Сверхзвуковые гидросамолеты: вымысел или реальность

Характеристика гидросамолета как самолета, способного взлетать с воды и садиться на воду, а также маневрировать на ней. Изучение истории изобретения и строительства гидросамолетов за рубежом и Советском Союзе. Анализ значения гидросамолетов для авиации.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 07.01.2016
Размер файла 52,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В конце 1953 г, когда закончилась война в Корее и началось сокращение военных расходов: Си Дарт оказался первым кандидатом на сокращение. Заказ на серию был отменён, а всего были построены 3 лётных самолёта, один макет и машина для статических испытаний. Тем не менее, лётные испытания были продолжены. Самолёт XF2Y-1 получил улучшенные двигатели J46-WE-2B с форсажной камерой. Двигатель стал длиннее, удлинилась мотогондола и изменился хвостовой обтекатель фюзеляжа. Испытания были сосредоточены на уменьшении "обстрела лыж". Си Дарт No.1 летал в первоначальной конфигурации с парой лыж, до середины 1954 г.

XF2Y-1 Си Дарт No.2 начал испытания в начале 1954 г. Самолёт имел множество изменений, в том числе и существенных: фюзеляж стал длиннее, возросли размах и площадь крыла. Сопла двигателей были лучше приспособлены к хвостовому обтекателю фюзеляжа. Самолёт имел пару лыж, а вот колесики на них отсутствовали, поэтому для перемещения Си Дарт No.2 использовали перекатную тележку. Вскоре после начала полётов проявился флаттер крыла, который быстро вылечили. Си Дарт No.2 был единственным самолётом, в котором проявился флаттер. В то время как первый Си Дарт использовался для отработки лыж, номер 2 использовался для скоростных полётов. На нём отрабатывалась система управления с бустерами и изучалась устойчивость и управляемость на различных режимах полёта. Во время полёта 3 августа 1954 г. пилот Ричбург в пологом пикировании с высоты 10300 м превысил скорость М 1. Таким образом, XF2Y-1 Си Дарт стал первым, и до настоящего времени единственным гидросамолётом, летавшим на сверхзвуке.

Примерно в конце 1954 г., фирма Конвэр, окрылённая успехом "правила площадей", предложила спроектировать новый Си Дарт F2Y-2. У него должна быть одна лыжа,фюзеляж, сделанный по правилу площадей и силовая установка с единственным ТРД Пратт энд Уитни J75 или Райт J67. По расчётам, F2Y-2 должен был показать скорость М 2. Но флот не разделял оптимизма фирмы и отказывался рассматривать любые предложения истребителей - гидросамолётов, пока проблемы с "обстрелом лыж" не будут разрешены. Тем временем Си Дарт No. 2 продолжил испытания в открытом море к югу от г. Пойнт Лома. Испытания в открытом море потребовали привлечения разнообразных средств обеспечения: многочисленных катеров, десантного корабля - дока типа LSD Кэйт Маунт, а так же спасательного вертолёта и самолёта. Испытания в море показали малую пригодность гидролыж для действий в открытом море, особенно при волнении.

В конце 1954 г. Си Дарт No.1 был переделан и снабжён единственной лыжей. Она имела малую килеватость и крепилась под центропланом на четырёх амортизационных стойках. Монолыжа была достаточно широкой, чтобы на её задней кромке закрепить два колесика, которые с кормовым колесом позволяли выполнять буксировку самолёта. Всего были исследованы около 100 вариантов разных лыж. Но, как это часто бывает, решение одних проблем вызывает появление других. "Обстрел лыжи" на новом самолёте был значительно меньше (хотя и не исчез полностью), зато возникли опасные раскачивания самолёта по тангажу и ухудшилась устойчивость самолёта на курсе. Частичное решение этих проблем было достигнуто путём усовершенствования амортизационных стоек. Они стали с переменной жёсткостью. В зависимости от скорости удара меняется количество открытых отверстий, пропускающих масло в амортизационной стойке. Решение сложное, но перспективное, поэтому самолёт стали готовить к оценочным испытаниям с представителями флота.

