно крутые подъемы и спуски, пригодны для работы с прицепами и полуприцепами, а также могут быть оснащены специальными кузовами для перевозки различных грузов и дополнительными механизмами, облегчающими их разгрузку.

Различают автомобили бортовые, тягачи, самосвалы и специализированные (кабиновозы, трубовозы-плетевозы, битумовозы и т. д.). Отечественные грузовые автомобили массового производства выполняются по единой конструктивной схеме и состоят из трех основных частей (рис. 2.1) --двигателя, шасси и кузова.

Кузов предназначен для размещения в нем полезного груза, перевозимого автомобилем.

Бортовые автомобили (рис. 2.1, а) снабжаются кузовом 2 в виде деревянной или металлической платформы с откидными бортами и предназначаются для перевозки преимущественно штучных грузов. Вместе с одноосными прицепами бортовые автомобили применяют для перевозки длинномерных материалов -- труб, свай, бревен, проката металлов и т. д. Грузоподъемность отечественных бортовых автомобилей 0,8--14 т, мощность двигателя 70--240 л. с. (51,5-- 176,5 кВт).

Рис. 2.1 Грузовые автомобили: а -- с открытой платформой иоткидными бортами; б -- тягач с седельно-сцепным устройством; в -- самосвал

На раме шасси такого тягача крепится опорная плита и седельно-сцепное устройство 4, воспринимающее силу тяжести груженого полуприцепа и служащее для передачи ему тягового усилия, развиваемого автомобилем. Применение автомобильных тягачей седельного типа с полуприцепами позволяет лучше использовать мощность двигателя и значительно увеличить грузоподъемность автомобиля. Седельные автотягачи способны работать с гружеными полуприцепами массой 6--18,5 т.

Автомобильные тягачи с укороченной базой, к раме которых крепится балласт (вместо седельно-сцепного устройства), используется для буксировки двух-, трех- чертырех- и шестиосных многоколесных прицепов-тяжеловозов (трайлеров) грузоподъемностью от 20 до 120 т, предназначенных для перевозки тяжеловесных крупногабаритных грузов -- тракторов, экскаваторов, трубоукладчиков и других строительных машин, а при соответствующей оснастке-- паровых котлов, насосов, санитарно-технических кабин и т. д.

Автомобили-самосвалы (рис. 2,1, в) имеют кузов 2 в виде открытой сверху металлической платформы, наклоняющейся при разгрузке; они предназначены для перевозки строительных материалов (щебня, песка, грунта, бетонов и пр.) и быстрой выгрузки их. Для защиты кабины передняя часть кузова снабжена козырьком. Наклон кузова назад или набок производится при помощи гидравлического механизма опрокидывания, приводимого в действие от коробки отбора мощности.

Отечественные автосамосвалы имеют грузоподъемность от 3,5 до 75 т, мощность двигателя 70--900 л. с. (51,5--662 кВт). Они могут работать с самосвальными прицепами.

На современных автомобилях применяются двигатели внутреннего сгорания--карбюраторные и дизели, которые преобразуют тепловую энергию, выделяемую при сгорании топлива, в механическую. Шасси состоит из механической ступенчатой трансмиссии (силовой передачи), ходовой части и механизмов управления машиной.

Рис. 2.2 Кинематические схемы грузовых автомобилей: а -- нормальной проходимости; б -- повышенной проходимости

Трансмиссия (рис. 2.2) передает крутящий момент от вала двигателя 2 к ведущим колесам 8, а также приводит в действие различное оборудование, смонтированное на автомобиле.

В нее входят:

1) постояннозамкнутая дисковая фрикционная муфта (сцепление), служащая для плавного соединения и быстрого разъединения работающего двигателя с трансмиссией;

2) ступенчатая коробка передач, которая выполнена в виде зубчатого редуктора с переменным передаточным числом и предназначена для изменения величины крутящего момента, подводимого к ведущим колесам в зависимости от условий движения, обеспечения движения автомобиля задним ходом и разъединения работающего двигателя с трансмиссией при длительных остановках машины;

3) карданные валы, передающие крутящий момент под меняющимся углом от коробки передач, укрепленной на раме, к подрессоренному заднему мосту;

4) главная передача (одинарная или двойная), увеличивающая тяговую силу на ведущих колесах;

5) дифференциал, служащий для распределения крутящего момента между ведущими колесами и обеспечивающий их вращение с различными угловыми скоростями при движении автомобиля на поворотах и по неровной поверхности;

6) полуоси (валы) , передающие крутящий момент к закрепленным на них ведущим колесам; главная передача, дифференциал и полуоси, заключенные в кожух, называются задним ведущим мостом.

