Техническое обслуживание и ремонт асинхронных электродвигателей
Механическая характеристика асинхронного двигателя, регулирование частоты его вращения. Внешний осмотр и оценка состояния механической и электрической части устройства. Методы диагностики неисправностей асинхронных электродвигателей, их устранение.
Рубрика | Транспорт |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 11.10.2015 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Введение
Дальневосточный завод «Звезда» - ведущее предприятие по ремонту подводных лодок Тихоокеанского флота и единственное на Дальнем Востоке специализирующееся на ремонте, переоборудованию и модернизации кораблей атомных подводных ракетоносцев. Завод "Звезда" - сложный, хорошо оснащенный комплекс, обладающий высоким техническим и производственным потенциалом, который позволяет качественно и своевременно выполнять работы по всем основным направлениям деятельности предприятия. Завод имеет развитые корпусное, сварочное, малярно-изоляционное, машиностроительное, литейное, кузнечное, трубообрабатывающее, гальваническое производства. В состав завод входят цехи основного производства: доково-корпусный, корпусодостроечный, цех агрегатного ремонта судового оборудования, механический, монтажно-сдаточный, цех покрытий и деревообработки, трубомедницкий и цех обращения с радиоактивными отходами и отработавшим ядерным топливом, а также центральная заводская лаборатория, энерголаборатория и лаборатория сварки, аттестованные, аккредитованные и лицензированные органами Госстандарта России, Госгортехнадзора РФ, Российского Морского Регистра Судоходства и Госатомнадзора России. Завод имеет развитое складское хозяйство, включающее как открытые, так и закрытые складские площади, и оборудованные всей необходимой погрузочно-разгрузочной техникой (краны, лифты, электро- и автопогрузчики, электрокары и штабелеры), а также комплекс вспомогательных цехов (инструментальный, ремонтно-механический, электроремонтный, котельный, энергетический, транспортный, ремонтно-строительный), который обеспечивает обслуживание основного производства и снабжение всеми необходимыми видами энергии. На заводе работает высококвалифицированный профессиональный коллектив, насчитывающий сегодня около четырех тысяч человек. Накопленный богатый опыт и применение передовых технологий позволяют ДВЗ "Звезда" использовать технологические возможности и развитую инфраструктуру вспомогательных производств для успешного выполнения ремонта кораблей и судов, строительства гражданских судов, утилизации отслуживших свой срок кораблей и судов, изготовления различных видов металлоконструкций, разнообразной продукции, как судового, так и общего машиностроения, нестандартного оборудования, оснастки и инструмента.
Устройство трёхфазной асинхронной машины
Асинхронная машина -- электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.
На предприятии где я работал бал асинхронный двигатель марки
АИР 80 А2 1М1081 У3 - высота вала 80 мм, мощность 1,5 кВт, число оборотов в минуту 3000.
Неподвижная часть машины называется статор, подвижная - ротор. Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину. На рис. 2.1 показан сердечник статора в сборе. Станина (1) выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов (2), из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже - из алюминия.
Обмотка статора состоит из трёх отдельных частей, называемых фазами. Начала фаз обозначаются буквами c1,c2,c3, концы - c4,c5,c6.
Рис. 2.1
Начала и концы фаз выведены на клеммник (рис. 2.2.а), закреплённый на станине. Обмотка статора может быть соединена по схеме звезда (рис. 2.2.б) или треугольник (рис. 2.2.в). Выбор схемы соединения обмотки статора зависит от линейного напряжения сети и паспортных данных двигателя. В паспорте трёхфазного двигателя задаются линейные напряжения сети и схема соединения обмотки статора. Например, 660/380, Y/?. Данный двигатель можно включать в сеть с Uл=660В по схеме звезда или в сеть с Uл=380В - по схеме треугольник.
Основное назначение обмотки статора - создание в машине вращающего магнитного поля.
Рис. 2.2
Сердечник ротора (рис. 2.3.б) набирается из листов электротехнической стали, на внешней стороне которых имеются пазы, в которые закладывается обмотка ротора. Обмотка ротора бывает двух видов: короткозамкнутая и фазная. Соответственно этому асинхронные двигатели бывают с короткозамкнутым ротором и фазным ротором (с контактными кольцами).
Рис. 2.3
Короткозамкнутая обмотка (рис. 2.3) ротора состоит из стержней 3, которые закладываются в пазы сердечника ротора. С торцов эти стержни замыкаются торцевыми кольцами 4. Такая обмотка напоминает “беличье колесо” и называют её типа “беличьей клетки” (рис. 2.3.а). Двигатель с короткозамкнутым ротором не имеет подвижных контактов. За счёт этого такие двигатели обладают высокой надёжностью. Обмотка ротора выполняется из меди, алюминия, латуни и других материалов.
Доливо-Добровольский первым создал двигатель с короткозамкнутым ротором и исследовал его свойства. Он выяснил, что у таких двигателей есть очень серьёзный недостаток - ограниченный пусковой момент. Доливо-Добровольский назвал причину этого недостатка - сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором.
На рис. 2.4 приведен вид асинхронной машины с фазным ротором в разрезе: 1 - станина, 2 - обмотка статора, 3 - ротор, 4 - контактные кольца, 5 - щетки.
