Процессы изменения технического состояния транспортных и транспортно-технологических машин
Снижение стоимости эксплуатации изделий с учетом обеспечения максимальной безопасности и создание безизносного узла трения. Выбор материала для изготовления изделий, работающих в условиях трения. Термопластичные материалы на основе полиарилатов.
Рубрика | Транспорт |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.06.2015 |
Размер файла | 179,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство сельского хозяйства РФ
ФГБОУ ВПО Уральский государственный аграрный университет
Факультет транспортно-технологических машин и сервиса
Кафедра: Сервис транспортных и технологических машин и оборудования в АПК
Курсовая работа
Процессы изменения технического состояния транспортных и транспортно-технологических машин
Выполнила:
студент 4 курса
Овчинников М.А.
Проверил:
Зорков В.С.
Екатеринбург 2014
Содержание
узел трение термопластичный полиарилат
Введение
1. Трение, изнашивание и износ
1.1 Полиамидные материалы
1.2 Полиолефины
1.3 Узлы трения из поликарбоната
1.4 Термопластичные материалы на основе полиарилатов
1.5 Пентапласт
1.6 Полимерный материал, стоящий отдельно от термопластов и реактопластов
1.7 Антифрикционные композиционные материалы на основе полиимидов
1.8 Фенолоформальдегидные смолы
2. Механизм антифрикционного действия смазочных материалов
2.1 Графит
2.2 Дисульфид молибдена
2.3 Дополнительные функции смазочного материала в узле трения
Заключение
Список использованной литературы
Введение
Тенденции развития современного общества, рыночная конкуренция ставят перед производителем очень сложную задачу: снижения стоимости эксплуатации изделий с учетом обеспечения максимальной безопасности. Основным направлением по улучшению качества изделий с учетом того, что от 80 до 90 % отказов машин, рабочего инструмента и механизмов происходит из-за износа узлов и деталей, становится создание безизносного узла трения. Данная задача решается двумя путями: внедрением более совершенных конструкционных решений и созданием новых смазочных материалов. На сегодняшний день с учетом развития химии и химической технологии второй путь кажется наиболее перспективным, и необходимо отметить, что многообразие смазочных средств увеличилось по сравнению с 60 годами XX века на несколько порядков.
Одним из важнейших типов смазок являются твердые смазочные материалы: графит, дисульфид молибдена, нитрид бора, шунгит, диселенид молибдена. Так, графит, и дисульфид молибдена используются либо в качестве твердого смазочного материала в чистом виде, либо в виде пластичных смазок, где система загущается мылами, или парафином, или церезином. Однако, несмотря на перспективность использования в качестве антифрикционной добавки к моторным маслам, а также маслам других назначений, они встречаются крайне редко и исключительно в составах зарубежных производителей.
1. Трение, изнашивание и износ
В настоящее время весьма жестко и придирчиво выбираются материалы для изготовления изделий, работающих в условиях трения. Для того чтобы максимально удовлетворить эксплуатационные требования используют в основном полимерные композиционные материалы, состоящие из полимерной матрицы, модифицирующих добавок и упрочняющих наполнителей. Следует сказать, что одному и тому же полимеру, используемому в качестве матрицы, в зависимости от добавок, составляющих окончательную композицию, можно придавать как фрикционные, так и антификционные свойства.
Пластмассы обладают комбинациями физико-механических свойств, которые часто наиболее полно отвечают эксплуатационным условиям узлов и деталей машин. К числу таких свойств относятся:
* Малый удельный вес при достаточной прочности. Известно, что пластмассы в 2-3 раза легче алюминия и в 5-8 раз легче стали. Это свойство особенно ценно для создания конструкций летательных аппаратов, транспортных систем, машин и аппаратов специального назначения. Машины становятся значительно легче, уменьшается «мертвый» вес конструкции и возрастает полезная нагрузка.
* Способность воспринимать и выдерживать нагрузки -- механические, термические и электроэнергетические -- определяется физико-механическими свойствами материала. У некоторых видов пластмасс удельная прочность, то есть нагрузка, воспринимаемая на единицу площади, значительно превышает удельную прочность металлов. Например, некоторые пластики, армированные волокнами, по прочностным свойствам превосходят прочность углеродистой стали в два раза. Кроме того, эти пластики удовлетворительно работают на сжатие и изгиб, тогда как углеродистая сталь таких нагрузок не выдерживает.