Автомобили нормальной проходимости, приспособленные для работы на шоссе и грунтовых дорогах, имеют один ведущий мост --задний (рис. 2. 2,а), а автомобили повышенной проходимости-- два (передний и задний) или три (передний и два задних) ведущих моста. В трансмиссию автомобиля с двумя ведущими мостами (рис. 2.2,б) кроме сцепления, коробки передач, карданного вала 6 и заднего ведущего моста входят также передний ведущий мост с управляемыми колесами и раздаточная коробка, соединенная с ним и коробкой передач карданными валами.

В трансмиссиях автомобилей нормальной и повышенной проходимости, используемых в качестве базы строительных машин, предусмотрен подвод части мощности двигателя к раздаточному редуктору, имеющему вал отбора мощности для привода навесного рабочего оборудования. Раздаточный редуктор может приводить в действие гидронасос системы управления навесным оборудованием.

Ходовая часть передает на дорогу силу тяжести автомобиля и осуществляет его поступательное движение. Она состоит из несущей рамы, на которой монтируются все агрегаты, кузов и кабина водителя, переднего и заднего мостов с пневмоколесами и упругой подвески, соединяющей несущую раму с мостами.

Колеса автомобилей нормальной проходимости снабжаются, как правило, пневматическими шинами высокого давления 5--7 кгс/см2 (0,49--0,69 МПа), а автомобилей повышенной проходимости -- шинами низкого давления 1,75--5 кгс/см2 (0,17-- 0,49 МПа) с увеличенной опорной поверхностью.

Механизмы управления объединены в две независимые системы: рулевую -- для изменения направления движения автомобиля посредством поворота передних управляемых колес и тормозную -- для снижения скорости и быстрой остановки машины.

Тракторы применяются на строительстве для перемещения тяжеловесных грузов на прицепах по плохим дорогам и пересеченной местности там, где не может пройти автомобиль, а также передвижения и работы навесных или прицепных строительных машин. Различают пневмоколесные и гусеничные тракторы, кото- А рые делятся на несколько классов в зависимости от максимального тягового усилия в тс (кН) на крюке трактора при номиналь- щ ной мощности двигателя. Тракторы, применяемые в строительстве, относятся к тяговому классу 1,4 тс (13,8 кН), 3 тс (29,5 кН), 6 тс (59 кН), 9 тс (88 кН), 15 тс (149 кН), 25 тс (345 кН) и 35 тс (343 кН).

Пневмоколесные тракторы обладают сравнительно большими скоростями передвижения (до 40 км/ч), высокой мобильностью и маневренностью; их используют как транспортные машины и как базу для установки различного навесного оборудования ( погрузочного, кранового, бульдозерного и землеройного), применяемого при производстве землеройных и строительно-монтажных работ небольших объемов на рассредоточенных объектах. Наиболее эффективно пневмоколесные тракторы используются на дорогах с твердым покрытием. Основной их недостаток -- сравнительно высокое удельное давление на грунт (0,2--0,4 МПа), значительно снижающее проходимость машины.

Гусеничные тракторы нашли более широкое применение в строительстве благодаря значительному тяговому усилию на крюке (не менее 3 те), надежному сцеплению гусеничного хода с грунтом, малому удельному давлению на грунт (0,02-- 0,06 МПа) и высокой проходимости. Основным недостатком гусеничных тракторов является их тихоходность (не более 12 км/ч).

Основные узлы пневмоколесных и гусеничных тракторов -- двигатель, силовая передача (трансмиссия), остов (рама), ходовое устройство, система управления, вспомогательное и рабочее оборудование.

Гусеничные тракторы оснащаются дизелями и карбюраторными двигателями, механическими, гидромеханическими и электромеханическими трансмиссиями.

Расположение двигателя может быть передним (рис. 2.3,а), средним и задним (рис. 2.3,б). Наибольшее распространение получили гусеничные тракторы с дизелями и передним расположением двигателя. Трансмиссия служит для передачи крутящего момента от вала двигателя к ведущим звездочкам гусеничных лент (гусениц), плавного трогания и остановки машины, изменения тягового усилия трактора в соответствии с условиями движения, изменения скорости и направления его движения, а также привода рабочего оборудования.

