Автомобильный термометр
Разработка малогабаритного автомобильного термометра на базе микроконтроллера. Функциональная схема измерительного устройства. Схема включения усилителя и выходное напряжение. Расчет токопотребления. Двусторонний обмен данными между элементами структуры.
Рубрика | Транспорт |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.10.2017 |
Размер файла | 361,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ МЕХАНИКИ И ОПТИКИ
Пояснительная записка к курсовому проекту
Автомобильный термометр
Санкт-Петербург 2012 г.
Содержание
Введение
1. Разработка функциональной схемы. Работа измерителя
2. Обоснование и выбор элементной базы
2.1 Датчик
2.2 Усилитель
2.3 Микроконтроллер
2.4 ЖК индикатор
2.5 Источник питания
3. Архитектура и основные элементы микроконтроллера
4. Блок-схема программы
Заключение
Литература
Введение
Целью данного курсового проекта является разработка малогабаритного автомобильного термометра на базе микроконтроллера. Устройство должно отвечать следующим требованиям:
- диапазон измеряемых температур от -40 до +60 градусов Цельсия
- индикация - жидкокристаллический цифровой индикатор
- разрешающая способность 0,5 градусов Цельсия
- тип чувствительного элемента - терморезистор
- питание термометра - 12 В постоянного тока
Как понятно из названия, автомобильные термометры используется в транспортных средствах для измерения и индикации температуры окружающей среды. Подобные устройства должны обладать небольшими габаритами, выводить информацию в удобной цифровой форме на ЖК или светодиодный дисплей и питаться от автомобильной сети 12 В.
1. Разработка функциональной схемы. Работа измерителя
Рисунок 2.1 - Функциональная схема измерительного устройства (Д - датчик температуры (терморезистор), У - усилитель, МК - микроконтроллер, ЖК - жидкокристаллический дисплей, ИП - источник питания)
Устройство работает следующим образом: терморезистивный датчик, помещаемый снаружи автомобиля, включен в одно из плеч измерительного моста Уитстона. В исходном состоянии мост сбалансирован - сопротивления всех элементов равны 1.2 кОм, что соответствует максимальной измеряемой температуре - плюс 60 градусов Цельсия. Если температура внешней среды меняется, это влечет за собой изменение сопротивления терморезистора, и, как следствие, разбалансировку измерительного моста. Напряжение с измерительной диагонали моста подается на входы инструментального операционного усилителя, где производится их вычитание и усиление. После этого сигнал поступает на вход 10-ти битного АЦП, встроенного в микроконтроллер. Дискретизированный сигнал обрабатывается программой контроллера, которая вычисляет сопротивление терморезистора и, затем, по таблице определяет температуру.
2. Обоснование и выбор элементной базы
2.1 Датчик
В качестве датчика для устройства используется NTC терморезистор B57020 производства компании Epcos. Датчик является выносным и имеет защищенный соединительный кабель. Основные технические характеристики датчика приведены в Таблице 1.
2.2 Усилитель
В качестве усилителя сигнала датчика для данного устройства используется прецизионный операционный усилитель AD8551 фирмы Analog Devices. Усилитель работает в дифференциальном режиме, т.е. усиливает разность напряжений на своих входах. Усилитель имеет однополярное питание, высокую точность и небольшой потребляемый ток.
Рисунок 2.2 - Схема включения усилителя
Выходное напряжение , при этом .
Чтобы рассчитать коэффициент усиления, оценим максимально и минимально возможное напряжение на входе усилителя по формуле
.
Получим Umax=0.49 В, Umin= 0В. Следовательно, коэффициент усиления следует установить равным 10.
2.3 Микроконтроллер
В качестве микроконтроллера в устройстве используется микросхема AT89C51AC3 производства фирмы Atmel. Так как в данном устройстве от контроллера не требуется высокой скорости вычисления и большого объема памяти, то выбор был в первую очередь обусловлен наличием в этом контроллере достаточного количества выводов для реализации статической индикации, а так же встроенного АЦП, что позволило несколько упростить схему устройства.
