Применение нанотехнологий в автомобилестроении

История развития и свойства нанотехнологий и наноструктур. Применение нанотехнологий в автомобильной промышленности. Проблемы и перспективы использования нанотехнологий. Примеры автомобилей будущего, усовершенствованных с применением нанотехнологий.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 27.12.2014
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Московский государственный машиностроительный университет

Курсовая работа

дисциплина: Компьютерное моделирование в автомобилестроении

на тему: Применение нанотехнологий в автомобилестроении

Выполнил:

студент

Специальность: Информационные системы и технологии

Смирнов И.А.

Содержание

Введение

1. История развития нанотехнологий

2. Свойства наностуктур

3. Нанотехнологии в автомобилестроении

3.1 Применение нанотехнологий в автомобильной промышленности

3.2 Перспективы нанотехнологии в автомобильной промышленности

3.3 Автомобили будущего

Заключение

Список использованной литературы

Введение

Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. Разработки в этой области ведут к революционным успехам в медицине, электронике, машиностроении и создании искусственного интеллекта. Если 10 лет назад единицы людей представляли себе, что такое нанотехнологии, то, через 5 лет, по оценкам экспертов, вся промышленность будет развиваться, используя технологии работы с атомами и молекулами. С помощью нанотехнологий можно очищать нефть и победить многие вирусные заболевания, можно создать микроскопических роботов и продлить человеческую жизнь, можно победить СПИД и контролировать экологическую обстановку на планете, можно построить в миллион раз более быстрые компьютеры и освоить Солнечную систему.

Целью данной работы является изучение нанотехнологий в автомобилестроении. Задачами курсовой работы являются: 1) изучить историю и свойства нанотехнологий и наноструктур; 2) рассказать о применении нанотехнологий в автомобилестроении; 3) исследовать проблемы и перспективы нанотехнологий.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.

Теоретик Э. Дрекслер предложил слово "нанотехнология" в 1980 году, описывая им теоретический (в то время) молекулярный производственный процесс с использованием компонентов и устройств размерами от 1 до 100 нм (этот диапазон получил название наномасштаб - nanoscale).

В некоторых книгах можно встретить следующее определение: нанотехнология - это совокупность методов производства продуктов с заданной атомарной структурой путем манипулирования атомами и молекулами.

1. История развития нанотехнологий

Нанонаука основана на изучении объектов, которые включают компоненты размерами менее 100 нм хотя бы в одном измерении и в результате получают принципиально новые качества. Эта отрасль знаний относительно молода и насчитывает не более столетия.

Дедушкой нанотехнологий можно считать греческого философа Демокрита. 2400 лет назад он впервые использовал слово “атом” для описания самой малой частицы вещества. 1905 Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказал, что размер молекулы сахара составляет примерно 1 нанометр.

1931 Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

1959 Американский физик Ричард Фейнман впервые опубликовал работу, где оценивались перспективы миниатюризации. Основные положения нанотехнологий были намечены в его легендарной лекции “Там внизу - много места” (“There's Plenty of Room at the Bottom”), произнесенной им в Калифорнийском Технологическом Институте. Фейнман научно доказал, что с точки зрения фундаментальных законов физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов. Тогда его слова казались фантастикой только лишь по одной причине: еще не существовало технологии, позволяющей оперировать отдельными атомами (то есть опознать атом, взять его и поставить на другое место).Чтобы стимулировать интерес к этой области, Фейнман назначил приз в $1000, тому, кто впервые запишет страницу из книги на булавочной головке, что, кстати, осуществилось уже в 1964 году.

1968 Альфред Чо и Джон Артур, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанообработки поверхностей.

1974 Японский физик Норио Танигучи ввел в научный оборот слово “нанотехника”, предложив называть так механизмы размером менее 1 микрона.

1981 Германские физики Герд Бинниг и Генрих Рорер создали сканирующий туннельный микроскоп _ прибор, позволяющий осуществлять воздействие на вещество на атомарном уровне. Через четыре года они получили Нобелевскую премию.

1985 Американский физики Роберт Керл, Хэрольд Крото и Ричард Смолли создали технологию, позволяющую точно измерять предметы диаметром в один нанометр.

1986 Создан атомно_силовой микроскоп, позволяющий, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.

1986 Нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер опубликовал книгу, в которой предсказал, что нанотехнология в скором времени начнет активно развиваться.

Введение в нанотехнологии

1989 Дональд Эйглер, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.

1998 Голландский физик Сеез Деккер создал нанотранзистор.

2000 Администрация США объявила “Национальную нанотехнологическую инициативу” (National Nanotechnology Initiative). Тогда из федерального бюджета США было выделено $500 млн. В 2002 сумма ассигнований была увеличена до $604 млн. На 2003 год “Инициатива” запросила $710 млн., а в 2004 году правительство США приняло решение увеличить финансирование научных исследований в этой области до $3,7 млрд. в течение четырех лет. В целом, мировые инвестиции в нано в 2004 году составили около $12 млрд.