* Вибростойкость. Пластмассы -- прекрасные амортизаторы вибраций. Они поглощают колебания в 20 раз лучше, чем алюминий, и в 100 раз лучше, чем сталь. Детали, изготовленные из пластмасс, хорошо работают при больших динамических и ударных нагрузках.
* Способность поглощать шумы и звуконепроницаемость -- особенно ценные свойства пластмасс как конструкционных материалов. Детали из пластмасс в машинах не только не создают дополнительных шумов, но и сами в какой-то мере поглощают их. Например, при замене металлических быстроходных шестерен на пластмассовые в редукторах почти полностью устраняются шумы.
* Антифрикционные пластмассы обладают низким коэффициентом трения, мало изнашиваются, хорошо выдерживают температуры, возникающие в процессе трения. Кроме того, они способны работать без смазки.
1.1 Полиамидные материалы
Наиболее распространенными термопластичными антифрикционными материалами являются полиамиды, как алифатические, так и ароматические. Алифатические полиамиды обладают низким коэффициентом трения (коэффициент трения полиамидов по стали без смазки 0,1-0,2, со смазкой маслом -- в пределах 0,05-0,10), достаточно износостойкие, способны работать в интервале температур от -40 до +80°С. К недостаткам полиамидов можно отнести невысокую теплопроводность, низкую несущую способность. Полиамиды не обладают стойкостью по отношению к маслу и влаге.
Для улучшения физико-механических характеристик полиамиды армируют волокнистыми материалами (например, стекловолокном, углеродным волокном и т. д.), для улучшения антифрикционных свойств в полимер вводят твердые смазки (графит, дисульфид молибдена, и т. д.). Они могут применяться как в чистом виде, так и модифицированные добавками и наполнителями. Ароматические полиамиды относятся к термореактивным материалам. Их применяют для изготовления узлов трения, как в чистом виде, так и с наполнителями: фторопластом, дисульфидом молибдена, графитом и другими смазками. Благодаря высокой механической прочности армировать ароматические полиамиды не нужно, поэтому в них вводят лишь добавки, снижающие коэффициент трения и износ. Детали из этих материалов не только прочные, но и термостойкие. Типичным представителем ароматических полиамидов является фенилон. Детали из фенилона эксплуатируются при температурах от -50 до +200°С. Этот материал химически стоек, может работать в агрессивных средах.
1.2 Полиолефины
Другими распространенными материалами для узлов трения являются полиолефины -- полиэтилен и полипропилен. Они используются как в чистом виде, так и в композициях с различными наполнителями. Полиолефины в чистом виде обладают хорошими эксплуатационными свойствами в пределах температурных нагрузок до +60°С. Свыше этой температуры из-за невысокой теплопроводности они в нагруженном режиме работать не могут. Это ограничивает область их применения в качестве антифрикционных материалов. Для повышения работоспособности будущих изделий в полимер вводят армирующие наполнители, повышающие его прочность, а также добавки, снижающие коэффициент трения, износ и температуру в зоне трения.
При этом коэффициент трения у модифицированных полиолефинов может быть ниже 0,1. Компоненты, добавляемые к такой композиции, стандартны, однако существенно повысить температурную работоспособность материала крайне трудно (максимум на 20%), а подчас невозможно.
Поэтому полиолефины применяют в слабонагруженных узлах, работающих в относительно мягких условиях эксплуатации.