Но прежде чем оценочные испытания начались, на программу обрушился следующий, удар. 4 ноября 1954 г. промышленность совместно с флотом подготовили демонстрацию представителям прессы и телевидения новых самолётов: штурмовика вертикального взлёта XFY "Пого" и транспортного гидросамолёта R3Y "Трэйдвинд". Си Дарт к показу не готовился. Но репортёры потребовали продемонстрировать им новейший истребитель - гидросамолёт. Ну что - ж, решили лететь... Перед вылетом инструктировали Чарльза Ричборга: Ты только взлети, пройди перед трибуной на высоте 300...400 м, а потом аккуратненько приводнись. Больше от тебя ничего не требуется. Всё примерно так и было, но во время прохода, на высоте 300 м Си Дарт был разогнан до скорости порядка 920 км/ч, и прямо перед трибуной он внезапно развалился в воздухе и в виде огненного шара рухнул в воду. Чарльз Ричборг ещё дышал, когда его выловил спасательный катер, но через несколько минут - умер.

Комиссия, расследовавшая катастрофу, установила, что трагедия никак не связана с особенностями Си Дарта как гидросамолёта. Дело было в несовершенстве тогдашних систем управления с гидравлическими приводами. В полёте возникли возрастающие колебания по тангажу, с которыми система управления не смогла справиться. Ситуацию ухудшали непроизвольные микроскопические движения руки пилота. Такие колебания встречались на нескольких скоростных самолётах в то время, так что это не было болезнью только Си Дарт. Просто Ричборгу не повезло, его Си Дарт развалился от больших аэродинамических нагрузок во время второго отклонения носа самолёта вниз. (Может и прав был наш известный конструктор А.Н. Туполев, который примерно в то время сказал: - Лучший бустер это тот, который не установлен на самолёте).

Все полёты на Си Дартах были немедленно приостановлены. Хотя испытания по отработке лыж возобновили сразу после обнародования предварительных выводов аварийной комиссии. Но скоростных полётов F2Y больше никогда не выполнял. Тем временем, 4 марта 1955 г. взлетел последний лётный экземпляр Си Дарт No.3. Он имел двойные лыжи, особенностью которых был способ крепления колесиков на заострённой задней кромке лыж. Колёса были поворотными, а ось поворота шла вдоль лыжи. После руления по земле колёса разворачивались на 90град. и своей плоскостью становились в одну плоскость с лыжей, тем самым делая всю поверхность лыж гладкой.

Главной задачей самолёта No.3 была отработка двойных лыж в условиях открытого моря. Результаты не очень обнадёживали. Для ускорения взлёта и сокращения времени "обстрела лыж" решили попробовать пороховые стартовые ускорители RAT0, с тягой 440 кгс и временем работы 13-15 с. По паре таких ускорителей были установлены под каждым крылом F2Y-1 номер 3. Взлёт прошёл успешно, но дальнейшего продолжения эта работа не получила. Испытания двойных лыж были закончены 28 апреля, и больше Си Дарт No.3 в воздух не поднимался.

Но Си Дарт No.1 с монолыжей продолжал полёты. При этом появилась ещё одна проблема - отложение соли на разных частях самолёта. Особенно опасно было отложение соли на лопатках компрессора. Соль появлялась не от брызг, а выделялась из солёного морского воздуха. При работе двигателя отложения могли оторваться и повредить другие лопатки. Для предотвращения этого соль решили смывать водой. На самолётах No.No. 1 и 3 был установлен бак с пресной водой, ёмкостью 76 л. При работе двигателя на малом газу, перед взлётом, на вход компрессора подавалась вода, которая смывала соль. Эта система работала весьма эффективно. Другая серия испытаний посвящалась определению мах вертикальной скорости при посадке. Её удалось довести до 5,8 м/с, при этом самолёт вёл себя удовлетворительно.

Интерес к истребителю-гидросамолёту у заказчика постепенно угасал. Морские испытания тем временем продолжались.