В состав механической трансмиссии (рис. 2.4) входят: фрикционная дисковая муфта сцепления (постоянно или непостоянно замкнутая), коробка передач, соединительные валы, главная передача, механизм поворота с тормозами и бортовые редукторы, соединенные с ведущими звездочками гусениц. Муфта сцепления и коробка передач выполняют те же функции, что и одноименные узлы автомобиля. Главная передача (аналогичная автомобильной) и бортовые редукторы увеличивают крутящий момент, подводимый от двигателя к ведущим звездочкам гусениц. На поперечном валу трансмиссии между главной передачей и бортовыми редукторами установлен фрикционный или планетарный механизм поворота, предназначенный для изменения направления движения трактора. Наиболее распространенный фрикционный механизм поворота (рис. 2.4, а) выполнен в виде двух постоянно замкнутых многодисковых фрикционных муфт (бортовых фрикционов).

При обоих включенных фрикционах ведущие звездочки 10 гусениц вращаются синхронно, что обеспечивает прямолинейное движение машины. Частичным или полным выключением одного из фрикционов уменьшают скорость движения соответствующей гусеницы, в результате чего происходит поворот трактора в сторону отстающей гусеницы. На наружные (ведомые) барабаны фрикционов действуют ленточные тормоза 8, осуществляющие торможение отключенной от трансмиссии гусеницы для более крутого поворота трактора, а также торможение обеих гусениц при движении трактора на уклонах и затормаживание его на месте.

Рис. 2.4 Кинематические схемы механических трансмиссий гусеничных тракторов с механизмом поворота: а -- фрикционным; б -- планетарным

Прямолинейное движение трактора с планетарным механизмом поворота (рис. 2.4,б) обеспечивается при затянутых тормозах до полной остановки солнечных шестерен. При этом водила и вал будут вращаться с одинаковой скоростью. Для поворота трактора необходимо отпустить правый или левый тормоз, в результате чего один из планетарных механизмов полностью или частично прекратит передавать крутящий момент ведущей звездочке 10 гусеницы. Включением тормоза 8 достигается уменьшение радиуса поворота трактора. При одновременном включении обоих тормозов 8 обеспечивается снижение скорости или полная остановка машины. Планетарный механизм поворота одновременно выполняет функции редуктора. Основным недостатком планетарного механизма поворота является сложность регулировки тормозов.

Наряду с такими достоинствами, как простота конструкции, высокая надежность, сравнительно большой КПД (0,82--0,86) и малая стоимость, механическая трансмиссия имеет ряд недостатков, основным из которых является необходимость частого переключения передач в процессе работы трактора, что приводит к нерациональному использованию мощности двигателя и повышенной утомляемости машиниста.

Этот недостаток устранен в гидромеханической и электромеханической трансмиссиях. В гидромеханической трансмиссии используется механическая ступенчатая коробка передач и гидротрансформатор, заменяющий муфту сцепления. Гидротрансформатор обеспечивает автоматическое бесступенчатое изменение крутящего момента, а также скорости движения трактора, в пределах каждой передачи коробки в зависимости от общего сопротивления движению машины. Это позволяет снизить число переключений передач, повысить долговечность двигателя и трансмиссии в результате уменьшения на последнюю динамических нагрузок, уменьшить вероятность остановки двигателя при резком увеличении нагрузки. Однако по сравнению с механической гидромеханическая трансмиссия имеет более сложную и дорогую конструкцию, значительно меньший КПД (0,7--0,75), что ухудшает топливную экономичность трактора.

В электромеханической трансмиссии крутящий момент дизеля передается через постоянно замкнутую фрикционную муфту, карданный вал и ускоряющий редуктор силовому генератору, который питает постоянным током тяговый электродвигатель. Крутящий момент якоря тягового электродвигателя передается главной конической передачей планетарным механизмам поворота, бортовым редукторам и ведущим звездочкам гусеничных лент. Электромеханическая трансмиссия по сравнению с механической и гидромеханической имеет более простую кинематику (отсутствует ступенчатая коробка передач) и обеспечивает высокие тяговые качества трактора за счет плавного бесступенчатого регулирования в широком диапазоне скоростей движения машины в зависимости от нагрузки. Так, при увеличении нагрузки скорость движения трактора уменьшается, а тяговое усилие возрастает. При снижении нагрузки скорость движения автоматически увеличивается. Основные недостатки такой трансмиссии -- сложность, сравнительно большие габаритные размеры и масса, высокая стоимость.