2004 Администрация США поддержала “Национальную наномедицинскую инициативу” как часть National Nanotechnology Initiative Стремительное развитие нанотехнологий вызвано еще и потребностями общества в быстрой переработке огромных массивов информации. Современные кремниевые чипы могут при всевозможных технических ухищрениях уменьшаться ещё примерно до 2012 года. Но при ширине дорожки в 40-50 нанометров возрастут квантовомеханические помехи: электроны начнут пробивать переходы в транзисторах за счет туннельного эффекта (о нем речь пойдет ниже), что равнозначно короткому замыканию. Выходом могли бы послужить наночипы, в которых вместо кремния используются различные углеродные соединения размером в несколько нанометров. В настоящее время ведутся самые интенсивные разработки в этом направлении.

Нанотехнологии - ключевое понятие начала XXI века, символ новой, третьей, научно-технической революции. Это "самые высокие" технологии, на развитие которых ведущие экономические державы тратят сегодня миллиарды долларов. По прогнозам ученых нанотехнологии в XXI веке произведут такую же революцию в манипулировании материей, какую в ХХ веке произвели компьютеры в манипулировании информацией. Их развитие открывает большие перспективы при разработке новых материалов, совершенствовании связи, развитии биотехнологии, микроэлектроники, энергетики, здравоохранения и вооружения. Среди наиболее вероятных научных прорывов эксперты называют значительное увеличение производительности компьютеров, восстановление человеческих органов с использованием вновь воссозданной ткани, получение новых материалов, созданных напрямую из заданных атомов и молекул, а также новые открытия в химии и физике.

Нанотехнологии уже так или иначе затрагивают нашу жизнь. Нанопродукты можно обнаружить в автомобилях и в краске на стенах домов. По прогнозам отраслевой ассоциации NanoBusiness Alliance, к 2010 году мировой рынок нанопродуктов и услуг вырастет до 1 трлн. долларов.

Одна из причин трудного "характера" нанотехнологии заключается в том, что ее сфера - непостижимо малые по своим масштабам элементы. Нанометр - единица измерения, которая дала название нанотехнологии, - составляет одну миллиардную часть метра. Атом водорода, наименьший из существующих в природе, имеет диаметр около 1/10 нм; диаметр человеческого волоса - около 75 тыс. нм.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.

В немалой степени определение нанотехнологии зависит от специалиста, которому задан вопрос.

Теоретик Э. Дрекслер предложил слово "нанотехнология" в 1980 году, описывая им теоретический (в то время) молекулярный производственный процесс с использованием компонентов и устройств размерами от 1 до 100 нм (этот диапазон получил название наномасштаб - nanoscale). Дрекслер выдвинул концепцию универсальных молекулярных роботов, работающих по заданной программе и собирающих любые объекты (в том числе и себе подобные) из подручных молекул. Все это также сначала воспринималось как научная фантастика. Ученый уже тогда довольно точно предсказал немало грядущих достижений нанотехнологии, которые с 1989 года сбываются, причем часто со значительным опережением даже его прогнозов.

Однако, как часто бывает, задолго до работ Дрекслера идею о возможности существования искусственных автоматов-самосборщиков выдвинул математик Джон фон Нейман ( John Von Neumann) -- ученый, разработавший теоретическую модель устройства компьютера (компьютер фон Неймана) -- первое устройство с клавишным вводом данных.

2. Свойства наноструктур

Первым и самым главным признаком наночастиц является их геометрический размер - протяженность не более 100 нм хотя бы в одном измерении. Именно с таких размеров может наблюдаться качественное изменение свойств частиц по сравнению с макрочастицами того же самого вещества. Например, нанонить паутины способна надежно удерживать огромных по сравнению с ее толщиной насекомых.

Именно размерными эффектами определяются многие уникальные свойства наноматериалов. Для различных характеристик (механических, электрических и др.) критический размер может быть различным, как и характер изменений (равномерный или неравномерный). Например, электропроводность начинает зависеть от размера частицы при уменьшении кристалла вещества до размеров 10-20 нм и менее.

Доля атомов, находящихся в поверхностном слое (толщиной около 1 нм), естественно, растет с уменьшением размера частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от "внутренних" атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов изменения структурного расположения атомов и их свойств. В результате поверхность (или межфазная граница) рассматривается как некое новое состояние вещества.

Учитывая абсолютные размеры наночастиц, с определенными допущениями можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют высокую удельную плотность поверхности, поскольку вся масса сосредоточена в поверхностном слое.

Важнейшими свойствами наноструктур, отличающими их от обычных материалов, являются повышенная диффузионная и миграционная способность атомов, молекул веществ и электронов по поверхности твердых наноструктур, а для жидких наноструктур - ускоренная диффузия внутри них, повышенная прочность изолированных твердых наноструктур и способность твердых наноструктур к самоорганизации и самосборке.

1) Повышенная диффузионная и миграционная способность атомов и молекул веществ по поверхности и внутри наноструктур:

Жидкости внутри микротрещин и микропор нанометровой ширины являются жидкими наноструктурами, обладающими своеобразными особенностями, из которых важнейшей является ускоренная диффузия растворенных в них веществ под действием осмотической составляющей СРПС.

2) Повышенная миграционная способность атомов по поверхности твердых наноструктур:

Как известно, диффузия по поверхности твердых веществ осуществляется на несколько порядков быстрее, чем в их объеме.