Типовой вылет производился примерно по такой схеме: На земле запускался двигатель, и на собственных колесиках, установленных на лыжах и нижнем киле, самолёт рулил к слипу. Колесики были оборудованы тормозами, управляемыми из кабины двумя рычагами на правом пульте, а не традиционными педалями. Лётчики считали такое решение неудачным, однако управление ни разу не было потеряно. При одновременном торможении колёс самолёт замедлялся, а при раздельном - поворачивался в ту или иную сторону. При наземном рулении лыжи были выпущены в первую позицию так, чтобы их плоскости были параллельны продольной плоскости самолёта.

После спуска самолёта в воду, колесики на лыжах поворачивались на 90град., чтобы не выступать за плоскость лыж. Руление по воде было не сложным, при этом использовался комбинированный руль - тормоз на конце фюзеляжа. При необходимости можно было резко развернуться, используя разную тягу двигателей. С другой стороны было замечено, что с одним работающим двигателем Си Дарт плохо держался на заданном курсе. В нормальных условиях, на малом газу, гидроистребитель плыл на скорости 2 - 3 узла (3,7...5,5 км/ч), при раскрытом руль-тормозе и полностью выпущенных лыжах скорость падала до 1...2 узлов (1,8 - 3,7 км/ч). Вырулив к точке взлёта, пилот должен был уравновесить ветер и морские течения. Перед началом разбега лыжи полностью выпускались с помощью кнопки в задней части левого пульта. Разбег выполнялся примерно параллельно фронту волны, с носом, отклонённым к ветру, настолько, насколько это было возможным. Во время испытаний Си Дарт взлетал с боковым ветром до 60град. от курса взлёта.

Сдачей газа самолёт ускорялся и выходил из воды на лыжи при скорости от 8 до 10 узлов (15 -18,5 км/ч). Для исключения ошибок пилота и выполнения правильного взлёта инженерами Конвэр была разработана автоматическая система управления лыжами при разбеге и пробеге. После выхода фюзеляжа из воды (15 - 18,5 км/ч) полный форсаж блокировался, а лыжи убирались в буксировочное положение. При этом уменьшалось их погружение в воду и уменьшалось гидродинамическое сопротивление. Самолёт начинал разгоняться быстрее. Блокировка форсажа при этом снималась, и на скорости примерно 50 узлов (93 км/ч) лыжи полностью выпускались ещё раз. Таким образом достигалось устойчивое глиссирование самолёта по воде, с минимальным "обстрелом лыж". На скорости 100 узлов (185 км/ч) угол атаки составлял 2град. - 5град., и на скорости 125 узлов (231 км/ч) достигал взлётного значения 17град. -19град., на котором и происходил отрыв. В диапазоне скоростей от 96 км/ч, до взлётных 231 км/ч и волнении моря до 0,6 м, самолёт испытывал "обстрел лыж" с резкими ударами и перегрузками до 5,5 д, с частотой 15 -17 Гц.

В воздухе самолёт вёл себя нормально, без каких либо особенностей, хотя система управления с гидроусилителями была ещё не достаточно отработана. Обзор из кабины с необычным, клиновидным остеклением был достаточен, хотя в серии его предлагалось увеличить. При некоторых положениях освещённость приборной доски признавалась недостаточной, что затрудняло считывание показаний приборов.

Тяга силовой установки, даже с двигателями J46-WE-2B с форсажной камерой, была недостаточной, поэтому приемистость и скороподъёмность самолёта сочли не блестящими для истребителя. Попутно выяснилась чувствительность J46-WE-2B к отложению соли в проточной части - качество не хорошее для "морского" ТРД. Защита воздухозаборника от попадания брызг была в целом решена, и в процессе эксплуатации, при выполнении соответствующих регламентов, двигатель должен был отработать полный ресурс.