Механизмы поворота и тормоза, а также устройства для управления двигателем, муфтой сцепления и коробкой передач представляют в совокупности систему управления трактором.

Ходовое устройство передает на грунт силу тяжести трактора и осуществляется поступательное движение машины. Оно состоит из остова (рамы), на котором монтируются все агрегаты трактора, рабочее оборудование и кабина машиниста; гусеничных движителей, включающих в себя гусеницы, ведущие звездочки и направляющие колеса, гусеничные тележки с поддерживающими и опорными катками; подвески, соединяющей (с помощью упругих элементов) остов трактора с опорными катками, катящимися по гусеничной ленте. Гусеницы болотных тракторов, предназначенных для работы на грунтах с низкой несущей способностью, выполняются уширенными, что позволяет снизить удельное давление на грунт до 0,25 кгс/см2 (0,02 МПа).

Рабочее оборудование предназначено для использования полезной мощности двигателя при работе трактора с навесными и прицепными машинами. К рабочему оборудованию относятся прицепное устройство, валы отбора мощности, приводные шкивы и гидравлическая навесная система.

Рис. 2.5 Пневмоколесные тракторы: а -- с передними управляемыми колеаами; б -- с шарнирно-сочлененной рамой; в -- схема поворота полурам

Пневмоколесные тракторы оснащаются дизелями и карбюраторными двигателями, механическими и гидромеханическими трансмиссиями. По типу системы поворота различают тракторы с передними управляемыми колесами (рис. 2.5, а), со всеми управляемыми колесами и с шарнирно-сочлененной рамой (рис. 2.5,б). Наиболее распространены пневмоколесные тракторы с дизелями, механической трансмиссией и передними управляемыми колесами.

Размещение, назначение и устройство основных узлов пневмо-колесного трактора с механической трансмиссией и передними управляемыми колесами примерно такие же (за исключением рабочего оборудования), как у рассмотренного выше автомобиля. Пневмоколесные тракторы с шарнирно-сочлененн-ой («ломающейся в плане») рамой обладают высокой маневренностью, малым радиусом поворота и применяются для работы в стесненных условиях. Рама такого трактора (см. рис. 2.5,б) состоит из двух полурам -- передней и задней, соединенных между собой универсальным шарниром.

Маневрирование машины производится путем поворота передней полурамы относительно задней вокруг вертикальной оси шарнира (на угол 40°) в плане от продольной оси машины с помощью двух гидроцилиндров двустороннего действия (рис. 2.5, в). Каждая из полурам опирается на ведущий мост с управляемыми колесами. Трансмиссия тракторов с шарнир-но-сочлененной рамой -- механическая и гидромеханическая.

Пневмоколесные тягачи предназначены для работы с различными видами сменного навесного и прицепного строительного оборудования. В сравнении с гусеничными тракторами они более просты по конструкции, имеют меньшую массу, большую долговечность, дешевле в изготовлении и в эксплуатации. Большие скорости тягачей (до 50 км/ч), хорошая маневренность в значительной мере способствуют повышению производительности агрегатированных с ними строительных машин.

Различают одноосные и двухосные тягачи. На обоих типах тягачей применяют дизели и два вида трансмиссий -- механическую и гидромеханическую. Наиболее распространены тягачи с гидромеханической трансмиссией.

Одноосный пневмоколесный тягач состоит из двигателя, трансмиссии и двух ведущих колес. Самостоятельно передвигаться или стоять на двух колесах без полуприцепного рабочего оборудования одноосный тягач не может. В сочетании с полуприцепным рабочим оборудованием такой тягач составляет самоходную строительную машину с передней ведущей осью.

Оба ведущих колеса тягача являются одновременно и управляемыми. Управление сцепом тягач-полуприцеп осуществляет путем поворота тягача на 90° вправо -- влево относительно полуприцепа с помощью гидроцилиндров двустороннего действия.