Рис. 2.4
У фазного ротора обмотка выполняется трёхфазной, аналогично обмотке статора, с тем же числом пар полюсов. Витки обмотки закладываются в пазы сердечника ротора и соединяются по схеме звезда. Концы каждой фазы соединяются с контактными кольцами, закреплёнными на валу ротора, и через щётки выводятся во внешнюю цепь. Контактные кольца изготавливают из латуни или стали, они должны быть изолированы друг от друга и от вала. В качестве щёток используют металлографитовые щётки, которые прижимаются к контактным кольцам с помощью пружин щёткодержателей, закреплённых неподвижно в корпусе машины. На рис. 2.5 приведено условное обозначение асинхронного двигателя с короткозамкнутым (а) и фазным (б) ротором.
Рис. 2.5
На рис. 2.6 приведен вид асинхронной машины с короткозамкнутым ротором в разрезе: 1 - станина, 2 - сердечник статора, 3 - обмотка статора, 4 - сердечник ротора с короткозамкнутой обмоткой, 5 - вал.
Рис. 2.6
На щитке машины, закреплённом на станине, приводятся данные: Pн,Uн,Iн,nн, а также тип машины.
Pн - это номинальная полезная мощность (на валу)
Uн и Iн - номинальные значения линейного напряжения и тока для указанной схемы соединения. Например, 380/220, Y/?, IнY/Iн?.
nн - номинальная частота вращения в об/мин.
Тип машины, например, задан в виде 4AH315S8. Это асинхронный двигатель (А) четвёртой серии защищённого исполнения. Если буква Н отсутствует, то двигатель закрытого исполнения.
315 - высота оси вращения в мм;
S - установочные размеры (они задаются в справочнике);
8 - число полюсов машины.
2.1. Режимы работы трёхфазной асинхронной машины
Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.
Режим двигателя
Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую.
Рис. 2.7
Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой n0 в указанном направлении (рис. 2.7). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца - по направлению тока в обмотке ротора). В данном режиме (рис. 2.7) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n. Направление вращения ротора совпадает с направлением вращения магнитного поля. Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля. Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.
Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя - асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквойS. Скольжение может измеряться в относительных единицах и в процентах.
S=(n0?n)/n0 или S=[(n0?n)/n0]100%.
При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n0,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:
0<S?1.
При работе асинхронных двигателей в номинальном режиме:
Sн=(2ч5)%.
В режиме реального холостого хода асинхронных двигателей:
Sхх=(0,2ч0,7)%.
Режим генератора
Этот режим служит для преобразования механической энергии в электрическую, т.е. асинхронная машина должна развивать на валу тормозной момент и отдавать в сеть электрическую энергию. Асинхронная машина переходит в режим генератора, если ротор начинает вращаться быстрее магнитного поля (n>n0). Этот режим может наступить, например, при регулировании частоты вращения ротора.
Рис. 2.8
Пусть n>n0. При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента (рис. 2.8). Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).
При n>n0,S=0.
При n>+?,S>??.
Таким образом, в режиме генератора скольжение изменяется в пределах:
0>S>??.
Режим электромагнитного тормоза
Этот режим работы наступает, если ротор и магнитное поле вращаются в разные стороны. Этот режим работы имеет место при реверсе асинхронного двигателя, когда изменяют порядок чередования фаз, т.е. изменяется направление вращения магнитного поля, а ротор по инерции вращается в прежнем направлении.
Согласно рис. 2.9 электромагнитная сила будет создавать тормозной электромагнитный момент, под действием которого будет снижаться частота вращения ротора, а затем произойдёт реверс.
В режиме электромагнитного тормоза машина потребляет механическую энергию, развивая на валу тормозной момент, и одновременно потребляет из сети электрическую энергию. Вся эта энергия идёт на нагрев машины.
Рис.2.9
При n=n0,S=1.
При n>??,S>+?.
Таким образом, в режиме электромагнитного тормоза скольжение изменяется в пределах:
0<S<?.
Процессы в асинхронной машине
Цепь статора
а) ЭДС статора.
Магнитное поле, создаваемое обмоткой статора, вращается относительно неподвижного статора с частотой n0=60f)/p и будет наводить в обмотке статора ЭДС. Действующее значение ЭДС, наводимой этим полем в одной фазе обмотки статора определяется выражением:
E1=4,44w1k1fЦ,
где: k1=0.92ч0.98 - обмоточный коэффициент;
f1=f - частота сети;
w1 - число витков одной фазы обмотки статора;
Ц - результирующее магнитное поле в машине.
б) Уравнение электрического равновесия фазы обмотки статора.
Это уравнение составлено по аналогии с катушкой с сердечником, работающей на переменном токе.
.
Здесь Ъ и Ъ1 - напряжение сети и напряжение, подведённое к обмотке статора.
R1 - активное сопротивление обмотки статора, связанное с потерями на нагрев обмотки.
x1 - индуктивное сопротивление обмотки статора, связанное с потоком рассеяния.
z1 - полное сопротивление обмотки статора.
Э1 - ток в обмотке статора.
При анализе работы асинхронных машин часто принимают I1z1=0. Тогда можно записать:
U1?E1=4,44w1k1fЦ.
Из этого выражения следует, что магнитный поток Ц в асинхронной машине не зависит от её режима работы, а при заданной частоте сети fзависит только от действующего значения приложенного напряжения U1. Аналогичное соотношение имеет место и в другой машине переменного тока - в трансформаторе.
Цепь ротора
а) Частота ЭДС и тока ротора.
При неподвижном роторе частота ЭДС f2 равна частоте сети f.
f2=f=(n0p)/60.
При вращающемся роторе частота ЭДС ротора зависит от частоты вращения магнитного поля относительно вращающегося ротора, которая определяется соотношением:
n'=n0?n.
Тогда частота ЭДС вращающегося ротора:
.