Таблица 1. Физико-химические свойства полиамидов и полиолефинов
Материал |
Плотность, г/см3 |
Прочность при сжатии, МПа |
Ударная вязкость, кДж/м2 |
Твердость по Бринеллю |
|
Полиамид 6 |
1,10 |
85 |
120 |
110 |
|
Полиамид 610 |
1,10 |
90 |
100 |
130 |
|
П-12А |
1,02 |
60 |
90 |
75 |
|
Капролон-В |
1,15 |
110 |
140 |
140 |
|
Фенилон П |
1,33 |
320 |
20 |
180 |
|
Фенилон С1 |
1,33 |
220 |
20 |
180 |
|
Фенилон С2 |
1,33 |
220 |
35 |
220 |
|
Полиэтилен высокого давления |
1,40-2,50 |
12 |
- |
14-25 |
|
Полиэтилен низкого давления |
4,50-5,80 |
27 |
2-150 |
45-60 |
|
Полиэтилен среднего давления |
5,60-6,50 |
- |
7-120 |
60-80 |
|
Полипропилен |
60 |
33-88 |
40-70 |
1.3 Узлы трения из поликарбоната
Поликарбонат используется не только для производства листов и тары, но и для изготовления антифрикционных изделий. Он идеально подходит для работы в условиях низких и сверхнизких температур, вплоть до криогенных. Изделия из поликарбоната эксплуатируются в среде жидкого азота, водорода и гелия при температурах до -253°С. Поликарбонат, как известно, обладает высокой ударной прочностью и стабильностью размеров деталей, малой ползучестью. Эти свойства являются одними из определяющих для его применения в узлах трения, работающих при ударных нагрузках. Однако следует заметить, что поликарбонат плохо сопротивляется циклическим воздействиям нагрузки и имеет низкую усталостную прочность. Материал устойчив к ультрафиолетовому излучению и резким перепадам температур, но не стабилен по отношению к действию ионизирующего излучения. Для снижения коэффициента трения и повышения износостойкости в поликарбонат вводят специальные наполнители и твердые смазки. Введение дисульфида молибдена (Эстеран-29, Эстеран-51), графита (ДАК-УП5Д) или 15-20% фторопласта (ДАК-8) снижает коэффициент трения в 2-3 раза, наполнение поликарбоната стекловолокном и фторопластом (Дифлон) придает изделиям из такой композиции высокие физико-механические и диэлектрические свойства.
Таблица 2. Свойства наполненного поликарбоната
Марка материала |
Плотность, г/см3 |
Прочность при сжатии, МПа |
Ударная вязкость, кДж/м2 |
Предельная рабочая температура, °С |
Коэффициент трения |
|
Эстеран-29 |
1,30 |
- |
6 |
110 |
0,25 |
|
Эстеран-51 |
1,25 |
60 |
150 |
110 |
0,24 |
|
ДАК-УП5Д |
1,25 |
90 |
- |
- |
0,23 |
|
ДАК-8 |
1,24 |
55 |
87 |
115 |
0,20 |
|
Дифлон |
1,20 |
90 |
- |
- |
0,30 |
1.4 Термопластичные материалы на основе полиарилатов
Полиарилаты также относятся к антифрикционным термопластам. Они способны стабильно работать при высоких температурах -- 160-180°С, а кратковременную работу выдерживают при 230°С. Такие диапазоны для термопластов весьма высоки. Наряду с теплостойкостью полиарилат обладает высокой сопротивляемостью ионизирующим излучениям, хорошими диэлектрическими свойствами, химической и морозостойкостью (может эксплуатироваться при температуре до -100°С). В чистом виде полиарилаты имеют нестабильные триботехнические характеристики, для их стабилизации в материал вводят такие добавки как фосфор, дисульфид молибдена, медь. Это приводит к уменьшению коэффициента трения (у чистых полиарилатов коэффициент трения высокий, примерно 0,4) и снижению износа.
1.5 Пентапласт
Этот полимер гораздо реже используется в качестве антифрикционного материала для узлов трения. Он химически стоек и применяется для изготовления деталей, работающих в агрессивных средах. Из пентапласта можно получать различного рода уплотнители, так как он обладает небольшой усадкой. Работоспособность материала стабильно сохраняется в интервалах температур 120-130°С. По этому показателю пентапласт превосходит полиолефины. Его используют как в чистом виде, так и в комбинации с наполнителями: стекловолокном, слюдой, окисью хрома, графитом. Коэффициент трения чистого материала составляет 0,12.