Двухосные тягачи в отличие от одноосных имеют возможность самостоятельно перемещаться без прицепа, работать в агрегате с двухосными прицепами при незначительных затратах времени на их смену. Двухосные четырехколесные тягачи имеют один или два ведущих моста и шарнирно-сочлененную раму. Система поворота полурам такая же, как и у пневмоколесного трактора (см. рис. 2.5, в). Гидромеханическая трансмиссия одноосных и двухосных тягачей включает раздаточную коробку, от которой основной крутящий момент через гидротрансформатор, коробку передач и соединительные валы сообщается ведущему мосту (или двум мостам). Часть мощности, отдаваемой двигателем через раздаточную коробку и карданный вал, может передаваться к исполнительным органам управления рабочим оборудованием. Все агрегаты привода, отбора мощности и трансмиссии ходовой части тягачей унифицированы и могут быть использованы для различных модификаций машин той же или смежной мощности. Мощность дизеля тягачей составляет до 1200 л. с. (880 кВт).

В конструкциях двухосных тягачей большой мощности (свыше 400 кВт) применяют электромеханические трансмиссии с мотор-колесами. На рис. 2.6, а показан такой тягач на четырех мотор-колесах. Мотор-колесо (рис. 2.6,б) состоит из электродвигателя, корпус которого является несущим элементом (осью) для обода ведущего колеса с бескамерной шиной, и планетарного зубчатого редуктора, передающего вращение от вала ротора электродвигателя ободу колеса. Стояночный тормоз 3 мотор-колеса, смонтированный на валу электродвигателя, автоматически включается при обесточивании обмоток электродвигателя. Корпус электродвигателя подвешен к несущей раме тягача на двух шарнирах, чем обеспечивается поворот мотор-колеса в плане относительно продольной оси машины вправо и влево. Таким образом, каждое колесо тягача является одновременно ведущим и управляемым, что определяет высокую маневренность и проходимость машины.

Рис. 2.6 Двухосный тягач с электромеханической трансмиссией: а -- общий вид; б -- мотор-колесо

Рис. 2.7 Различные виды сменного оборудования одноосных и двухосных тягачей: 1 -- скрепер; 2-- землевозная тележка; 3 -- кран; 4-- цистерна для цемента или жидкостей; 5 --трайлер; 6 -- кран-трубоукладчик; 7 -- траншеекопатель; 8 -- корчеватель; 9 -- бульдозер; 10 -- рыхлитель; 11 -- погрузчик

Тяговые расчеты. При движении автомобиля, трактора или тягача возникает общее сопротивление движению машины (в Н):

W = W0 ± Wh,

где Wo --основное сопротивление движению на прямом горизонтальном участке пути, представляющее собой сумму сопротивлений качению колес '(гусениц) и трения в трансмиссии, Н; W{ -- дополнительное сопротивление движению на подъеме (со знаком плюс) или на уклоне (со знаком минус), Н.

Такие виды сопротивлений, как сопротивление воздуха, сопротивление при движении на криволинейных участках пути и сопротивление ускорения при тяговых расчетах средств горизонтального транспорта, используемых на строительстве, обычно не учитываются. При выполнении тяговых расчетов, как правило, пользуются величинами удельных сопротивлений движению ю. Значения основного удельного сопротивления движению автомобилей, тракторов, тягачей и прицепов приводятся в справочниках. Значение дополнительного удельного сопротивления на подъеме принимают равным величине уклона пути (в тысячных).

Промышленный трактор

Промышленный трактор предназначен для работы в качестве базовой машины в землеройном или строительном агрегате: бульдозере, скрепере, трубоукладчике. Промышленный трактор характеризуется следующими особенностями:

§ эксплуатация в течение всего срока службы с одним и тем же типом рабочего оборудования;

§ работа на пониженных скоростях с большим тяговым усилием в условиях буксования ходовой части;

§ возможность работы на твёрдых (в том числе скальных) грунтах;

§ возможность работы на переувлажнённых грунтах;

§ необходимость точного позиционирования рабочего органа относительно грунта;

§ доставка к месту проведения работ на спецтранспорте.

Бульдозерно-рыхлительный агрегат Б-10 на базе промышленного трактора Т-170

Для улучшения обзора машинистом бульдозерного оборудования промышленный тракторТ-330 имеет переднее расположение кабины. Сравнительно редкое техническое решение

§ ДЭТ-250М -- один из немногих в мире тракторов с электромеханической трансмиссией

§ Жёсткая подвеска и усиленная гусеница помогают трактору работать на твёрдых грунтах. Для буксировки прицепных землеройных машин (скрепера,грейдера) трактор имеет тягово-сцепное устройство

Бульдозерно-рыхлительный агрегат Caterpillar D9 (США)

Конструкция промышленных тракторов отличается следующими решениями:

§ малооборотистый двигатель с высоким крутящим моментом;

§ применение гидротрансформатора на тракторах тягового класса 15 и выше.