Частота ЭДС ротора изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.
Пусть при f=50Гц, номинальное скольжение Sн=2%. Тогда при номинальной частоте вращения ротора f2=fЧSн=1Гц.
Таким образом, в обмотке ротора асинхронной машины частота наводимой ЭДС зависит от частоты вращения ротора.
б) ЭДС ротора.
При неподвижном роторе f2=f и действующее значение ЭДС определяется по аналогии с E1.
E2=4,44w2k2fЦ,
где: w2 и k2 - соответственно число витков и обмоточный коэффициент обмотки ротора.
Если ротор вращается, то f2=fЧSн и ЭДС вращающегося ротора определяется соотношением:
E2S=4,44w2k2f2Ц=E2S.
ЭДС, наводимая в обмотке ротора, изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.
Отношение ЭДС статора к ЭДС неподвижного ротора называется коэффициентом трансформации асинхронной машины.
k= |
E1 |
= |
w1k1 |
. |
|
E2 |
w2k2 |
в) ток ротора.
Запишем уравнение равновесия для одной фазы короткозамкнутого ротора.
При неподвижном роторе.
,
где: x2=2рfL2 - индуктивное сопротивление обмотки неподвижного ротора, связанное с потоком рассеяния;
R2 - активное сопротивление обмотки ротора, связанное с потерями на нагрев обмотки.
При вращающемся роторе.
где: x2S=2рf2L2=2рfL2S=x2S - индуктивное сопротивление обмотки вращающегося ротора.
Для тока ротора в общем случае можно получить такое соотношение:
.
Отсюда следует, что ток ротора зависит от скольжения и возрастает при его увеличении, но медленнее, чем ЭДС.
г) поле ротора
Обмотка ротора, как и обмотка статора, является многофазной и при появлении в ней тока создаёт своё вращающееся магнитное поле. Обозначим через n2 частоту вращения магнитного поля ротора относительно ротора.
n2=(60f2)/p=(60fS)/p.
Здесь p - число пар полюсов обмотки ротора, оно всегда равно числу пар полюсов обмотки статора.
Относительно статора магнитное поле ротора вращается с частотой
.
Из полученного соотношения следует, что магнитное поле ротора относительно статора вращается с той же частотой, что и магнитное поле статора. Таким образом, магнитные поля ротора и статора относительно друг друга неподвижны. Поэтому при анализе работы асинхронной машины можно применить те же соотношения, что и трансформаторе.
Ток статора
Так как результирующее магнитное поле асинхронной машины не зависит от её режима работы, можно составить для одной фазы уравнение магнитодвижущих сил, приравняв магнитодвижущую силу в режиме холостого хода к сумме магнитодвижущих сил в режиме нагрузки.
Э0w1k1=Э1w1k1+Э2w2k2
Отсюда Э1=Э0+Э'2.
Здесь I0 - ток в обмотке статора в режиме идеального холостого хода, I'2=?I2(w2k2)/(w1k1) - составляющая тока статора, которая компенсирует действие магнитодвижущей силы обмотки ротора. Полученное выражение для тока статора отражает свойство саморегулирования асинхронной машины. Чем больше ток ротора, тем больше ток статора. В режиме холостого хода ток статора минимальный. В режиме нагрузки ток статора возрастает. Ток реального холостого хода асинхронной машины I0=(20ч60)%I1н и значительно больше по сравнению с номинальным током, чем у трансформатора. Это объясняется тем, что величина тока I0 зависит от магнитного сопротивления среды, в которой создаётся магнитное поле. У асинхронной машины, в отличие от трансформатора, есть воздушный зазор, который создаст большое сопротивление магнитному полю.
Механическая характеристика асинхронного двигателя
Под механической характеристикой принято понимать зависимость частоты вращения ротора в функции от электромагнитного момента n=f(M). Эту характеристику (рис. 2.12) можно получить, используя зависимость M=f(S) и пересчитав частоту вращения ротора при разных значениях скольжения.
Рис. 2.12
Так как S=(n0?n)/n0, отсюда n=n0(1?S). Напомним, что n0=(60f)/p - частота вращения магнитного поля.
Участок 1-3 соответствует устойчивой работе, участок 3-4 - неустойчивой работе. Точка 1 соответствует идеальному холостому ходу двигателя, когда n=n0. Точка 2 соответствует номинальному режиму работы двигателя, ее координаты Mн и nн. Точка 3 соответствует критическому моменту Mкр и критической частоте вращения nкр. Точка 4 соответствует пусковому моменту двигателя Mпуск. Механическую характеристику можно рассчитать и построить по паспортным данным. Точка 1:
n0=(60f)/p,
где: p - число пар полюсов машины;
f - частота сети.
Точка 2 с координатами nн и Mн. Номинальная частота вращения nн задается в паспорте. Номинальный момент рассчитывается по формуле:
здесь: Pн - номинальная мощность (мощность на валу).
Точка 3 с координатами Mкрnкр. Критический момент рассчитывается по формуле Mкр=Mнл. Перегрузочная способность л задается в паспорте двигателя nкр=n0(1?Sкр), , Sн=(n0?nн)/n0 - номинальное скольжение.
Точка 4 имеет координаты n=0 и M=Mпуск. Пусковой момент вычисляют по формуле
Mпуск=Mнлпуск,
где: лпуск - кратность пускового момента задается в паспорте.
Асинхронные двигатели имеют жесткую механическую характеристику, т.к. частота вращения ротора (участок 1-3) мало зависит от нагрузки на валу. Это одно из достоинств этих двигателей.