Посадка гидроистребителя происходила в обратном порядке. Лыжи выпускались полностью (в положение 2) и самолёт планировал к воде. Касание происходило на скорости 120 узлов (222 км/ч). Самолёт скользил по воде и довольно быстро тормозился, постепенно погружаясь в воду. При достижении скорости менее 6 узлов (10 км/ч) лыжи переводились в буксировочное положение, и колесики разворачивались в рабочее положение. На них самолёт мог по слипу выбраться на берег с помощью собственных двигателей.

Последний раз Си Дарт поднялся в воздух 16 января 1956 г. Целью было определение максимальных мореходных качеств самолёта. Волнение на море было 5 баллов (высота волны до 3 м), с сильным ветром (37 км/ч), дующим примерно 45град. к фронту волны. Билли Лонг, пилот самолёта, при разбеге, чтобы быстрее избавиться от тряски и "обстрела лыжи", рано подорвал самолёт. В результате машина подскочила и снова плюхнулась на воду, после чего стала "козлить" или, как говорят в нашей гидроавиации - "делать барсы". Удары были очень жёсткими, перегрузки при этом достигали опасных 8,5 д. Единственной мыслью Лонга при этом было - не дать самолёту нырнуть в волну и по возможности взлететь. Наконец Си Дарт No.1 оторвался от воды. Набрав высоту и сделав круг над заливом, Билли пошёл на посадку. Она также не отличалась изяществом и сопровождалась рядом сильных ударов. При этом Лонг ударился головой об остекление и разбил до крови нос. Несмотря на это, ему удалось удержать самолёт от нырка под воду, и на пробеге Си Дарт довольно быстро остановился и благополучно возвратился в Сан Диего. Это был последний вылет Морского Дротика (Си Дарт). Окончательный удар по программе нанесло появление "суперавианосцев" (так их называли американцы из-за огромного, по тем временам, водоизмещения в 60000/ 75000 т) типа "Форрестол". Таким образом, Си Дарт проиграл соревнование тяжёлому авианосцу, который он, в случае успеха, собирался заменить. В январе 1956 г. Отдел военно-морских операций снял технические требования на истребитель-гидросамолёт, и программа была закрыта.

Проект тяжелого сверхзвукового гидросамолета ЛКВВИА

По заданию Главного штаба ВВС в Советском Союзе в 1957-1960 годах проводились комплексные исследования по перспективам развития тактико-технических свойств самолетов, гидросамолетов, крылатых ракет и систем "самолет-носитель - самолет-снаряд" в целях обоснования предложений по вооружению ВВС перспективными боевыми средствами большой дальности.

Работы вели ЛКВВИА им. А.Ф.Можайского, ВВИА им. Н.Е.Жуковского, КВВА, НИИ-15 ВВС, НИИ-88, СибНИА, ЦАГИ, НИИ-1, ОКБ-470, ОКБ-23 и другие организации. Преподавателями и слушателями Ленинградской краснознаменной военно-воздушной инженерной академии им. А.Ф. Можайского (ЛКВВИА) с начала 1950-х годов прорабатывались варианты сверхзвукового транспортного самолета, использование которого в качестве ударного самолета позволяло резко сократить время нахождения в зоне ПВО противника.

Проектные проработки самолета со взлетной массой 25000 кг, оснащенного двумя двигателями с тягой по 4000 кг и рассчитанного на полет при скоростях М=2,5-3 на высотах до 20000 м, показали, что для достижения дальности полета 10000-11000 км необходимо значительное увеличение взлетной массы самолета.

Проработка сверхзвукового самолета с дальностью полета 8000-9000 км показала трудность его реализации в концепции самолета на уровне имевшихся технологий с базированием на аэродромах, но имелась возможность создания гидросамолета с заданными характеристиками или сухопутного самолета с системой дозаправки в воздухе от дозвукового самолета-танкера.

Ударные средства большой дальности рассматривались применительно к задачам: уничтожение средств нападения большой дальности противника, срыв мобилизационных мероприятий, нарушение морских и океанских сообщений, разрушение основных отраслей экономики, вывод из строя военной промышленности, дезорганизация государственного и военного управления, постановка минных заграждений на

основных морских путях, борьба со средствами ПРО и ПВО.