Данный контроллер выполнен на архитектуре процессора Intel MCS51 и имеет 256 байт встроенного ОЗУ, 2048 байт встроенного расширенного ОЗУ, 64 кбайт встроенной флэш-памяти, три 16-разрядных таймера-счетчика, Диапазон рабочих напряжение питания 3…5.5 В, пять портов: 32 + 4 цифровых линии ввода-вывода, 10-разрядный АЦП с 8 мультиплексированными входами. Потребляемые микроконтроллером в режиме работы ток высчитывается по формуле:
В качестве резонатора используется керамический резонатор CSTCV12.0MTJ0C4-TC частотой 12 Мгц производства компании Murata.
2.4 ЖК индикатор
Так как в устройстве требуется выводить всего три цифры и знак, в качестве устройства индикации удобно взять 3.5-символьный семисегментный ЖК индикатор фирмы Futurlec с общим анодом. Устройство работает от напряжении 5 В и имеет очень маленький потребляемый ток (максимум 25 мкА).
Индикатор подключен напрямую к микроконтроллеру в режиме статической индикации.
2.5 Источник питания
Напряжение питания схемы - 12 В постоянного тока. Все токопотребляющие элементы имеют рабочее напряжение 5 В, поэтому в качестве DC-DC преобразователя можно использовать стабилизатор напряжения LM78M05 фирмы Fairchild Semiconductor. Он выдает стабилизированные 5 В при входном напряжении от 7 до 20 В и силе тока на выходе 350 мА.
Рассчитаем токопотребление нашей схемы:
Из расчета видно, что источник питания обеспечивает достаточный ток для питания устройства.
3. Архитектура и основные элементы микроконтроллера
Рисунок 3.1 - Структурная схема микроконтроллеров семейства MCS-51
Архитектура семейства MСS-51 в значительной мере предопределяет ее назначение - это построение компактных и дешевых цифровых устройств. Все функции микроконтроллера реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства МС 8-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать простейшие алгоритмы цифровой обработки сигналов. Все микросхемы этого семейства работают с одной и той же системой команд. Большинство микросхем выполняется в одинаковых корпусах с совпадающей цоколевкой (схемой расположения выводов). Это позволяет использовать для разработанного устройства микросхемы разных фирм-производителей (таких как Intel, Dallas, Atmel, Philips и т. д.) без переделки принципиальной схемы устройства и программы.
Структурная схема микроконтроллера представлена на рисунке 3.1 и состоит из следующих основных функциональных узлов:
- блока управления;
- арифметико-логического блока;
- блока таймеров/счетчиков;
- блока последовательного интерфейса и прерываний;
- программного счетчика, памяти данных и памяти программ.
Двусторонний обмен данными между элементами внутренней структуры микроконтроллера осуществляется с помощью внутренней 8-разрядной I шины данных. автомобильный термометр микроконтроллер
По такой схеме построены практически все представители семейства МСS-51. Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства МСЗ-51 содержит 111 базовых команд длиной 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую. Рассмотрим подробнее назначение каждого блока.
Блок управления и синхронизации предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков микроконтроллера во всех допустимых режимах его работы. В состав блока управления входят:
- устройство формирования временных интервалов;
- логика ввода-вывода;
- регистр команд;
- регистр управления потреблением электроэнергии;
- дешифратор команд, логика управления микроконтроллером.
Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды микроконтроллера выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через Fг. Тогда длительность машинного цикла равна 12/Fг или составляет 12 периодов сигнала задающего генератора. Логика ввода-вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информацией с внешними устройствами через порты ввода-вывода РО-РЗ.
Регистр команд предназначен для записи и хранения 8-разрядного кода операции выполняемой команды. С помощью дешифратора команд и логики управления микроконтроллера он преобразуется в микропрограмму выполнения заданной команды.
Регистр управления потреблением (PCON) позволяет останавливать микроконтроллер для уменьшения потребления электроэнергии и уменьшена уровня помех. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера при помощи переключения битов регистра управления потреблением PCON. В вариантах микросхемы, изготовленных по технологии n-МОП (серия 1816 или иностранных микросхем, в названии 1 вторых в середине отсутствует буква "с"), регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергии отсутствуют.