Таблица 3. Свойства пентапласта в комбинации с наполнителем
Наполнители |
Плотность, г/см3 |
Прочность при растяжении, МПа |
Модуль упругости, кПа |
Твердость по Бринеллю |
|
Слюда (15%) |
1,52 |
63 |
2,42 |
139 |
|
Стекловолокно (10%) |
1,45 |
67 |
2,11 |
123 |
|
Окись хрома (15%) |
1,60 |
56 |
1,34 |
98 |
|
Графит (10%) |
1,50 |
53 |
2,20 |
100 |
1.6 Полимерный материал, стоящий отдельно от термопластов и реактопластов
Фторопласт имеет самый низкий коэффициент трения (коэффициент трения фторопласта-4 составляет 0,03-0,05). Он обладает высокой химической стойкостью, способен работать в диапазоне температур от -250°С до 300°С. Несмотря на это, фторопласт в чистом виде применяют весьма ограниченно. Это объясняется его низкой прочностью и небольшой твердостью, что в свою очередь приводит при трении к деформированию его поверхностных слоев. В результате деталь изнашивается достаточно быстро. В машиностроении используются в основном композиционные материалы на основе фторопласта. Для увеличения несущей способности изделий во фторопласт вводятся армирующие волокнистые наполнители, металлический порошок, кокс, и т. д. Кроме того, введение наполнителей позволяет значительно снизить интенсивность изнашивания фторопласта. Широко практикуется нанесение фторопласта в виде покрытий на более твердые и прочные поверхности.
1.7 Антифрикционные композиционные материалы на основе полиимидов
Эти материалы обладают высокой радиационной и химической стойкостью, хорошими триботехническими свойствами и могут длительно эксплуатироваться при температуре 220-260°С. Материалы на основе полиимидов удовлетворительно работают в условиях высокого вакуума (до 10-4 Па). Детали узлов трения из полиимидов получают горячим прессованием. Они имеют малую усадку (0,7-1,0%), что дает возможность использовать полиимиды для изготовления деталей высокой точности. Недостатком этих материалов является большая скорость газовыделения и хрупкость, что несколько ограничивает их применение. Для изготовления пористых изделий, например, подшипников, к полиимиду добавляют полиформальдегид. Добавление внутренних смазок позволяет снизить коэффициент трения композиции до 0,1 при допустимом контактном давлении 350 МПа.
Таблица 4. Свойства композитов на основе фенолоформальдегидных смол
Армирующие наполнители |
Плотность, г/см3 |
Прочность при изгибе, МПа |
Ударная вязкость, кДж/м2 |
Коэффициент трения |
|
Базальтовые волокна |
1,71 |
93 |
40 |
0,15 |
|
Стеклянные волокна |
1,90 |
60 |
10 |
0,35 |
|
Углеродные волокна |
1,45 |
70 |
44 |
- |
|
Древесные волокна |
- |
78 |
9 |
0,22 |
1.8 Фенолоформальдегидные смолы
Как правило, такую полимерную матрицу упрочняют волокнистыми наполнителями, а также вводят внутренние смазки. Изделия на основе фенолоформальдегидов обладают химической стойкостью, высокой жесткостью, стабильностью размеров, высокой износостойкостью. Как и большинство реактопластов, изделия на основе этих смол способны стабильно эксплуатироваться при температурах до 180°С. Смолы в чистом виде практически не используются. Из них готовят композиты, состоящие из армирующих наполнителей и внутренних смазок. Содержание добавок в композите может составлять до 70%.
Таблица 5. Свойства антифрикционных материалов на основе полиимидов
Марка материала |
Плотность, г/см3 |
Прочность при сжатии, МПа |
Ударная вязкость, кДж/м2 |
Твердость по Бринеллю |
Предельные рабочие температуры, °С |
|
Полиар-2 |
1,30 |
- |
50 |
140 |
-196, +300 |
|
Тесан-38 |
1,30 |
- |
30 |
140 |
-196, +250 |
|
ПМ-69-Г5 |
1,47 |
80 |
30 |
320 |
-196, +250 |
|
ПАМ 50-69 |
1,55 |
38 |
5 |
300 |
-196, +250 |
В современной механике под трением понимают широкий круг явлений, вызываемых взаимодействием соприкасающихся поверхностей твердых тел при относительном перемещении, а также внутренним движением в твердых, жидких и газообразных средах при их деформации. Однако основные причины, вызывающие трение, в большинстве случаев связаны с поверхностью металла. Поверхность любого твердого тела не бывает идеально ровной, даже самые гладкие металлические поверхности деталей, изготавливаемые с применением особо тонкого шлифования, либо полирования имеют неровности высотой от 0,05 до 0,1 мкм, а наиболее грубые, изготавливаемые фрезерованием от 100 до 200 мкм. Шероховатость и волнистость поверхностей, обусловленные погрешностью при изготовлении деталей, искажением их формы от нагрузки или нагрева, приводят к тому, что две поверхности контактируют на отдельных малых площадях. При относительном перемещении двух соприкасающихся поверхностей в плоскости дискретного касания возникает сопротивление, называемое внешним трением.