Пуск в ход асинхронного двигателя
В момент пуска в ход n=0, т.е. скольжение S=1. Т.к. токи в обмотках ротора и статора зависят от скольжения и возрастают при его увеличении, пусковой ток двигателя в 5 - 8 раз больше его номинального тока
Iпуск=(5ч8)Iн.
Как рассматривалось ранее, из-за большой частоты ЭДС ротора асинхронные двигатели имеют ограниченный пусковой момент
Mпуск=(0,8ч1,8)Mн.
Для пуска в ход двигателя необходимо, чтобы развиваемый им пусковой момент превышая момент нагрузки на валу. В зависимости от мощности источников питания и условий пуска используют разные способы пуска, которые преследуют цели: уменьшение пускового тока и увеличение пускового момента.
Различают следующие способы пуска в ход асинхронных двигателей: прямое включение в цепь, пуск при пониженном напряжении, реостатный пуск, использование двигателей с улучшенными пусковыми свойствами.
Прямое включение в сеть
Это самый простой и самый дешевый способ пуска. На двигатель вручную или с помощью дистанционного управления подается номинальное напряжение. Прямое включение в сеть допускается, если мощность двигателя не превышает 5% от мощности трансформатора, если от него питается и осветительная сеть. Ограничение по мощности объясняется бросками тока в момент пуска, что приводит к снижению напряжения на зажимах вторичных обмоток трансформатора. Если от трансформатора не питается осветительная сеть, то прямое включение в сеть можно применять для двигателей, мощность которых не превышает 25% от мощности трансформатора.
Реостатный пуск асинхронных двигателей
Этот способ применяют при тяжелых условия пуска, т.е. при большой нагрузке на валу. Для реостатного пуска используют асинхронные двигатели с фазным ротором, в цепь ротора включается пусковой реостат. Реостатный пуск служит для увеличения пускового момента. Одновременно происходит уменьшение пускового тока двигателя. По мере разгона двигателя пусковой реостат выводится и после окончания пуска обмотка ротора оказывается замкнутой накоротко.
На рис. 2.10 приведена схема реостатного пуска (рис. 2.10.а) и механические характеристики (рис 2.10.б) при этом пуске.
Рис. 2.10
В момент пуска в ход (рис. 2.10.а) в цепь ротора введен полностью пусковой реостат (Rпуск3=Rпуск1+Rпуск2), для чего контакты реле К1 иК2 разомкнуты. При этом двигатель будет запускаться по характеристике 3 (рис. 2.19.б) под действием пускового момента Mпуск. При заданной нагрузке на валу и введенном реостате Rпуск3 разгон закончится в точке A. Для дальнейшего разгона двигателя нужно замкнуть контакты К1, при этом сопротивление пускового реостата снизится до Rпуск2 и разгон будет продолжаться по характеристике 2 до точки B. При замыкании контактов К2, пусковой реостат будет полностью выведен (Rпуск=0) и окончательный разгон двигателя будет продолжаться по его естественной механической характеристике 1 и закончится в точке C.
Критическое скольжение равно:
для естественной характеристики Sкр1?R2/X2;
для искусственной характеристики Sкр3?(R2+Rпуск3)/X2.
Пусковой момент для искусственной характеристики можно рассчитать по формуле Клосса
Mпуск= |
2Mкр |
. |
|
Sкр3/1+1/Sкр3 |
|||
Задаваясь необходимой величиной пускового момента, можно вычислить Sкр3 и величину пускового сопротивления
Sкр |
= |
R2 |
. |
||
Sкр3 |
R2+Rпуск3 |
Использование двигателей с улучшенными пусковыми свойствами
Стремление совместить достоинства асинхронных двигателей с короткозамкнутым ротором (высокая надежность) и фазным ротором (большой пусковой момент) привело к созданию этих двигателей. Они имеют короткозамкнутую обмотку ротора специальной конструкцией. Различают двигатели с обмоткой ротора в виде двойной «беличьей клетки» (рис. 2.20.а) и с глубоким пазом (рис. 2.20.б).
Рис. 2.11
На рис. 2.11 показаны конструкции ротора двигателей с улучшенными пусковыми свойствами.
У двигателя с двойной «беличьей клеткой» на роторе закладывается две короткозамкнутые обмотки. Обмотка 1 выполняет роль пусковой, а обмотка 2 является рабочей. Для получения повышенного пускового момента пусковая обмотка должна обладать большим активным сопротивлением, чем рабочая обмотка. Поэтому обмотка 1 выполняется из материала с повышенным удельным сопротивлением (латунь), чем обмотка 2 (медь). Сечение проводников, образующих пусковую обмотку, меньше, чем у рабочей обмотки. За счет этого повышается активное сопротивление пусковой обмотки.
Рабочая обмотка, расположенная глубже, охватывается большим магнитным потоком, чем пусковая. Поэтому индуктивное сопротивление рабочей обмотки значительно больше, чем пусковой. За счет этого в момент пуска в ход, когда частота тока ротора имеет наибольшее значение, ток в рабочей обмотке, как следует из закона Ома, будет небольшим и в создании пускового момента будет участвовать в основном пусковая обмотка, имеющая большое активное сопротивление. По мере разгона двигателя частота тока ротора падает, уменьшается и индуктивное сопротивление обмоток ротора, это приводит к увеличению тока в рабочей обмотке, за счет этого в создании вращающего момента будет участвовать, в основном, рабочая обмотка. Т.к. она обладает малым активным сопротивлением, естественная механическая характеристика двигателя будет жесткой.