3) Ускоренное движение электронов по поверхности твердых наноструктур - сверхпроводимость электрического тока:

Здесь, как и в предыдущем случае, можно выделить два уровня ускоренного движения частиц, в данном случае электронов, по поверхности веществ. Первый уровень - движение электронов вдоль поверхности обычного проводника при обычных температурах. Ускоренное движение электронов в этом случае хорошо известно и практически используется в ускорителях заряженных частиц Ван-дер-Граафа (Гершензон и др., 1980).

4) Ускоренное движение электронов по поверхности твердых наноструктур:

На поверхности обычных проводников Т-СРПС, создавая разуплотненный поверхностный слой, способствует образованию слоя с более редким расположением атомов в нем. Поэтому в нем электрический ток протекает с меньшим сопротивлением, а значит, и с большей скоростью, чем в глубине проводника, создавая первый уровень ускоренного движения электронов.

5) Ускоренное движение электронов по поверхности твердых наноструктур:

В научной литературе проводят аналогию между сверхпроводимостью тока и сверхтекучестью жидкого гелия, объясняя, что жидкий гелий также образует единую когерентную сверхтекучую систему - конденсат, который тоже течет через щели без какого-либо сопротивления.

6) Повышенная прочность на разрыв изолированных твердых наноструктур.:Известно, что прочность на разрыв, например углеродных нанотрубок, в несколько десятков раз больше самой прочной стали при плотности в 6 раз меньшей (Головин, 2007). Удовлетворительного объяснения этому в научных работах пока не дано.

7) Способность твердых наноструктур к самоорганизации и самосборке:

Наноструктуры, находящиеся в жидкой, газовой среде и в вакууме, обладают максимальными возможностями к самоорганизации и самосборке, так как эти среды не мешают им в полной мере проявить эти свои свойства.

3. Нанотехнологии в автомобилестроении

Автомобили будущего станут более комфортными и интеллектуальными, основанными на легких и прочных материалах, миниатюризации и новых энергетических установках. Практически каждая деталь автомобиля может быть усовершенствована при помощи нанотехнологий. Сегодня нанотехнологии внедряют несколько крупнейших производителей, но к 2010 году их будут использовать все автомобилестроители и большинство их поставщиков. 70 ведущих мировых автомобилестроителей, включая Renault, General Motors, BMW, Toyota, Audi, Ford, Volkswagen, Mercedes-Benz, Opel, Ferrari, MAN, FIAT, Volvo, Hyundai, Honda, Nissan, Chrysler, Jaguar, Porsche, Peugeot, Saab, Rover, Citroen, Huachangcar, Mazda, Alfa Romeo, Asia Motors, Mitsubishi, Vauxhall, Subaru и др., провели совместное исследование возможностей применения нанотехнологий в автомобилях с 2002 до 2015 года.

Мы предлагаем Вашему вниманию краткий обзор возможностей нанотехнологий в усовершенствовании автомобиля. Если Вы захотите использовать их на своем предприятии, пожалуйста свяжитесь с нами.

- Генерация и хранение энергии

- Топливные ячейки

- Солнечные батареи

- Хранение энергии

- Электричества

- Водородного топлива

- Углеводородного топлива

- Топливные катализаторы

Наноструктурированные материалы / нанокомпозиты / наночастицы

- Легкие каркасные материалы

- Огнеупорные и термостойкие материалы: Увеличение прочности, жесткости и долговечности