Арифметико-логический блок (АЛБ) представляет собой параллельное 8-разрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛБ состоит из:
- регистров временного хранения ТМР 1 и ТМР 2;
- ПЗУ констант;
- арифметико-логического устройства;
- дополнительного регистра (регистра В);
- аккумулятора (АСС);
- регистра состояния программ (Р 8\У).
Регистры временного хранения - это 8-разрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Регистры временного хранения программно не доступны, ими управляет только микропрограмма выполнения команд.
ПЗУ констант обеспечивает выработку корректирующего кода при дво-1чно-десятичном представлении данных или кода маски при битовых операциях и констант.
Арифметико-логическое устройство представляет собой схему комбинационного типа с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций "И", "ИЛИ", суммирования по модулю 2 и инвертирования.
Регистр В - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный регистр внутренней памяти микроконтроллера.
Аккумулятор - 8-разрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига
Блок последовательного интерфейса и прерываний предназначен для
Организации последовательного ввода-вывода информации и организации
Прерываний выполнения программы. В состав этого блока входят:
- логика управления;
- регистр управления;
- буфер передатчика;
- буфер приемника;
- приемопередатчик последовательного порта;
- регистр приоритетов прерываний;
- регистр разрешения прерываний;
- логика обработки флагов прерываний.
Счетчик команд предназначен для формирования текущего 16-разрядного адреса внутренней или внешней памяти программ. В состав счетчика команд входят 16-разрядный буфер счетчика команд, регистр счетчика команд и схема инкремента (увеличения содержимого на 1).
Память данных предназначена для временного хранения информации, используемой в процессе выполнения программы.
Порты РО, Р 1, Р 2, РЗ являются квазидвунаправленными портами ввода-1 вывода и предназначены для обеспечения обмена информацией между микроконтроллером и внешними устройствами, образуя 32 линии ввода-вывода.
Регистр состояния программы (PSW) предназначен для хранения информации о состоянии АЛУ при выполнении программы.
Память программ предназначена для хранения программного кода и представляет собой постоянное запоминающее устройство (ПЗУ). В разных микросхемах применяются масочные, стираемые ультрафиолетовым излучением или FLASH ПЗУ.
Регистр указателя данных (DPTR) предназначен для формирования 16-разрядного адреса внешней памяти данных или памяти программ при считывании таблиц констант.
Указатель стека (SP) представляет собой 8-разрядный регистр, предназначенный для организации особой области памяти данных (стека), в которой хранятся адреса возврата из подпрограмм, переменные и содержимое внутренних регистров микроконтроллера (в том числе регистры PSW и аккумулятор).
4. Блок-схема программы
Рисунок 4.1 - Блок-схема программы
Заключение
В результате курсовой работы был разработан малогабаритный автомобильный термометр на базе микроконтроллера, отвечающий следующим требованиям:
- диапазон измеряемых температур от -40 до +60 градусов Цельсия
- индикация - жидкокристаллический цифровой индикатор
- разрешающая способность 0,5 градусов Цельсия
- тип чувствительного элемента - терморезистор
- питание термометра - 12 В постоянного тока
Литература
1. Аш Ж. с соавторами. Датчики измерительных систем. -М., 1992. -480 с.
2. Микушин А. Занимательно о микроконтроллерах -СПб., 2006. 424 с.
3. Фрунзе А. Микроконтроллеры? Это же просто! -М., 2002. 336с.
Размещено на Allbest.ru
...Подобные документы
Назначение, устройство, принцип действия и принципиальная гидравлическая схема системы жидкостного охлаждения. Гидравлический расчет системы охлаждения автомобильного двигателя. Конструктивный расчет центробежного насоса, определение его мощности.
курсовая работа [696,6 K], добавлен 01.02.2014Особенности конструкции и рабочий процесс автомобильного двигателя внутреннего сгорания. Тепловой, динамический и кинематический расчет двигателя. Построение индикаторных диаграмм, уравновешивание двигателя. Расчет и проектирование деталей и систем.