§ коробка перемены передач с шестернями постоянного зацепления, смазываемыми под давлением;

§ жёсткая (или полужёсткая) подвеска;

§ ходовая часть и рама усиленной конструкции;

§ бронированные капот и нижняя часть моторного отсека для защиты двигателя от камней, переваливающихся через отвал;

§ наличие усиленных шарниров для крепления отвала, рыхлителя и гидроцилиндров;

§ гидравлическое оборудование повышенной энергоёмкости;

§ улучшенная обзорность из кабины вперёд;

§ возможность работы при низких температурах.

Отличительно особенностью промышленных тракторов является смещённый назад центр тяжести. Это необходимо для того, чтобы в составе бульдозерного агрегата (вес отвала может составлять до 20 % веса трактора) распределение веса на всю длину гусенциц было равномерным. Поэтому, при использовании трактора без бульдозерного отвала на переднюю часть рамы устанавливается противовес.

Низкие рабочие скорости (2-3 км/ч) промышленных тракторов обуславливают их сравнительно невысокую энергоёмкость -- порядка 15 лошадинных сил на одну тонно-силу тяги.

Для промышленных тракторов оптимальна гидромеханическая трансмиссия, позволяющая реализовывать полную мощность двигателя на особо малых скоростях. Встречаются тракторы с электрической передачей (например, ДЭТ-250М. ДЭТ-320).

В отличие от сельскохозяйственных тракторов, промышленные являются узкоспециализированными, изначально проектируемые для работы в составе конкретного типа машины (обычно бульдозерно-рыхлительного агрегата).

Промышленные тракторы преимущественно гусеничные, но для работы с погрузчиками и некоторыми дорожными машинами применяют и колёсные тракторы (в основном, модификации сельскохозяйственных тракторов).

В СССР на базе промышленных тракторов создавались сельскохозяйственные тракторы для пахоты целинных земель (Т-100МГС, Т-130, Т-170), отличавшиеся установкой задней навески сельскохозяйственного типа.

Строительные автомобили - это не только бульдозеры и автокраны, это контейнеровозы, бетоновозы, экскаваторы и полуприцепы. Каждый из них выполняет свою функцию.

Все строительные машины можно разделить по технологическому признаку: грузоподъемные, погрузочно-разгрузочные, транспортирующие, машины для транспортирования бетонных растворов и смесей, машины для укладки и утрамбовывания бетонной смеси, дробильно-сортировочные, сваебойные, бурильные, смесительные, для земляных работ, для подготовительных и вспомогательных работ, отделочные, дорожные и механизированный инструмент.

Каждая из этих категорий машин делится на группы по способу выполнения работ и по виду рабочего органа. И уже внутри группы машины и оборудование подразделяются по мощности, грузоподъемности, емкости ковшей, производительности и пр.

Некоторые виды строительных машин различаются по типу базовой машины (трактор, тягач или автомобиль), по ходовому устройству(колесный ил гусеничный ход), по видам моторов или конструктивным особенностям.

Если подойти к категоризации машин по источнику энергии, то они подразделяются на машины, которые используют энергию собственной энергетической установки, и машины, которые питаются энергией, получаемой извне.

Первые - это автомобили и машины с моторами ДВС, вторые - машины, оснащенные пневматическим приводом и электромоторами, которые питаются от внешней сети.

Большая часть машин, необходимых для строительства - самоходные, однако встречаются и полностью стационарные.

Трактор ТС - 17 - Р работает с постоянной скоростью подачи электрода, не зависящей от напряжения дуги. На рис. 1 приведен вариант принципиальной схемы установки, состоящей из трактора и роликового стенда. Управление трактором при сварке и вспомогательных работах такое же, как и головкой АБС, поэтому здесь ограничимся только пояснениями, связанными с работой стенда.

Включение роликового стенда производится следующим образом. При нажатии кнопки «Пуск» одновременно с включением двигателя трактора замыкается нормально разомкнутый контакт реле РП1 в цепи переключателя П. В зависимости от положения переключателя 17, устанавливаемого перед сваркой, напряжение подается на катушку В или Н реверсивного пускателя ВН. Пускатель срабатывает и подключает к сети двигатель роликового стенда, вращающего изделие в заданном направлении. Периодическая остановка роликового стенда производится переключателем П. Перед сваркой переключатель П становится в нейтральное положение. Тогда при включении кнопки «Пуск» двигатель роликового стенда не включается. Для управления двигателем роликового стенда при установочных операциях служат кнопки «Назад», «Вперед», «Стоп».