В качестве возможных объектов удара рассматривались стартовые позиции МБР, авианосные ударные соединения и конвои, склады ядерных боеприпасов и ракет, промышленные предприятия, административно-политические центры, военно-морские базы, важнейшие порты и электростанции, крупные склады оружия (в том числе и химического), топлива, сырья и др.

В ЛКВВИА им. А.Ф. Можайского в конце 1950-х годов в рамках темы "Изыскание путей развития сверхзвуковых гидросамолетов большой дальности полета" под руководством А.С.Москалева и А.И.Смирнова (научный руководитель работ по теме) велось проектирование (предэскизная проработка) сверхзвуковых самолетов-бомбардировщиков и самолетов-носителей классов: дальний стратегический бомбардировщик (ДСБ),

гидросамолет (ГС), самолет-амфибия круглогодичного использования.

Под руководством А.С.Москалева велись работы по обоснованию наиболее рациональной конструктивно-компоновочной схемы. Улучшение аэродинамики перспективного самолета велось под руководством АП.Мельнико-ва. Оптимизация параметров силовых установок и обоснование конструктивной схемы двигателя (для старта и полета самолета и для старта крылатой ракеты с носителя при скорости М=3-4) проведены под руководством И.И.Кулагина и А.А. Куландина.

Рассматривались гидросамолеты со взлетной массой от 150 до 450 -500 тонн следующего назначения: носители самолетного баллистического снаряда (СБС) и крылатых ракет (КР), военно-транспортные самолеты большой дальности, океанские разведчики.

Для СБС принималась дальность полета 2500 км при пуске с самолета-носителя с высоты 20-30 км, для крылатых ракет дальность полета - прямая видимость.

Исследование перспектив развития дальних стратегических бомбардировщиков и сверхзвуковых самолетов первоначально велось в диапазоне летно-технических характеристик: взлетная масса - 150-500 тонн, боевая нагрузка -5-15 тонн, высота полета вблизи цели -20-35 км, скорость полета М=2-4 (до 5).

Рассматривались следующие компоновочные схемы бомбардировщиков и самолетов-носителей: обычная -"самолетная", "бесхвостка", "летающее крыло", "утка" - со стреловидным и серповидным крылом, или с крылом треугольной, прямоугольной, трапециевидной форм. Для силовой установки предполагалось использовать ТРД и ТРДФ, либо в случае использования смешанной силовой установки - ПВРД и ТРДФ.

В сводной таблице приведены расчетные харакеристики дальних гидросамолетов различных компоновочных схем и взлетной массы, полученные на первом этапе исследований.

При проведении дальнейших исследований самолеты были разделены надве группы. Первая группа- самолеты, которые можно создать на основе технологий конца 1950-х годов с применением алюминиевого сплава Д-23. Вторая группа - самолеты, создаваемые с применением титановых сплавов, выпуск опытных самолетов прогнозировался на 1965 год. Отмечалось, что применение в конструкции самолетов титана вместо сплава Д-23 позволит увеличить дальность и скорость полета.

На основании всестороннего анализа были введены ограничения на ТТХ: для сухопутных самолетов - взлетная масса до 300 т, посадочная скорость до 250 км/ч, скорость отрыва - 350 км/ч, длина разбега и пробега - до 1600 м; для гидросамолетов - взлетная масса до 300 т, посадочная скорость - до 280 км/ч, скорость отрыва - 380 км/ч, длина разбега и пробега до 2500 м.

Силовая установка для самолетов всех компоновочных схем - 8-10 ТРД, ТРДФ (при расчетных скоростях полета М=2-3,2), не исключалась возможность использования смешанных силовых установок с применением ПВРД (скорость полета более М=3,8). Рассматривались режимы полета на высотах до 30-35 км при скорости до М=4,4-4,6.