Различают следующие виды трения:
- По наличию относительного движения - трение покоя и трение движения;
- По характеру относительного движения - трение скольжения и трение качения;
- По наличию смазочного материала - трение жидкостное, при котором трущиеся поверхности полностью разделены слоем смазки; трение сухое, возникающее в отсутствие смазки между поверхностями; трение граничное, при котором трущиеся поверхности разделены тончайшим слоем смазки толщиной от 0,1 до 1 мкм и находятся под действием молекулярных сил этих поверхностей; трение смешанное, сочетающее условия сухого, граничного и жидкостного трения.
Изнашивание процесс отделения материала с поверхности твердого тела при трении и (или) накопления остаточной деформации, проявляющейся в постепенном изменении размеров и (или) формы тела. Установлено несколько видов изнашивания: механическое, коррозионно-механическое, абразивное, эрозионное, кавитационное, усталостное, изнашивание при заедании, окислительное и электроэрозионное изнашивание. Износ - это результат изнашивания, определяемый в установленных единицах. В общий износ механизмов свой вносят вклад все виды трения и изнашивания.
2. Механизм антифрикционного действия смазочных материалов
Антифрикционное действие - это действие материалов, направленное на уменьшение трения и износа. Механизм действия смазочного материала заключается в разделении сопряженных поверхностей деталей, перемещающихся относительно друг друга, слоем смазки, толщина которой достаточна для уменьшения контакта микровыступов поверхностей. В зависимости от типа разделения поверхностей трения выделяют следующие виды смазывания:
- Гидродинамическая смазка - жидкостная смазка, при которой полное разделение поверхностей происходит в результате давления возникающего в слое жидкости при относительном движении этих поверхностей;
- Гидростатическая смазка - жидкостная смазка, при котором полное разделение поверхностей, находящихся в относительном движении или покое, осуществляется жидкостью, поступающей в зазор между этими поверхностями под внешним давлением;
- Газодинамическая смазка - газовая смазка, при которой полное разделение поверхностей трения, находящихся в относительном движении, определяются упругими свойствами материалов поверхностей трения и смазочного материала, а также реологическими свойствами последнего в зоне соприкосновения поверхностей;
- Граничная смазка - смазка, при которой трение определяется свойствами тонкого слоя компонентов жидкостного материала, обусловленными взаимодействиями материала поверхностей трения, смазочного материала и среды;
- Полужидкостная смазка - смазка, при которой жидкий смазочный материал, передающий нагрузку, частично разделяет поверхности трения деталей, находящихся в относительном движении.
Вне зависимости от типа разделения поверхностей, вида смазочного материала механизм антифрикционного действия, представляется как совокупность действия каждого компонента смазочного материала: масла, разнообразных присадок - веществ, добавляемых в незначительных количествах в масла для улучшения или придания новых свойств. Смазочное действие минерального масла с точки зрения гидродинамической и контактно-гидродинамической теорий смазки связано с его вязкостью, которая должна быть достаточно высокая, незначительно меняясь при измении нагрузки и температуры. Однако оно не обеспечивает эффективного смазочного действия, и уже при невысоких температурах от 20 до 40 оС наблюдается значительный скачкообразный рост коэффициента трения, что свидетельствует о непосредственном металлическом контакте трущихся поверхностей. Поэтому обычно минеральное масло не подвергают высокой степени очистки. В масле остаются технологические примеси: смолистые вещества и органические кислоты.
Эти примеси называются поверхностно-активными присадками, по характеру их взаимодействия с поверхностью. Полярные группы этих веществ интенсивно притягиваются активными центрами на поверхности металла. При этом боковые группы соседних молекул также взаимодействуют друг с другом. На поверхности твердого тела образуется молекулярный "ворс". Мономолекулярный слой смазки служит как бы продолжением твердого тела, обладает прочностью и упругостью.