Аналогичная картина наблюдается у двигателя с глубоким пазом (рис. 2.11.б). Глубокий стержень обмотки (1) можно представить в виде нескольких проводников, расположенных по высоте паза. За счет высокой частоты тока в обмотке ротора в момент пуска в ход происходит «вытеснение тока к поверхности проводника». За счет этого в создании пускового момента участвует только верхний слой проводников обмотки ротора. Сечение верхнего слоя значительно меньше сечения всего проводника. Поэтому при пуске в ход обмотка ротора обладает повышенным активным сопротивлением, двигатель развивает повышенный пусковой момент. По мере разгона двигателя плотность тока по сечению проводников обмотки ротора выравнивается, сопротивление обмотки ротора снижается.
В целом эти двигатели имеют жесткие механические характеристики, повышенный пусковой момент и меньшую кратность пускового тока, чем двигатели с короткозамкнутым ротором обычной конструкцией.
Регулирование частоты вращения асинхронных двигателей
При работе многих механизмов, приводящихся во вращение асинхронными двигателями, в соответствии с технологическими требованиями возникает необходимость регулировать скорость вращения этих механизмов. Способы регулирования частоты (скорости) вращения асинхронных двигателей раскрывает соотношение:
n=(1?S)n0=(1?S)60f/p.
Отсюда следует, что при заданной нагрузке на валу частоту вращения ротора можно регулировать:
изменением скольжения;
изменением числа пар полюсов;
изменением частоты источника питания.
Изменение скольжения
Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.12).
На рис. 2.12 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостатаRр3>Rр2>0,Rр1=0.
Рис. 2.12
Как следует из рис. 2.12 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:
Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
Невозможно плавно регулировать частоту вращения.
Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.
Изменение числа пар полюсов
Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.
На рис. 2.13 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полу обмоток.
Рис. 2.13
У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.
У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой f=50 Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом p=1 и p=2). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом p=3 и p=6).
При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента Mкр (рис. 2.14.б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.14.а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.14).
Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.
Рис. 2.14
Изменение частоты источника питания
В качестве таких источников питания в настоящее время начали находить применение преобразователи частоты (ПЧ), выполняемые на мощных полупроводниковых приборах - тиристорах. Из уравнения трансформаторной ЭДС U1=4,44w1k1fЦ следует, что для сохранения неизменным магнитного потока, т.е. для сохранения перегрузочной способности двигателя, необходимо вместе с частотой изменять и действующее значение подведенного напряжения. При выполнении соотношения U1/f1=U'1/f'1, критический момент не изменяется и получается семейство механически характеристик, представленное на рис. 2.15.
Рис. 2.15. Механические характеристики при частотном регулировании
Достоинства этого способа: плавное регулирование, возможность повышать и понижать частоту вращения, сохранение жесткости механических характеристик, экономичность. Основной недостаток - требуется преобразователь частоты, т.е. дополнительные капитальные вложения.
Техническое обслуживание асинхронных электродвигателей
Внешний осмотр и оценка состояния механической части
Техническое обслуживание асинхронного электродвигателя следует начинать с его подробного внешнего осмотра. В первую очередь определяется наличие очевидных неисправностей. Корпус двигателя следует очистить от грязи и пыли при помощи стальной щетки. Он не должен иметь сколов и повреждений. Из-за вибраций и динамических нагрузок, а также при неровностях и дефектах монтажной площадки, нередко случается, что одна из монтажных «лап» откалывается. Такой двигатель выбраковывается и не допускается к дальнейшей эксплуатации.
В обязательном порядке следует проверить наличие крышки клеммной коробки, а также крышки, закрывающей роторные выводы у двигателей с фазным ротором. Эти крышки должны закрываться плотно, без зазоров. Их смятия и повреждения не допускаются.
Каждый асинхронный электродвигатель должен иметь на корпусе шильдик - табличку с информацией о номинальных параметрах. Необходимо контролировать читаемость всех надписей на шильдике и, при необходимости, восстанавливать их, чтобы не иметь в хозяйстве «неопознанных» электродвигателей.
При выполнении технического обслуживания двигатель необходимо отсоединить от трансмиссии: снять приводной ремень, цепь или полумуфту. После этого следует провернуть вал вручную. Он должен проворачиваться с усилием, обусловленным только инерцией ротора, посторонние звуки, скрежет и хруст должны отсутствовать.
Следует вскрыть кожух, скрывающий крыльчатку двигателя (при закрытом исполнении). Крыльчатка не должна болтаться, иметь люфты в любом направлении, стопорный винт должен быть затянут.
Вал двигателя не должен перемещаться в радиальном и осевом направлениях, а звездочка или шкив на валу должны быть закреплены надежно и не болтаться. Все болтовые соединения должны быть протянуты, а резьба не должна быть сорвана. Дефектные детали и элементы крепежа подлежат замене.
Далее необходимо вскрыть крышки подшипниковых узлов. Состояние подшипников и подшипниковых гнезд определяется визуально. Исключаются трещины, сколы колец подшипника, неправильное его положение относительно вала (перекос). Перед закрытием подшипниковый узел набивается смазкой (маслом или специальной консистентной смазкой). Контроль наличия и состояния смазки в подшипниковых узлах вообще рекомендуется производить ежесменно.
Внешний осмотр и оценка состояния электрической части
Для оценки состояния статорных выводов и токосъемного устройства ротора, крышки двигателя вскрываются. Изоляция статорных выводов должна иметь быть целой, без трещин и повреждений, в противном случае изоляцию необходимо восстановить при помощи изоленты и киперной ленты. Клеммная колодка, при ее наличии, не должна быть оплавлена или повреждена - в противном случае она подлежит замене.