Конструкцией трактора ТС - 17 - Р предусмотрено, что электрод может находиться не только в пределах колесной базы трактора, но и вне ее, т. е. может быть вынесен на сторону, что необходимо, например, при приварке сферического днища к обечайке.

Из всех сварочных автоматов трактор ТС - 17 - Р наиболее распространен в промышленности. Достоинство этого трактора - простота схемы и конструкции, компактность, малый вес, большая надежность, удобство сварки угловых швов («в лодочку» и наклонным электродом), а также швов внутри сосудов. Его недостаток - сложность перестройки режима сварки. Поэтому он удобен при массовом и крупносерийном характере производства, где нет необходимости в частой перестройке.

Наряду с одномоторными наша промышленность выпускает двухмоторные сварочные тракторы. В этих тракторах механизмы подачи электрода и движения снабжены отдельными электродвигателями, что приводит к усложнению конструкции и ее утяжелению,

Коромысло может поворачиваться в хомуте, которым оно прикрепляется к стойке 3. Стойка с коромыслом может быть повернута вокруг вертикальной оси на 180° (по 90° в каждую сторону от продольной оси тележки трактора). Комбинируя повороты в трех шарнирах, можно придавать электроду различные положения в пространстве. Закрепление головки в требуемом положении прои.з - водится рукоятками 8 и И, маховичком 5. Кроме того, в тракторе

Но зато увеличивает универсальность аппарата. Отдельные двигатели позволяют применять автоматическое регулирование дуги.

Рис. 2.8 Принципиальная электрическая схема установки, состоящей из сварочного трактора и роликового стенда: Мтр - двигатель трактора, Мрс - двигатель роликового стенда, СТ - сварочный трансформатор, КС - контактор силовой, РП и РП1 - промежуточные реле, ТП - трансформатор понижающий, ТТ - трансформатор тока, ПВ - пакетный выключатель

Рис. 2.9 Технологическая схема возведения земляного полотна (размеры указаны в .метрах): 1 - скрепер ДЗ-13; 2 - бульдозер ДЗ-53С (Д-686); 3 - автогрейдер ДЗ-31-1 (Д-557-1); 4 - пневмокаток ДУ-16 (Д-551Б); I - участок отсыпки грунта; II - участок уплотнения грунта (сплошная линия - груженый ход, пунктир - холостой ход)

Размещено на Allbest.ru

...

Подобные документы

  • Ознакомление с устройством механизмов силовой передачи автомобилей и тракторов. На автомобили и тракторы, применяемые в строительстве, устанавливают, как правило, постоянно замкнутые дисковые сцепления. Сцепление. Коробка переключения передач.

    практическая работа [16,0 K], добавлен 24.06.2008

  • Проектирование ремонтно-механических мастерских, основные требования к ним. Основные типы дорожно-строительных машин и автомобилей. Производственная программа по техническому обслуживанию и ремонту для дорожных машин. Расчет освещения и вентиляции.

    дипломная работа [278,1 K], добавлен 07.02.2016

  • Назначение муфт сцепления, их основные типы. Типы подвесок, применяющихся на авто. Механизмы управления тракторов и автомобилей. Тяговый и мощностный баланс. Осуществление поворота автомобиля. Основные направления совершенствования конструкций двигателей.

    реферат [22,4 K], добавлен 16.10.2012

  • Классификация и общее устройство мобильных энергетических средств (МЭС). Компоновочные схемы МЭС, их достоинства и недостатки. Структура условного обозначения автомобилей. Общие сведения о двигателях внутреннего сгорания (ДВС). Система охлаждения ДВС.

    контрольная работа [2,5 M], добавлен 04.05.2015

  • Расчет годовой производственной программы по техническому обслуживанию и ремонту дорожных машин, специальных машин, смонтированных на шасси автомобилей. Определение параметров топливного участка. Технологический процесс топливо-аппаратурного участка.

    курсовая работа [76,0 K], добавлен 10.08.2014

  • Принципы устройства и технико-экономические показатели работы строительных машин, физическая сущность явлений, происходящих при их эксплуатации. Характеристика тракторов, кранов, экскаваторов, машин и оборудования для бурения и гидромеханизации.