Рис. 1. Мономолекулярный слой ПАВ на поверхности твердого тела
В реальных условиях обычно возникают не мономолекулярные, а мультимолекулярные ориентированные слои, в которых внутримолекулярное трение приобретает особый характер, заключающейся в том, что трение происходит между отдельными слоями молекул, а не между отдельными молекулами. Различными поверхностно-активными присадками могут быть различные мыла жирных и нафтеновых кислот, жирные амины, амиды и другие соли органических кислот. Введение таких веществ резко снижает коэффициент трения и сдвигает разрушение граничных слоев в область более высоких температур от 140 до 270 оС.
В современных тяжело-нагруженных узлах трения: механизмы-рессоры, подвески тракторов и гусеничных машин, открытые шестереночные передачи, резьбовые соединения и др. - требуется химическое модифицирование поверхности с помощью химически активных присадок. Вследствие фрикционного разогрева и влиянии силового поля твердой фазы молекулы вступают в химическое взаимодействие с металлом поверхности трения, образуя модифицированные слои, обладающие пониженным сопротивлением и поэтому заметно снижающие коэффициент трения. Разделяя поверхности трения не только слоем ПАВ, но и образовавшимся поверхностным соединением, эти слои предотвращают металлический контакт, и тем самым устраняют адгезионный износ и заедание.
При не высоких температурах до 200 оC химически активные присадки могут обеспечить снижение трения и износа благодаря адсорбционному эффекту, а при температурах превышающих температуру разложения присадки благодаря образованию химически модифицированных слоев. Все этими свойствами обладают дисперсные системы нерастворимых в масле твердых смазочных материалов: MoS2, WS2, графита, BN, MoSe2, где концентрация добавки не превышает 10%.
2.1 Графит
Графит одна из самых распространенных сухих смазок. Является одной из аллотропных модификаций углерода, обладающей гексагональной кристаллической решеткой, в которой атомы углерода связанные вдоль линий шестиугольников ковалентными силами, а связь между кристаллическими плоскостями, осуществляется за счет слабых Ван-дер-ваальсовых взаимодействий, энергия которых от 3 до 4 порядков ниже, чем у ковалентных. Поэтому сдвиговая прочность графита в направлении, параллельном заполненным атомами углерода кристаллическим плоскостям, намного меньше, чем в направлениях, соответствующих разрыву ковалентных связей.
Рис. 2. Строение кристаллической решетки графита
Эффект смазочного действия графита определяется тем, что молекулы воды, содержащейся в воздухе, сорбируются в межплоскостных промежутках и еще больше ослабляют межплоскостные связи. Поэтому смазочные свойства графита слабо проявляются в вакууме и при температуре более 100єС. При отсутствии влаги коэффициент трения поверхностей, разделенных графитовой прослойкой, достигает 0,3, в то время как при наличии сорбированной влаги он составляет примерно 0,05. Это обстоятельство ограничивает использование графита. Однако графит хорошо заполняет технологические неровности микропрофиля поверхности трения, образуя гладкую зеркальную поверхность, поэтому в общем машиностроении нашел широкое применение для смазки сухих резьбовых соединений, канатов, поджимных сальниковых набивок, в качестве добавки в трансмиссионные масла и т.д.
По данным ГПП: Скорость относительного скольжения мало влияет на коэффициент трения графита, в то время как удельная нагрузка оказывает на него существенное воздействие. При увеличении удельной нагрузки до 450-500 Н/мм2 коэффициент трения быстро уменьшается (примерно до 0,03). При дальнейшем увеличении нагрузки коэффициент трения начинает возрастать, изнашивание становится более интенсивным. Большое значение имеет материал трущихся деталей. Большое значение имеет материал трущихся деталей, где особое значение имеет оксидная пленка, которая чем прочнее, тем лучше работает графит. Например, износ по меди в 18 раз больше, чем по хрому, что является одной из причин быстрого изнашивания щеток электродвигателей и генераторов.