- Умные, сверхмягкие рессоры

- Антифрикционные и противоизносные покрытия

- Материалы со сверхмалым коэффицентом теплового расширения

- Стекла с управляемыми оптическими свойствами

- Долговечные шины с оптимальными свойствами

- Функциональные краски и покрытия

- Самоочищающиеся

- Самовосстанавливающиеся

- Нецарапающиеся

- Антикоррозионные

- Радиопоглощающие

- Цветовые эффекты

Со специальными оптическими свойствами

- Теплоотражающие

Программируемые материалы

- Другие функциональные материалы

- Наноэлектроника

- Сверхточные сенсоры и анализаторы

- Системы GPS-навигации на основе МЭМС-датчиков

- Сверхточные микроакселерометры

- Мониторинг перемещения

- Мониторинг давления

- Мониторинг заклинивания и повреждений

- Мониторинг износа

Биометрические системы

- Мониторинг климата

- Интеллектуальное управление двигателем

- Дисплеи, внешнее и внутреннее освещение

- Электроника, работающая в широком диапазоне температур

- Противоугонные системы

- Датчики контроля безопасности и окружения

- Акселерометры подушек безопасности

- Сверхъемкие аккумуляторы

Обработка и передача информации

- Обработка изображений

- Автомобильная телематика

- Дистанционное управление

- Мультимедиа-архитектура

- Элементы искусственного интеллекта

- Интеграция CMOS-микроэлектроники в системы управления

Биомедицинские приложения

- Гигиена

- Система эвакуации

- Интерактивный эргономичный дизайн

- Снижение вибрации и шума

Производство

- Измерение и контроль

- Инструменты, станки и машины

- Автоматизация и телеуправление

- Снижение стоимости сырья

- Снижение энергопотребления

- Анализ дефектов и структуры материалов

Экология

- Фильтрация и очистка выхлопных газов

- Экологичное производство

- Переработка старых автомобилей

- Биодеградируемые материалы

- Восстановление и ремонт

3.1 Применение нанотехнологий в автомобильной промышленности

Автомобильная промышленность Германии, являющаяся одной из наиболее важных отраслей производства, уже сейчас серьезно заинтересована в НТ и активно изучает возможности внедрения новых материалов и технологий, особенно в связи с экологией, безопасностью движения и обеспечением комфорта. НТ в автомобилестроении может быть связана с решением множества проблем и технических задач, относящихся к ходовой части, весу конструкции и динамике движения, кондиционированию и снижению выхлопа вредных веществ, уменьшению износа, возможностям вторичной переработки и т. п. Кроме этого, НТ имеют непосредственное отношение к развитию связанных с автомобилестроением информационных систем (например, контроль обстановки на дорогах, коммуникации и т. п.).

Очень большие перспективы коммерческого производства имеет внедрение прозрачных многослойных наноматериалов. В частности, наносимые на стекло металлические покрытия толщиной в несколько нанометров могут одновременно отражать инфракрасное излучение и придавать стеклу дополнительную термостойкость. Для затемненных внутренних стекол в автомобилях можно даже использовать так называемые электрохром-ные составы, которые автоматически настраиваются на соответствующую интенсивность света, а также способствуют уменьшению отражения в циферблатах приборов, что очень трудно осуществить обычными методами. Водоотталкивающие и противоударные покрытия могут наноситься на множество деталей, включая «дворники» и т. п. Еще один очень интересный пример связан с применением микроскопических частиц углерода. В начале 20 века было случайно обнаружено, что введение микрочастиц сажи в каучук приводит к очевидному улучшению качества автомобильных шин. Эффект связан с тем, что частицы сажи «склеивают» каучук и делают шины прочнее, обеспечивая их повышенную износостойкость. Сегодня уже предпринимаются целенаправленные попытки увеличения поверхности частиц сажи и уменьшения их возможного слипания, что позволяет снизить процессы рассеивания (диссипации) энергии в шинах и приводит в целом к повышению их характеристик и снижению расхода горючего в среднем на 4%.

Соответствующая оптимизация сопротивления воздуха, веса автомобиля и приводного устройства привела бы к снижению потребления горючего на 6%, 15% и 28%, в результате чего можно было бы уменьшить выбросы двуокиси углерода. Намеченное Евросоюзом снижение норм выброса угарного газа и частиц (программа Евро-5) к 2008 году может быть достигнуто только путем значительного понижения потребления горючего, для чего настоятельно требуется поиск альтернативных источников питания. Например, в качестве автомобильного топлива очень перспективен экологически почти безопасный метанол, и НТ может сыграть важную роль в производстве новых методик впрыскивания горючего, реформинге топлива, аккумуляции водорода, объединении клеточных электродов и мембран для обмена протонов при сгорании топлива и т. п.

Более конкретно, можно отметить, что эффективное использование метанола (и многих других видов топлива) требует обеспечения измельчения жидкого горючего и его микродисперсной пульверизации по заданным поверхностям, для чего весьма перспективными представляются матрицы из нанофор-сунок. Подобные «нанореактивные» двигатели можно производить, создавая микроскопические (и даже субмикроскопические) каналы в материалах типа кремния или его соединений. Аналогичные наноканалы могут применяться в перспективных технологиях получения водорода из твердых видов топлива, для чего внутренняя поверхность каналов может дополнительно покрываться слоем каталитического материала типа платины.

Нанопористые материалы могут применяться и для разложения многих соединений (например, воды на водород и кислород) при использовании мембран с очень развитой поверхностью. Кроме того, микропористые вещества с большой и активной поверхностью, очевидно, представляют собой прекрасную основу для создания новых типов фильтров, механически задерживающих требуемые типы частиц.

В будущем развитие энергетики, возможно, будет связано с массовой заменой твердых видов топлива и горючих веществ на водород, который необходимо будет аккумулировать в специально создаваемых устройствах, и именно в этом наноматериа-лы (например, сложные фуллерены) могут оказаться исключительно полезными. Уже сейчас эксперты планируют создание емкостей-хранилищ водорода на основе фуллеренов с 10% эффективностью.

Наноструктурные материалы позволяют изготавливать легкие и одновременно достаточно прочные конструкции для некоторых деталей массового производства. Например, конструкторы автомобилей много лет создают покрытия из стекла, которые были бы прочными, но которые можно было бы быстро разбить при необходимости (аварии, кражи и т. п.). Инновационный заменитель стекла можно создать на основе поликарбоната (ПК), то есть искусственного материала, из которого делают известные всем диски CD и DVD. Это «умное» устройство (изогнутое сложным образом в некоторых частях кузова, сзади и сбоку) можно изготовить из ПК таким образом, чтобы его нельзя было никак заменить стеклянным аналогом. Для этого к поликарбонату следует просто примешать различные отбеливающие пигменты (в виде наночастиц), которые, с одной стороны, остаются прозрачными, а с другой, -- защищают стекло от разрушающего воздействия ультрафиолетового излучения. Повышенная прочность к механическим повреждениям в этом случае достигается использованием нанолаков на основе полиоксанов.