Наконечники статорных выводов могут быть окислены или иметь на поверхности нагар - это признак плохого электрического контакта. При наличии подобных дефектов наконечники следует зачистить до металла и вновь соединить обмотки по необходимой схеме. Полость клеммной коробки двигателя следует аккуратно очистить от пыли и грязи.
Остаточная величина токосъемных роторных щеток двигателей с фазным ротором должна быть не менее 4 мм. Их контактная поверхность должна быть ровной и плотно прилегать к токосъемному кольцу. Сколы и трещины на щетках исключаются. Дефектные щетки подлежат замене. Перед установкой они шлифуются под поверхность токосъемного кольца при помощи стеклянной бумаги.
Токосъемные кольца следует очистить от пыли и грязи при помощи ветоши, смоченной в керосине. Задиры, повреждения токосъемных колец не допускаются. Причиной возникновения таких дефектов может быть не замеченный вовремя предельный износ щеток.
Напоследок необходимо проконтролировать состояние заземляющего проводника электродвигателя. Его жилы должны быть целыми, без повреждений, а болтовые крепления наконечников должны быть надежно затянуты.
Измерения и испытания
На данном этапе при помощи мегомметра проверяется сопротивление изоляции статорных обмоток, а для двигателей с фазным ротором - и обмоток ротора. Электрическое сопротивление статорных обмоток проверяется относительно корпуса двигателя, а сопротивление обмоток ротора - относительно рабочего вала. При рабочей температуре нормальным считается сопротивление изоляции обмоток 0,5 Мом или более. На практике же сопротивление изоляции исправных электродвигателей исчисляется десятками Мом.
Далее необходимо измерить сопротивление статорных обмоток постоянному току. Сопротивления пофазно должны быть одинаковыми, это косвенно свидетельствует об отсутствии межвитковых коротких замыканий. Для этого измерения лучше пользоваться не мультиметром, а прибором с более высоким классом точности, поскольку сопротивление обмоток на постоянном токе исчисляется долями Ом.
После произведения перечисленных измерений двигатель подключается к сети, его крышки закрываются. Двигатель включается в работу на холостом ходу. Проверяется отсутствие вибраций, биений рабочего вала, пофазно измеряются и соотносятся друг с другом токи холостого хода. Рукой проверяется наличие/отсутствие нагрева корпуса двигателя в течение как минимум 15 минут работы.
Некоторое повышение температуры является нормой, и допустимая его степень определяется классом стойкости изоляции. Но, например, повышение температуры корпуса до 100°C явно свидетельствует о каких-либо проблемах в работе электродвигателя.
Только после этого двигатель соединяется с трансмиссией рабочего механизма и включается в работу под нагрузкой. Техническое обслуживание можно считать выполненным.
Проверка состояния щеточного механизма электродвигателей с фазным ротором
Раскрыть замки и снять защитный кожух щеточного механизма. Очистить щеточный механизм и контактные кольца сухим обтирочным материалом. Проверить состояние контактных колец, щеток, траверсы, изолирующих звеньев траверсы. У электродвигателей АК всех габаритов и АОК2 4-го и 5-го габаритов вынуть щетки из обойм щеткодержателя. Проверить состояние контактных колец. Поверхность контактных колец должна быть покрыта политурой (коричневого цвета с синеватым оттенком). Если контактная поверхность колец загрязнена или потемнела, протереть ее обтирочным материалом, смоченным в ацетоне. Если на поверхности контактных колец появился нагар, прошлифовать ее мелкой шкуркой, натянутой на деревянную колодку, имеющую вогнутую цилиндрическую поверхность по форме контактных колец. Проверить состояние щеток и измерить их высоту.
Сколы и трещины на рабочей поверхности не допускаются. Высота щеток должна быть не менее 25 мм у двигателей 4-го и 5-го габаритов. Износившиеся или выкрошившиеся щетки заменить новыми, выполнив следующие операции:
а) отсоединить токопроводящий провод щетки от клеммы;
б) вставить новую щетку в обойму щеткодержателя и проверить легкость перемещения щетки (для электродвигателей АК всех габаритов и А0К2 4-го и 5-го габаритов);
в) отвернуть винт крепления щетки, установить новую щетку в гнездо щеткодержателя и закрепить винтом (для электродвигателей А0К2 6-го и 7-го габаритов);
г) присоединить токопроводящий провод щетки к клемме. Притереть щетки. Для притирки щеток на поверхность контактного кольца по всей окружности наложить мелкозернистую стеклянную бумагу рабочей поверхности к щетке и прижать щетку курком или пружиной. У электродвигателей А0К2 6-го и 7-го габаритов установить щеткодержатель со щеткой в рабочее положение и закрепить его пружиной. Поворачивая вал электродвигателя вперед и назад на пол-оборота, притереть щетку. Удалить шлифовальную шкурку. После притирки щетки и шлифования контактных колец удалить образовавшуюся пыль. Вставить остальные пригодные к дальнейшей эксплуатации щетки в обоймы щеткодержателей, опустить курки или пружины (электродвигатели АК всех габаритов и А0К2 4-го и 5-го габаритов), установить щеткодержатели в рабочее положение и вставить крючки пружин в отверстия щеткодержателей (электродвигатели А0К2 6-го, 7-го габаритов).
Проверить контакты соединения щеточного механизма с выводными проводами. Окислившиеся, потемневшие или подгоревшие контакты разобрать, зачистить контактные поверхности до металлического блеска, собрать контакты и затянуть. Надеть защитный кожух щеточного механизма.