2.2 Дисульфид молибдена
MoS2, как и графит имеет, гексагональное строение. Атомы молибдена связаны друг с другом прочными химическими связями вдоль сторон правильных шестиугольников. Атомы серы тоже химическими связями соединены с атомами молибдена и образуют разветвленную объемную структуру, отделяя соседние слои атомов молибдена друг от друга. Между атомами серы соседних слоев реализуются слабые Ван-дер-ваальсовы взаимодействия, а, следовательно, вдоль границы раздела прослоек атомов серы реализуется низкое сопротивление сдвигу. Влага в данном случае не играет роли, поэтому дисульфид молибдена используется для смазки узлов, работающих в экстремальных условиях: в высоком вакууме при температуре до 1000 оС. Однако на воздухе начинается процесс окисления уже при температуре 350 оС. По данным ГПП коэффициент трения с увеличения удельной нагрузки уменьшается, достигая 0,02 при 2800 МПа.
2.3 Дополнительные функции смазочного материала в узле трения
Помимо разделения сопряженных поверхностей и снижения трения смазка параллельно может обладать дополнительными функциями:
- Отвод тепла от сопряженных поверхностей. Эта функция в полном объеме возможна только жидким смазочным материалам, пластичным - только с системой циркуляционной смазки. В том и другом случаях тепло передается перемещающимся смазочным материалом от более нагретых поверхностей трения к окружающим холодным стенкам, тем самым, останавливая деформацию и разрушение.
- Защита поверхности металла от атмосферной коррозии. Функция характерна для смазочного материала с длительным сроком работы и хранения. Например, антифрикционные смазки, моторные масла, индустриальные масла с присадками АКОР для межоперационной защиты на металлообрабатывающих предприятиях.
Иногда возлагают на смазки функцию защиты узла трения от попадания пыли и воды из окружающей среды. Целесообразность предъявления к смазкам таких требований представляется весьма сомнительной. В силу своих физико-химических свойств, смазка способна накапливать в себе частицы пыли (иногда и влагу), вызывая ускоренный износ деталей, поэтому проблему защиты от попадания в узел трения веществ из внешней среды ведут конструкционным путем.
Заключение
При трении качения изнашивание представляет собой своеобразный процесс, вызываемый сложным напряженным состоянием рабочих поверхностей и особыми явлениями усталости материала под действием повторно-переменных нагрузок. Износ поверхности трения характеризуется выкрашиванием металла и образованием одиночных или групповых осповидных углублений.
Список использованной литературы
1. Яхъев Н.Я. Основы теории надежности и диагностика: учебник для студ. высш. учеб. Заведений / Н.Я. Яхьяев, А.В. Кораблин.- М.: Издательский центр «Академия», 2009.- 256 с.
2. Вахламов В.К. Конструкция, расчет и эксплуатационные свойства автомобилей: учебник для студ. высш. учеб. Заведений / В.К. Вахламов - 2-е изд., стер. - М.: Издательский центр «Академия», 2009.- 560 с.
Размещено на Allbest.ru
...Подобные документы
Закономерности изменения параметров технического состояния автомобилей по наработке (времени или пробегу). Вероятность безотказной работы агрегата. Методы диагностирования технического состояния объекта с использованием экономико-вероятностного метода.
методичка [2,3 M], добавлен 14.11.2011Изучение процесса эксплуатации подъёмно-транспортных машин на предприятии на примере пневмоколесного экскаватора. Система технического обслуживания и ремонта машин. Выявление проблем, возникающих в процессе технической эксплуатации, пути их решения.
курсовая работа [39,1 K], добавлен 22.06.2015Механизм формирования рынка услуг технического сервиса транспортных и технологических машин в регионе. Расчет ёмкости услуг по техническому обслуживанию и ремонту машин на тракторной и автомобильной базе. Организация выполнения услуг технического сервиса.
курсовая работа [108,4 K], добавлен 27.05.2010Назначение и содержание планового диагностирования машин. Диагностирование по потребности и ресурсное определение технического состояния транспортных средств. Возможные неисправности основных сборочных машин. Группы параметров технического состояния.
контрольная работа [29,9 K], добавлен 06.04.2011Снижение себестоимости перевозок, экономия топливно-энергетических ресурсов. Причины изменения технического состояния автомобилей в процессе эксплуатации. Классификация закономерностей, характеризующих изменение технического состояния автомобилей.
курсовая работа [107,6 K], добавлен 14.03.2013Определение затраты на восстановление автомобиля и величины утраты товарной стоимости. Исследование аварийных повреждений и дефектов эксплуатации транспортного средства. Расчет стоимости с учетом естественного износа и технического состояния машины.