3.2 Перспективы нанотехнологии в автомобильной промышленности

Перспективы нанотехнологии в автомобильной промышленности сейчас во многом связываются с использованием наноструктурных (нанофазных) металлических материалов, обладающих огромной прочностью и другими высокими механическими характеристиками, а также с производством новейших типов металлокерамики. Разрабатывается большое число лаков на основе наносистем, обладающих не только высокой прочностью, но и даже способностью к «самозалечиванию» поверхности. Кроме того, изучаются возможности армирования керамических материалов наночастицами, а также развития новых методик создания стеклокерамики. При этом во многих случаях исследователи уже планируют осуществлять автономную или местную «регенерацию» вещества на основе наполненного наночастицами искусственного материала, а также придавать описанный выше эффект самоочищения «лотоса» всем используемым лакам и стеклам.

В лабораторных условиях уже изучаются сложные пигментные структуры, цвет которых может целенаправленно изменяться под воздействием прилагаемого электрического напряжения, что имеет огромные перспективы для оформления интерьера автомобилей. Упоминавшиеся выше ферромагнитные жидкости (взвеси магнитных частиц, феррофлюиды) также могут найти широкое применение в автомобильной промышленности. Такие вещества, меняющие вязкость в зависимости от прилагаемого извне магнитного поля, являются исключительно важными для создания «умных» амортизаторов в автомашинах следующих поколений, и уже созданы опытные образцы устройств такого типа.

3.3 Автомобили будущего

Автопромышленность стала одной из первых отраслей, где быстро поняли выгоду нанотехнологий. В автомобиле сложно изобрести что-то принципиально новое; его основные элементы десятилетиями остаются все теми же -- кузов, двигатель, подвеска, тормозная система, электрооборудование... приходится лишь совершенствовать каждый компонент. Концепт-кары ведущих мировых автодизайнеров поражают футуристичностью форм и технических решений. А воплощение в жизнь смелых идей уже невозможно без применения нанотехнологий.

Авто будущего -- какое оно? Может, это машина, кузов которой запросто выдерживает столкновения на скорости 300 км/ч и практически не деформируется? Или автомобиль, самостоятельно «зализывающий» царапины, которыми его «наградили» при парковке? Либо… воплощение киношного фантастического прототипа -- машина, которая использует в качестве топлива содержимое мусорных бачков. Точь-в-точь DeLorean из «Назад в будущее». Разве что не летает... Хотя...

2007 Giugiaro VAD.HO (еду на водороде)

Раздайся на стенде компании Italdesign Giugiaro в Женеве команда: «На взлет!», никто бы не удивился. Концептуальный суперкар VAD.HO, конечно, рожден ездить, но и летать вполне мог бы. Салон здесь совсем не салон, а двухместный кокпит, накрытый прозрачным фонарем. О приборной начинке уместнее сказать «авионика»: информационные дисплеи EFIS (Electronic Flight Information Systems) взяты прямо из летного арсенала.

Генералы Aeronautica Militare Italiana (AMI), не раздумывая, приняли бы Giugiaro VAD.HO на «вооружение»

Сама по себе смещённая к борту кабина не новость - такими щеголяли еще гоночные монопосто середины прошлого века, но вот чтобы мотор располагался сбоку от кокпита, да не простой двигатель внутреннего сгорания, а экологически безопасный «водородный» V12 от спецверсии «семерки» BMW... Нет, такого еще не было ни на суперкарах, ни на самолетах.

Rinspeed sQuba

У швейцарской компании Rinspeed уже есть опыт разработки рабочих прототипов автомобилей-амфибий. Нашумевшая модель Splash на подводных крыльях установила мировой рекорд, переплыв Ла-Манш за 3 часа 13 минут 47 секунд.

Rinspeed sQuba не тонет. Автоподлодка от швейцарской тюнинговой компании Rinspeed

Насмотревшись фильмов про Джеймса Бонда, швейцарцы воодушевленно стали разрабатывать… «подводный» автомобиль. Опыт удался - концепт Rinspeed sQuba был представлен на Женевском автосалоне.

Автомобиль-подлодка, элементы которого выполнены на основе углеродных нанотрубок, а салон инкрустирован обыкновенными жемчугом и бриллиантами

Концепт представляет собой первый в мире двухместный родстер, способный передвигаться под водой. Движение осуществляется за счет двух водоструйных двигателей, расположенных в «кормовой части». Для удобства водителя и пассажира, которые с головой окунутся в воду (верх автомобиля -- открытый), предусмотрено специальное устройство для дыхания, похожее на кислородную маску акваланга.

Morgan Lifecar

Нанотехнологии в автомобилестроении используются для усовершенствования практически каждого блока и даже каждой детали -- от двигателя до самореза. А что касается автомобилей будущего, тех, на которых мы будем ездить всего-то через пару десятков лет, то здесь фантазия автопроизводителей, пожалуй, нуждается разве что в том, чтобы ее кто-нибудь утихомирил.