Проверка работы электродвигателя
Проворачивая вручную ротор электродвигателя, убедиться в отсутствии заедания в подшипниках, задевания ротора за статор и вентилятора за кожух. Ротор должен проворачиваться легко (без задеваний и заеданий) в подшипниках. Включить электродвигатель в сеть без загрузки рабочей машины. Убедиться в отсутствии посторонних шумов, стуков и повышенной вибрации. Включить нагрузку и убедиться в нормальной работе электродвигателя под нагрузкой.
Методы диагностики неисправностей асинхронных электродвигателей
Двигатель при пуске не разворачивается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки.
К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.
В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет разворачиваться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения -- ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.
Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения.
Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом.
Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20--25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.
Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают. Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%.
У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают.
Двигатель разворачивается при разомкнутой цепи фазного ротора. Причина неисправности -- короткое замыкание в обмотке ротора. При включении двигатель медленно разворачивается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора.
Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение.
Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток.
Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора.
При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра -- вольтметра. Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.
При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных.
Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.
Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором.
Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.
Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д.
Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей.
Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток.
Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания -- способом «прожигания» обмотки или методом питания ее постоянным током.
Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой -- к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.
Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром.
Техника безопасности при обслуживании асинхронных двигателей
При работе, связанной с прикосновением к токоведущим или вращающимся частям электродвигателя и приводимого им в движение механизма, необходимо остановить электродвигатель и на его пусковом устройстве или ключе управления повесить плакат “Не включать. Работают люди”.
Операцию отключению и включению электродвигателей напряжением выше 1000 В пусковой аппаратурой с приводами ручного управления производят с изолирующего основания в диэлектрических перчатках.
При работе на электродвигателе заземление накладывают на кабель (с отсоединением или без отсоединения его от электродвигателя) или на его присоединение в распределительном устройстве. При работе на механизме, если она не связана с прикосновением к вращающимся частям или рассоединена соединительная муфта, заземлять питающий кабель электропривода не требуется.
Перед допуском к работе на электродвигателях насосов, дымососов и вентиляторов, если возможно вращение электродвигателей от соединенных с ними механизмов, должны быть закрыты и заперты на замов задвижки и шиберы последних, а также приняты меры по затормаживанию роторов электродвигателей.
Обслуживать щеточный аппарат на работающем электродвигателе допускается единолично работнику оперативного персонала или выделенному для этой цели обученному работнику, имеющему группу по электробезопасности не ниже III. При этом необходимо соблюдать следующие меры предосторожности:
- работать в головном уборе и застегнутой спецодежде, остерегаясь захвата ее вращающимися частями машины;
- пользоваться диэлектрическими галошами или резиновыми ковриками;
- не касаться руками одновременно токоведущих частей двух полюсов или токоведущих и заземляющих частей.
Кольца ротора допускается шлифовать на вращающемся электродвигателе лишь с помощью колодок из изоляционного материала с применением защитных очков. У работающего многоскоростного электродвигателя неиспользуемая обмотка и питающий ее кабель должны рассматриваться как находящиеся под напряжением. Ограждение вращающихся частей электродвигателей во время их работы снимать запрещается!
Организационные мероприятия, обеспечивающие безопасность работ в действующих электроустановках
Оформление работ нарядом допуска, распоряжением или перечнем работ в порядке текущей эксплуатации. Наряд - письменное задание на работу в электроустановках, определяющее место, время начала и окончания работы, условия ее безопасного проведения, состав бригады и лиц, ответственных за безопасность работ. По наряду проводят все работы по обслуживанию электроустановок, со снятием напряжения, без снятия напряжения на токоведущих частях и вблизи них, без снятия напряжения вдали от токоведущих частей, находящихся под напряжением. Наряд выдается оперативному персоналу непосредственно перед началом подготовки рабочего места. Наряд на работу выписывают в двух экземплярах и заполняют под копирку. Допускается передача наряда по телефону лицом, выдающим наряд, старшему лицу из оперативного персонала данного объекта или ответственному руководителю. При этом наряд заполняют в трех экземплярах: один экземпляр заполняет лицо выдающее наряд, а два - лицо, принимающее его по телефону. При работах в электроустановках без постоянного оперативного персонала и при совмещении лицом из оперативного или оперативно-ремонтного персонала обязанности допускающего и ответственного руководителя выписывают два экземпляра наряда, один из которых передают производителю работ, другой остается у лица, выдающего наряд. При выдаче наряда по телефону лицо, выдающее наряд, диктует его текст (в форме телеграммы), а лицо, принимающее текст, заполняет бланки наряда, указывают его фамилию, подтверждая подписью принимающего текст. Допуск к работе по наряду, выданному по телефону, производят в общем порядке. На однотипные работы, выполняемые без снятия напряжения одной бригадой, может быть выдан общий наряд для поочередного производства работ на нескольких присоединениях, в одном или разных РУ, в разных помещениях подстанции.
...Подобные документы
Недостатки методов тестовой и оперативной диагностики асинхронных электродвигателей. Разработка программно-аппаратного комплекса на основе использования искусственных нейронных сетей для идентификации неисправностей в электрической части автомобиля.
реферат [927,0 K], добавлен 03.02.2011Изменения технического состояния автомобиля в процессе эксплуатации. Виды неисправностей стартера и их причины. Методы контроля и диагностики технического состояния автомобиля. Техническое обслуживание и операции по ремонту стартера автомобиля ВАЗ-2106.