    учебное пособие [2,0 M], добавлен 06.11.2009

  • Теория изнашивания. Демонтаж и монтаж машин в условиях эксплуатации. Оборудование, применяемое при монтажно-демонтажных работах. Порядок регистрации тракторов при постановке на учёт и снятии с учёта. Составление годового плана техобслуживания и ремонта.

    контрольная работа [650,8 K], добавлен 15.04.2009

  • Ознакомление с устройством элементов ходовой части автомобилей и тракторов. Остов. Задний мост. Передний мост. Передняя подвеска. Задняя подвеска и телескопический амортизатор. Колёса. Ходовая часть гусеничного трактора. Ведущее колесо и гусеничная цепь.

    практическая работа [16,9 K], добавлен 24.06.2008

  • Анализ конструкций конечных передач: назначение, классификация и устройство. Кинематические схемы задних мостов колесных и гусеничных тракторов, особенности трансмиссии. Расчет конечной передачи, мощности, крутящих моментов и частот вращения валов.

    курсовая работа [2,9 M], добавлен 26.12.2012

  • Классификация тракторов по назначению, по типу ходовой части, по остову и по номинальному тяговому усилию. Преимущества и недостатки дизелей по сравнению с карбюраторными двигателями. Механизм газораспределения двигателя. Карбюратор пускового двигателя.

    контрольная работа [744,8 K], добавлен 05.11.2013

  • Формирование в Советской Союзе гаммы проверенных испытаниями и доработанных четырехосных полноприводных военных автомобилей, тягачей и специальных шасси с колесной формулой 8x8. Специальные машины Брянского и тяжелые тягачи Курского автозаводов.

    реферат [6,0 M], добавлен 16.02.2013

  • Общие сведения, назначение, особенности конструкции тягачей. Технические характеристики модели КамАЗ 5490. Рабочие мощности, ходовая часть, сфера применения и возможности грузовых автомобилей серий МАN, Volvo, Iveco Stralis, Mercedes Benz, Renault Magnum.

    реферат [4,7 M], добавлен 29.05.2016

  • Выявление годового плана работ по ремонту и техническому обслуживанию тракторов, автомобилей, сельскохозяйственных машин в хозяйстве. Обоснование загрузки мастерской и необходимости её реконструкции или строительстве. Списочное количество машин по маркам.

    курсовая работа [976,3 K], добавлен 22.03.2015

  • Режимы работы на проектируемом объекте. Расчет производственной программы по ремонту дорожно-строительных машин. Расчет коэффициентов технической готовности, использования и годового пробега автомобилей. Составление план-графика ТО и ремонта машин.

    курсовая работа [349,1 K], добавлен 20.11.2011

  • Выполнение тягового расчета тягачей строительных и дорожных машин. Определение массы тягача, номинальной мощности и момента двигателя. Расчет динамического радиуса колеса и передаточных чисел трансмиссии. Построение регуляторной характеристики двигателя.

    курсовая работа [151,5 K], добавлен 05.06.2009

  • История создания первого автомобиля. Классификация и назначение автомобильного подвижного состава. Категории грузовых автомобилей. Планировка салона и общий вид городского автобуса. Основные показатели и классификация современных легковых автомобилей.

    реферат [4,3 M], добавлен 24.12.2010

  • Основные параметры колес: ширина обода, диаметр, угол наклона у посадочных полок, профиль бортовых закраин. Классификация колес и предъявляемые к ним требования. Особенности конструкции колес тракторов и комбайнов. Рабочее оборудование автомобилей.

    контрольная работа [4,7 M], добавлен 17.05.2011

  • Характеристика технического обслуживания и ремонта автомобилей, строительных и дорожных машин. Описание автомобилей и дорожных машин, работающих на участке. Сущность планово-предупредительной системы повышения работоспособности узлов, агрегатов и систем.

    курсовая работа [3,1 M], добавлен 19.03.2010

  • Содержание и порядок составления годового плана технического обслуживания и ремонта. Определение фондов рабочего времени. Расчёт и подбор технологического оборудования, площади производственного корпуса, годового расхода топливо-смазочных материалов.

    курсовая работа [81,6 K], добавлен 05.02.2015

  • Расчет количества обслуживания и ремонта дорожно-строительных машин, трудоемкости работ, годовой производственной программы, рабочих мест и постов. Классификация парка машин по мобильности. Формы и методы технического обслуживания. Подбор оборудования.

    курсовая работа [231,0 K], добавлен 12.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.