применение нанотехнология автомобилестроение

«Пришелец» из будущего: Morgan Lifecar от британской компании Morgan Motor Company. Сделан из самых современных материалов

С помощью нанотехнологий привычный автомобиль можно преобразить так, что его не узнали бы ни Готлиб Даймлер, ни Генри Форд, ни кто-то другой, стоявший «у истоков».

Audi Virtuea Quattro

Взять, например, концепт «автомобиля будущего» от Audi -- Virtuea Quattrо, разработанный в центре дизайна Audi/VW в Калифорнии. Этот автомобиль работает, естественно, на водороде, и рассчитан на одного человека. Virtuea Quattro будет формировать свой внешний облик при помощи голографических изображений, программировать которые сможет сам водитель через многофункциональный интерфейс.

Наводящий галлюцинации концепт Audi -- Virtuea Quattro. Запросто может прикинуться бетономешалкой

Миллионы схем, заложенных в память бортового компьютера Virtuea Quattro, позволят выбрать для машины любой «наряд» - от средневековой кареты или болида 1950-х до … пожалуй, до имитации «облика» соковыжималки. Или ракетного крейсера -- это уж как ваша душа пожелает.

Mercedes-Benz SilverFlow

Совсем скоро на смену целому «зоопарку» типов кузовов придет один, способный менять свою форму в зависимости от конкретного запроса водителя. Корпус «Мерседеса» -- это магнитное соединение (металлические наночастицы удерживаются вместе магнитными полями), которое может восстанавливать свою форму по одному клику на брелоке сигнализации или внутри автомобиля. Водитель сможет выбирать тип корпуса авто из нескольких возможных «предустановленных» скинов. Выбор цвета машины просто неограничен -- мечта для девушек, подбирающих себе автомобиль под цвет любимой губной помады.

Магнитные поля помогут концепту мгновенно регенерировать после удара. SilverFlow восстанавливает свою первоначальную форму простой «перезагрузкой».

SilverFlow -- рождение формы. Появление золотых областей будет информировать о завершении «трансформации» и готовности автомобиля к поездке.

Передача механической энергии к колёсам, по мыслям мерседесовцев, передаётся специальной жидкостью, молекулы которой приводятся в движение электростатическими наномоторами. Четыре поворотных колеса позволят автомобилю разворачиваться на месте и парковаться боком. Руля и привычных педалей в SilverFlow вы не найдёте, ускорение и направление движения будут задаваться двумя рычагами, установленными по бокам водительского места.

Mercedes-Benz SilverFlow --«серебряный поток». По команде «Слиться!» паркуется куда угодно. Например, в ведро

Автомобиль в исходном состоянии представляет собой небольшой эллипсоид из ферромагнетика -- такая лужица жидкого металла, которую гораздо легче хранить, нежели полноразмерный автомобиль. Больше не придется впадать в отчаяние, в двадцать пятый раз нарезая круги вокруг офисной стоянки. Слил машину в ведерко для игры в песочек и бережно принес с собой в офис.

Вот только что будет, если по забывчивости дашь команду автомобилю «слиться», оставив внутри пассажиров, разработчик концепта почему-то молчит…

Toyota Biomobile Mecha

2057 год. Ограниченное пространство городских улиц и вертикальная архитектура требуют от автопрома создания новейших автомобилей, которые смогут выжить в городских джунглях и устраивать гонки по вертикали. Инновационные решения автопроизводители находят в биомимикрии.

«Мусороуборочная» Toyota Biomobile MECHA. Четыре нанолазерных колеса легко приспосабливаются к любой трассе.

Да, это не DeLorean. Тем не менее «это» точно так же, как и культовый «киношный» DMC, работает на содержимом мусорных бачков. Так захотела Toyota. А еще ее концепт Mecha действительно исполняет функцию мусорщика, собирая и используя рассеянные в воздухе частицы вредных газов: двигаясь, авто попутно очищает атмосферу.

Колеса из практически нематериальных «нанолазеров» позволят автомобилю ездить в любом направлении и с любым наклоном, а корпус (внимание, на этот раз уже не облик, как у Audi, а корпус!) сможет трансформироваться в соответствии с дорожными условиями, увеличиваясь или сжимаясь в размерах и не снижая аэродинамических свойств автомобиля.

Можно и самому поуправлять внешним видом. Надо вам спорткар? Заберите. А если вам неожиданно приспичило перевезти комод и телевизор, то ваш спорткар превращается… превращается… ну, допустим, в фургончик. Хорошо постаравшись, можно даже обеспечить себе машину со спальным местом. Если скрестить разработку Toyota с идеями Audi,получится просто мечта -- автомобиль-трансформер, меняющий не только форму, но и облик.

Заключение

Нанонаука основана на изучении, создании и модифицировании объектов, которые включают компоненты размерами менее 100 нм хотя бы в одном измерении и в результате получают принципиально новые качества. Эта отрасль знаний относительно молода и насчитывает не более столетия. Первым ученым, использовавшим измерения в нанометрах, принято считать Альберта Эйнштейна, который в 1905 году теоретически доказал, что размер молекулы сахара равен одному нанометру (10~9м).