курсовая работа [541,5 K], добавлен 13.01.2011Понятие и классификация асинхронных генераторов, области их применения и значение. Энергетические соотношения и генераторный режим асинхронного двигателя. Физические основы самовозбуждения, осциллограммы тока статора при самовозбуждении генератора.
реферат [1,0 M], добавлен 19.02.2014Назначение, устройство, принцип работы двигателя автомобиля ВАЗ 2111. Диагностика неисправностей и методы их устроения. Повышенный расход топлива, недостаточное давление в рампе системы питания. Техническое обслуживание двигателя, охрана труда.
курсовая работа [1,3 M], добавлен 10.05.2011Причины и способы устранения неисправностей тормозов автомобиля ВАЗ 2109. Правила ремонта главного и колесного цилиндров, переднего колеса. Техническое обслуживание и ремонт системы питания карбюраторного двигателя. Топливный насос автомобиля ВАЗ 2108.
контрольная работа [1,5 M], добавлен 08.05.2013Характеристика объемов работ и порядок выполнения ТО-1 локомотивными бригадами. Осмотр колесной пары, рессорного подвешивания, автосцепного устройства. Состояние тормозных колодок и тормозных башмаков. Контрольный осмотр электрической части локомотива.
реферат [2,4 M], добавлен 12.12.2010Устройство, основные характеристики, принцип работы и назначение системы питания карбюраторного двигателя. Особенности технического обслуживания, диагностики и ремонта, анализ основных неисправностей, деталировка, особенности сборки и разборки двигателя.
курсовая работа [1,2 M], добавлен 18.06.2014Квалификационная характеристика автослесаря. Техническое обслуживание, неисправности узлов и агрегатов коробки перемены передач, их устранение. Снятие и разборка коробки передач, проверка технического состояния деталей, ремонт, сборка, установка коробки.
курсовая работа [857,9 K], добавлен 16.05.2010Техническое обслуживание и текущий ремонт аккумуляторных батарей. Техобслуживание и ремонт генераторов реле-регуляторов, стартеров, системы зажигания. Методы контроля и диагностики, оборудование и приборы для регулировки электрооборудования автомобиля.
курсовая работа [37,2 K], добавлен 22.03.2008Техническая характеристика автомобиля. Назначение, устройство и работа ходовой части. Основные неисправности, техническое обслуживание узлов, ремонт передней подвески. Приспособления и инструменты, применяемые при техническом обслуживании и ремонте.
дипломная работа [1,5 M], добавлен 09.11.2009Устройство автомобильной аккумуляторной батареи. Характеристика ее неисправностей и их проявлений. Определение повреждений и их диагностика. Техническое обслуживание и текущий ремонт аккумуляторной батареи. Расчет графика прохождения ТО автомобилей.
курсовая работа [842,7 K], добавлен 16.03.2014Назначение, классификация, краткая характеристика конструкции и принцип действия рулевого управления Ваз 2121. Диагностика и устранение его неисправностей. Техническое обслуживание и ремонт деталей. Материалы деталей и их технологические свойства.
дипломная работа [3,5 M], добавлен 08.06.2012Описание принципа действия тормозной системы автомобиля. Исследование назначения, устройства, неисправностей и их устранения. Техническое обслуживание стояночной тормозной системы. Требования безопасности при ремонте. Санитарные требования к производству.
курсовая работа [1016,5 K], добавлен 03.08.2014Назначение и принцип действия асинхронных машин. Разборка, сборка и сушка асинхронного электродвигателя АЭ-92-402. Меры безопасности при производстве работ на путях. Средства сигнализации и связи при движении поездов. Организация работы дизельпоездов.
дипломная работа [509,3 K], добавлен 20.05.2014Контрольно-измерительный инструмент. Диагностическое, технологическое оборудование. Диагностирование неисправностей системы смазки автомобиля ЗИЛ–4333, техническое обслуживание и ремонт. Правила безопасности при использовании инструмента, приспособлений.
курсовая работа [1,6 M], добавлен 30.03.2014Особенности конструкции двигателя 5EFE. Неисправности кривошипно-шатунного и газораспределительного механизма. Виды поломок системы смазки, охлаждения и питания. Диагностика и технология ремонта неисправностей двигателя 5EFE, его техническое обслуживание.
дипломная работа [4,8 M], добавлен 12.06.2014Проектирование цеха по замене агрегатов: расчет количества постов в зонах технического обслуживания и ремонта, годовой трудоемкости общей диагностики автомобиля, подбор технологического оборудования. Составление технологической карты двигателя ЗМЗ.
курсовая работа [260,1 K], добавлен 17.01.2012Определение главных размеров трёхфазного асинхронного двигателя. Проектирование статора и короткозамкнутого ротора. Расчёт магнитной цепи и намагничивающего тока, параметров двигателя для номинального режима, потерь мощности, КПД, рабочих характеристик.
курсовая работа [511,6 K], добавлен 26.04.2012Назначение, устройство, техническое обслуживание и ремонт российского легкового автомобиля семейства "Волга" ГАЗ-3110. Система отопления и вентиляции. Неисправности, основные причины и их устранение. Диагностика системы воздухораспределения автомобиля.
реферат [1,8 M], добавлен 11.09.2014Техническая характеристика автомобиля семейства ВАЗ 2110. Бесконтактная система зажигания. Бесконтактная система зажигания. Особенности устройства бесконтактной системы зажигания ВАЗ 2110. Техническое обслуживание и ремонт. Проверка датчика Холла.
дипломная работа [3,7 M], добавлен 20.06.2008