Заключение

По примерам, приведенных в данной работе, можно утверждать, что сверхзвуковые гидросамолеты, хоть и стали менее популярными, но будут пользоваться спросом в странах с большими прибрежными зонами. Также большая привлекательность в том, что не надо будет строить большие затратные взлетные полосы. Чем тяжелее самолеты, тем больше разбег. Следовательно, взлетные полосы будут иметь большую длину и такую же большую стоимость.

Гидросамолеты за счет взлета самолета с воды и возможности длительного пребывания его на плаву будут полезны в полярной авиации. Они могут нести оборудование, необходимое для автономной эксплуатации в океане или на арктической льдине.

Что касается военной тактики, гидросамолеты могут рассредоточить авиацию. Гидро-бомбардировщики могли бы атаковать прибрежные зоны, уничтожать военно-морские базы, важнейшие порты и электростанции, средства нападения большой дальности противника, срывать мобилизационные мероприятия, выводить из строя военную промышленность, устанавливать минные заграждения на основные морские пути, бороться со средствами ПРО и ПВО. Кроме того, для гидросамолетов не требуются огромные аэродромы со сверхпрочными многокилометровыми бетонными ВПП, являвшимися отличными мишенями для ударных средств противника.

Сверхзвуковые гидросамолеты - это реальность. Они есть, они созданы, они проектируются. Смелость и экзотичность идеи будут всегда привлекать инженеров и изобретателей на новые проекты.

гидросамолет авиация изобретение

Список использованной литературы

1) http://airwar.ru/

2) http://alternathistory.org.ua/

3) http://rudocs.exdat.com/

4) http://otbombard.ru/

5) http://www.hydroplanes.ru/

6) Иллюстрированная энциклопедия самолетов ЭМЗ им. В.М. Мясищева. Том 2. Часть 3

Размещено на Allbest.ru

...

Подобные документы

  • Геометрические и аэродинамические характеристики самолета. Летные характеристики самолета на различных этапах полета. Особенности устойчивости и управляемости самолета. Прочность самолета. Особенности полета в неспокойном воздухе и в условиях обледенения.

    книга [262,3 K], добавлен 25.02.2010

  • Нормативно-правовые акты, регулирующие деятельность гражданской авиации в РФ. Характеристика и порядок заполнения авианакладной. Бизнес-авиация в РФ. Особенности регулирования деятельности деловой авиации и авиации общего назначения в зарубежных странах.

    курсовая работа [30,5 K], добавлен 06.02.2011

  • Особенности проектирования пассажирского самолета. Параметрический анализ однотипных аэропланов и технических требований к ним. Формирование облика самолета, определение массы конструкции, компоновка фюзеляжа, багажных помещений и оптимизация параметров.

    курсовая работа [202,5 K], добавлен 13.01.2012

  • Рассмотрение понятия и основных правил бокового движения самолета. Оценка боковых сил при скольжении и их уравновешивание для сохранения заданного установившегося прямолинейного полета. Составление моментной диаграммы рыскания, а также диаграммы крена.

    лекция [1,1 M], добавлен 18.12.2015

  • Конструктивные и аэродинамические особенности самолета. Аэродинамические силы профиля крыла самолета Ту-154. Влияние полетной массы на летные характеристики. Порядок выполнения взлета и снижения самолета. Определение моментов от газодинамических рулей.

    курсовая работа [651,9 K], добавлен 01.12.2013

  • Построение докритической поляры самолета Ан-225. Рекомендуемые значения толщин профилей крыла и оперения. Расчёт полётных характеристик самолёта, построение зависимости коэффициента подъемной силы от угла атаки. Зависимость отвала поляры от числа Маха.

    курсовая работа [1,2 M], добавлен 17.06.2015

  • Классификация самолета Airbus A321. Устройство фюзеляжа. Сравнение с А320 и технические характеристики. Несущие свойства крыла. Модификации самолета. Электродистанционная система управления. Взлётно-посадочные характеристики, а также дальность полета.

    реферат [336,2 K], добавлен 16.09.2013

  • Подготовка летных экипажей на случай аварии самолета. Предполетный инструктаж пассажиров. Действия экипажа и пассажиров перед вынужденной посадкой. Аварийное оборудование самолета. Обязанности членов экипажа при вынужденной посадке самолета на сушу.