практическая работа [35,1 K], добавлен 05.04.2012Экспертный анализ технического состояния автотранспортных средств. Методика оценки остаточной стоимости транспортных средств с учетом технического состояния. Описание нормативных документов для автоэкспертов и оценщиков. Источники ценовой информации.
реферат [37,7 K], добавлен 15.11.2013Технологический процесс изготовления подвески тормозного башмака тележки грузового вагона. Силы, виды трения и изнашивания взаимодействующих поверхностей. Сверление отверстий в подвеске тормозного башмака. Разработка этапов механической обработки.
курсовая работа [211,3 K], добавлен 15.01.2011Временные характеристики стартерных аккумуляторных батарей. Продолжительность разряда с учетом влияния температуры электролита. Расчет вольт-амперных характеристик аккумуляторных батарей. Электромеханические характеристики стартера и системы зажигания.
контрольная работа [1,2 M], добавлен 07.08.2013Проектирование ремонтно-механических мастерских, основные требования к ним. Основные типы дорожно-строительных машин и автомобилей. Производственная программа по техническому обслуживанию и ремонту для дорожных машин. Расчет освещения и вентиляции.
дипломная работа [278,1 K], добавлен 07.02.2016Разработка транспортно-логистической схемы доставки груза с использованием универсальных контейнеров. Расчет стоимости доставки для различных транспортно-технологических схем. Выбор оптимального варианта доставки и оформление коммерческого предложения.
курсовая работа [61,3 K], добавлен 04.12.2013Понятия о коэффициентах трения скольжения и трения качения. Соотношения между угловыми скоростями, мощностями и крутящими моментами на валах зубчатой передачи. Общие сведения, принцип действия, классификация и область применения ременных передач.
контрольная работа [22,9 K], добавлен 25.02.2011Характеристика современного состояния рынка машин и оборудования в Казахстане. Сущность затратного, рыночного и доходного подходов к оценке стоимости транспортных средств. Идентификация машин и основные мероприятия по совершенствованию правовых аспектов.
курсовая работа [41,1 K], добавлен 04.04.2010Анализ изменения часовой эксплуатационной производительности от наработки и оптимальный срок эксплуатации ТТМ, возрастных групп парка ТТМ и гистограммы их распределения. Оценка годового результата и расчет среднего значения производительности парка ТТМ.
курсовая работа [568,9 K], добавлен 29.05.2019Повышение эффективности технической эксплуатации флота. Основные проблемы технической эксплуатации. Снижение затрат на топливо. Снижение трудоемкости технического обслуживания и ремонта. Совершенствование системы технического обслуживания и ремонта.
реферат [25,1 K], добавлен 19.05.2013Анализ современных технологий и материалов при строительстве и ремонте дорог; характеристика специализированных транспортных средств. Расчет годовых объемов работ, выбор машин для его выполнения. Разработка плана технического обслуживания и ремонта машин.
курсовая работа [1,9 M], добавлен 31.01.2014Теоретические основы оценки стоимости машин, оборудования и транспортных средств. Анализ наилучшего и оптимального использования, характеристика объекта исследования и расчёт стоимости затратным методом, согласование результатов оценки и анализ рынка.
курсовая работа [184,5 K], добавлен 09.04.2012Производственный процесс капитального ремонта автомобилей. Контроль технического состояния изделий на авторемонтном предприятии (АРП). Принципы проектирования поточных линий. Определение потребности в ремонтах. Проектирование, технологический расчет АРП.
дипломная работа [2,3 M], добавлен 26.01.2011- Исследование организации предприятия ООО "Артёмовский завод ЖБИ" по перевозке железобетонных изделий
Характеристика завода железобетонных изделий в Артёме. Организация погрузочно-разгрузочных работ. Понятие и структура транспортного процесса. Классификация затрат и структура себестоимости перевозок. Аспекты обеспечения безопасности дорожного движения.
дипломная работа [1,3 M], добавлен 04.05.2012 Технические характеристики КАМАЗа и седельного тягача. Конструктивные особенности автомобиля. Применение его для транспортировки трубоукладчиков, бульдозеров и другой техники. Перевозка автомобилем тяжеловесных и крупногабаритных грузов на полуприцепах.
контрольная работа [16,3 K], добавлен 31.01.2016