Идею же создания специальных приборов, способных проникнуть в глубину материи до границ наномира, выдвинул выдающийся американский инженер-электрик и изобретатель, физик, философ сербского происхождения Никола Тесла. Именно он предсказал создание электронного микроскопа.

Наноструктурные материалы могут найти самые разнообразные применения в автомобильной промышленности, прежде всего, в производстве лаков, легких конструкций, новых приводных устройств, амортизаторов и т. п.

Важнейшими свойствами наноструктур, отличающими их от обычных материалов, являются повышенная диффузионная и миграционная способность атомов, молекул веществ и электронов по поверхности твердых наноструктур, а для жидких наноструктур - ускоренная диффузия внутри них, повышенная прочность изолированных твердых наноструктур и способность твердых наноструктур к самоорганизации и самосборке.

Автопромышленность стала одной из первых отраслей, где быстро поняли выгоду нанотехнологий. В автомобиле сложно изобрести что-то принципиально новое; его основные элементы десятилетиями остаются все теми же -- кузов, двигатель, подвеска, тормозная система, электрооборудование... приходится лишь совершенствовать каждый компонент. Концепт-кары ведущих мировых автодизайнеров поражают футуристичностью форм и технических решений. А воплощение в жизнь смелых идей уже невозможно без применения нанотехнологий.

Автомобильная промышленность проявляет большой интерес к нанотехнологиям, обеспечивающими новые возможности значительного уменьшения веса, улучшения эксплуатационных качеств, внешнего вида и пригодности к переработке для вторичного использования. Также исследуются новые направления использования нанокомпозитных материалов. Автопром лидирует в нанореволюции. Новый компаунд фторполимера с нанотрубками применяется при изготовлении уплотнительных колец для топливной системы автомобилей.

Осознание стратегической важности нанотехнологий привело к тому, что в разных странах на уровне правительств и крупнейших фирм созданы и успешно выполняются программы работ по нанотехнологиям. В России фундаментальные исследования по нанотехнологии проводятся по нескольким программам. Наиболее крупные из них: программа “Физика наноструктур”, руководимая академиком Ж.И. Алферовым, и “Перспективные технологии и устройства в микро- и наноэлектронике”, руководимая академиком К.А. Валиевым. По последним данным, о состоянии российской наноиндустрии можно сказать следующее: достигнуты высокие результаты в области создания нанотехнологических приборов и установок.

Благодаря прорыву в области производства микроскопов современные ученые могут манипулировать атомами и располагать их так, как им заблагорассудится. Нанотехнологии и наноустройства являются закономерным шагом на пути совершенствования технических систем. Нанотехнология станет основой новой промышленной революции, которая приведет к созданию устройств в 100 раз более прочных, чем сталь и не уступающих по сложности человеческим клеткам. Уже создаются и будут создаваться устройства, функциональные возможности которых определяются необычными свойствами новейших материалов. Благодаря обработке на атомарном уровне, привычные материалы будут обладать улучшенными свойствами, постепенно становясь все легче, прочнее и меньше по объему.

Нанотехнологии - это не просто отдельная часть знаний, это масштабная, всесторонняя область исследований. Возросшие требования к образованию, потребность в новых методах и концепциях обучения потребует от будущих учителей новаторства и активности. Перед философами, экономистами и политологами встанет множество новых вопросов, требующих нетрадиционных решений в условиях нанотехнического прогресса. Искусство шествует вслед за прогрессом, не желая оставаться “за бортом” и стремясь всегда адекватно отражать окружающую нас действительность. Таким образом, перспективы развития науки и техники также определяют пути искусства.

Список использованной литературы

1. Балабанов, В.И. Нанотехнологии. Наука будущего. /В.И. Балабанов. - М.: Эксмо, 2008. - 256 с.

2. Рыбалкина, М. Нанотехнологии для всех. /М. Рыбалкина. - М.: Nanotechnology News Network, 2006. - 444 с.

3. Кобаяси Н. Введение в нанотехнологию. / Н. Кобаяси, пер. с япон. - М.: БИНОМ. Лаборатория знаний, 2005. - 134 с.

4. http://www.volkswagen.ru/ru/ru.html

5. http://www.mercedes-benz.ru/

6. http://www.ntsr.info/

7. http://www.nanonewsnet.ru

Размещено на Allbest.ru

...

Подобные документы

  • История развития автомобилестроения. Характеристика автомобильной промышленности. Анализ динамики региональных рынков автомобилей и типологии регионов по состоянию рынка автомобилей в РФ. Производство автомобилей и автомобилизации населения регионов.

    дипломная работа [499,1 K], добавлен 20.08.2010

  • История развития автомобильной промышленности в мире. Выпуск гоночных автомобилей "Бугатти-13". Автомобили французской компании "Ситроен". Английская фирма по производству малолитражных легковых автомобилей "Остин". Автомобильная марка "Майбах".

    реферат [78,4 K], добавлен 04.02.2013

  • История зарождения автомобилестроения, первые предки современных автомобилей, их внешний вид и свойства. Пружиномобили Вокансона и их практическое применение. Становление отечественного автотранспорта, его первые представители конвейерное производство.