    методичка [3,0 M], добавлен 21.07.2009

  • Общая характеристика силовой установки самолета Ту–154М, анализ особенностей ее конструкции и эксплуатации. Качественный и количественный анализ эксплуатационной надежности и технологичности силовой установки. Причины возникновения неисправностей.

    курсовая работа [1,2 M], добавлен 12.05.2014

  • Изучение целей и задач международной организации гражданской авиации ИКАО как учреждения ООН, устанавливающего международные нормы и координирующего развитие гражданской авиации. Содержание документов аэронавигационного обслуживания. Чикагская конвенция.

    контрольная работа [16,0 K], добавлен 30.08.2011

  • Требования к военно-транспортному стратегическому самолету с грузоподъемностью 120 т и дальностью полета 6500 км. Выбор схемы самолета и сочетания основных параметров самолета и его систем. Расчет геометрических, весовых и энергетических характеристик.

    курсовая работа [1,6 M], добавлен 28.06.2011

  • Значительность изобретения Ефима Никонова. Зарождение мысли о постройке судна, способного плавать под водой. Начало постройки судна. Постройка Никоновым "потаенного огненного судна большого корпуса". Предложение создать и применить водолазный костюм.

    презентация [1,6 M], добавлен 27.03.2015

  • Расчёт и построение поляр дозвукового пассажирского самолета. Определение минимального и макимального коэффициентов лобового сопротивления крыла и фюзеляжа. Сводка вредных сопротивлений самолета. Построение поляр и кривой коэффициента подъемной силы.

    курсовая работа [923,9 K], добавлен 01.03.2015

  • В авиации вес и размеры багажа ограничиваются в зависимости от вида самолета и класса обслуживания. Правила перевозки багажа. Коллизии с багажом пассажиров. Подноска и транспортировка багажа. Предметы, запрещенные к перевозке воздушным транспортом.

    реферат [19,5 K], добавлен 04.04.2008

  • Разработка системы автоматического управления углом тангажа легкого самолета, предназначенного для проведения аэрофотосъемки в рамках геологических исследований. Анализ модели самолета. Основные вероятностные характеристики шумов в управляемом объекте.

    дипломная работа [890,5 K], добавлен 19.02.2012

  • Схемы крыла, фюзеляжа, оперения, шасси и двигателей самолета. Удельная нагрузка на крыло. Расчет стартовой тяговооруженности, взлетной массы и коэффициента отдачи по коммерческой нагрузке. Определение основных геометрических параметров самолета.

    курсовая работа [805,8 K], добавлен 20.09.2012

  • Анализ современного состояния деловой авиации в мире, географии полетов и распределения газотурбинных воздушных средств по регионам. Обзор динамики самолетовылетов, организации авиационной безопасности. Обоснование схем взаимодействия субъектов рынка ДА.

    дипломная работа [2,6 M], добавлен 21.01.2012

  • Тактико-технические характеристики самолета Ту-134А. Взлетная и посадочная поляры. Построение диаграммы потребных и располагаемых тяг. Расчет скороподъемности и максимальной скорости горизонтального полета. Дроссельные характеристики двигателей самолета.

    курсовая работа [662,8 K], добавлен 10.12.2013

  • Расчет геометрических характеристик фюзеляжа самолета, горизонтальное оперение. Расчет минимального коэффициента лобового сопротивления пилона. Взлетно-посадочные характеристики самолета. Построение зависимости аэродинамического качества от угла атаки.

    курсовая работа [1,2 M], добавлен 29.10.2012

  • Выбор конструктивно-силовой схемы крыла. Обоснование схемы самолета и его параметров. Определение потребной тяговооруженности самолета. Расчет аэродинамических нагрузок. Подсчет крутящих моментов по сечениям крыла. Нахождение толщины стенок лонжеронов.

    дипломная работа [4,7 M], добавлен 08.03.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.