    реферат [16,2 K], добавлен 25.07.2009

  • История создания электрических автомобилей. Аккумуляторная батарея, электродвигатели - новое в автомобилестроении. Разработка гибридных силовых узлов. Топливные элементы. Рынок гибридных автомобилей, электроника для них, анализ недостатков и достоинств.

    курсовая работа [728,2 K], добавлен 14.12.2011

  • Водородные технологии, преимущества водородного топлива. Получение углеводородных жидкостей и газов, перспективы использования в автомобилестроении. Двигатель внутреннего сгорания работающий на водороде. Силовая установка, реализующая способ Колбенева.

    курсовая работа [1,5 M], добавлен 26.04.2009

  • История развития водородных автомобилей в России, особенности работы двигателя внутреннего сгорания, оценка перспектив внедрения данных технологий в автомобилестроение. Виды дымомеров и их практическое применение, отличительные признаки и предназначение.

    курсовая работа [498,4 K], добавлен 19.12.2011

  • Принципы строения композиционных материалов, их изготовление и применение в авиационной промышленности. Преимущества и недостатки композиционных материалов. Примеры применения композиционного материала в мировом и отечественном самолетостроении.

    курсовая работа [1,5 M], добавлен 06.11.2014

  • Конструкция автомобильной эстакады, ее виды в зависимости от размеров и способности выдерживать нагрузку. Обеспечение безопасности движения на автомобильной эстакаде. Конструкция, применение стационарной и передвижной погрузочной эстакад, их особенности.

    реферат [3,8 M], добавлен 19.06.2013

  • История образования и развития "Ford Motor Company" - американской автомобильной компании, выпускающей легковые автомобили марок "Ford", "Mercury", "Lincoln", грузовики и разнообразную сельскохозтехнику. Разработка перспективных моделей автомобилей.

    реферат [2,5 M], добавлен 06.04.2012

  • Создание первых супер-автомобилей моделей Mitsuoka Yuga и Mitsuoka Viewt. Продажа компанией Mitsuoka на современном внутреннем японском рынке кабриолета Mitsuoka Galue. Детали внешнего и внутреннего дизайна, интерьера, техническое оснащение автомобилей.

    реферат [21,0 K], добавлен 03.04.2015

  • АТП на 240 легковых автомобилей ГАЗ-24: разработка рациональной планировки производственных подразделений; применение прогрессивных форм и методов ТО и ТР подвижного состава; современные средства диагностирования технического состояния автомобилей.

    курсовая работа [137,2 K], добавлен 07.01.2011

  • Краткая история развития танкерного флота. Назначение судна, дедвейт, дальность и автономность плавания. Устройство корпуса, энергетическая установка судна и механизмы. Краткое описание общесудовых устройств и систем. Перспективы развития танкеров.

    реферат [25,0 K], добавлен 02.04.2011

  • Биография Фердинанда Порше. Заслуги в автомобилестроении. История развития Порше. В конструкторском бюро. Технические характеристики. Porsche Boxster: философия, двигатель, трансмиссия, безопасность. Porsche Cayenne. На гоночных трассах.

    реферат [29,8 K], добавлен 01.04.2004

  • Зарождение, начало развития, продвижение на мировом рынке автомобилей японского концерна "Тойота". Ведущее место в мире по объему производства и продаж автомобилей. Разработка планов и программ по защите окружающей среды. Последние прототипы авто.

    контрольная работа [416,5 K], добавлен 02.11.2014

  • История создания автомобильной компании Nissan, ее положение на международной арене и рынке Российской Федерации, основные конкуренты. Открытие дилерского центра NISSAN г. Улан-Удэ. Ценовой сегмент компании. Особенности эксплуатации автомобилей Ниссан.

    реферат [30,1 K], добавлен 28.09.2014

  • Влияние автомобильной промышленности на экологию и проблемы с этим связанные, на общество, установление влияние на развитие автопромышленности на науку и промышленность в целом. Автомобильная промышленность была катализатором развития физики.

    реферат [18,4 K], добавлен 24.06.2008

  • Организационная структура станции технического обслуживания автомобилей. Цех кузовного ремонта. Ремонт и правка кузова автомобиля любой сложности с применением современных стапелей и сварочного оборудования. Полная и частичная окраска автомобилей.

    отчет по практике [38,5 K], добавлен 16.04.2014

  • Отечественные производители, ведущие свою историю с советского периода. Характеристика деятельности автосборочных предприятий российского происхождения и филиалов крупнейших транснациональных корпораций. Особенность российского рынка легковых автомобилей.

    статья [28,1 K], добавлен 18.11.2013

  • Корректирование периодичности технического обслуживания автомобилей и нормативов трудоемкости. Определение коэффициента использования автомобилей и годового пробега автомобилей по парку. Организация участков текущего ремонта грузовых автомобилей.

    курсовая работа [500,4 K], добавлен 07.06.2013

  • Основы тягового расчета движения автомобилей. Расчет отгона виража и составной кривой. Обоснование ширины проезжей части, земляного полотна и технической категории автомобильной дороги. Пропускная способность полосы движения и загрузка дороги движением.

    курсовая работа [420,3 K], добавлен 02.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.