курсовая работа [1,0 M], добавлен 08.02.2012Тенденции автомобильного двигателестроения. Описание конструкции двигателя, его тепловой и динамический расчёт. Прочностной расчет шеек коленчатого вала и шатуна, анализ уравновешенности двигателя, технология проведения работ по его сборке-разборке.
дипломная работа [1,9 M], добавлен 19.11.2012Разработка структурной и электрической схем системы изменения геометрии выпускного тракта для двухтактных двигателей, выполненных на базе микроконтроллера Atmega 1280, установленного на плате Arduino Mega. Выбор напряжения питания, числа и типа датчиков.
дипломная работа [3,4 M], добавлен 20.05.2013Классификация одноковшовых экскаваторов по возможности поворота рабочего оборудования относительно опорной поверхности. Технические характеристики ЭО-2621, принципиальная и кинематическая схема. Статистический расчет экскаватора, техника безопасности.
курсовая работа [4,6 M], добавлен 27.04.2014Изучение устройства и принципа действия автомобильного термостата, который служит для ускорения прогрева двигателя после пуска и автоматического поддержания оптимального режима двигателя при движении. Основные неисправности и причины его выхода из строя.
реферат [16,5 K], добавлен 02.06.2013Основные преимущества, схема питания вспомогательных цепей и описание ее работы. Расчет вторичных цепей, индуктивностей сглаживающих реакторов и фильтра. Выбор вентилей вторичных цепей и автономного инвертора. Функциональная схема управления инвертором.
курсовая работа [455,0 K], добавлен 26.07.2010Расчет рабочего процесса, динамический расчет и комплексный анализ уравновешенности автомобильного двигателя мощностью 90кВт. Построение индикаторной диаграммы, диаграммы Брикса и Толле. Выбор схем расположения кривошипов и порядка работы цилиндров.
дипломная работа [5,5 M], добавлен 02.05.2013Особенности применения закрытых коллекторов большого диаметра. Этапы установки автомобильных кранов на краю откоса. Предназначение автомобильных стреловых кранов. Рассмотрение узкотраншейного и бестраншейного дренажей. Анализ автокрана КС-35715.
дипломная работа [6,9 M], добавлен 21.09.2012В работе рассматриваются вопросы построения принципиальной схемы смазочной системы автомобильного двигателя, схемы и работы пневматического усилителя привода сцепления. Рассматриваются типы подвесок автомобиля, основные типы подвижного состава.
контрольная работа [3,4 M], добавлен 10.07.2008Особенности электростартерного пуска, его стадии, факторы влияния, устройства облегчения. Анализ внутрицилиндровых процессов. Расчеты ожидаемых параметров по температуре конца сжатия. Функциональная схема и принцип работы пускового наддува, его описание.
дипломная работа [1,2 M], добавлен 23.03.2012Автомобильные стреловые самоходные краны: назначение, область применения, виды работ. Устройство и схема работы автомобильного крана КС-256. Индексация стреловых самоходных кранов общего назначения. Технические характеристики моделей машин данной группы.
контрольная работа [966,1 K], добавлен 12.09.2013Расчет годового пробега автомобильного парка, количества технических обслуживаний, постов ТО и текущего ремонта, объёма работ и трудоемкости, производственной площади, фонда рабочего времени, численности рабочих. Характеристики оборудования для постов.
курсовая работа [76,3 K], добавлен 18.01.2015Технико-экономические особенности размещения автомобильного транспората. Сфера применения автотранспорта. Грузовые перевозки как наиболее "рыночный" сектор экономики. Объем международных грузовых перевозок. Динамика роста российского автомобильного парка.
реферат [7,0 M], добавлен 04.01.2009Транспорт и его роль в социально-экономическом развитии Российской Федерации. Характеристика транспортной системы области. Разработка программ и мероприятий по ее регулированию. Принципы и направления стратегического развития автомобильного транспорта.
дипломная работа [1,2 M], добавлен 08.03.2014Выбор параметров к тепловому расчету, расчет процессов наполнения, сжатия, сгорания и расширения. Индикаторные и эффективные показатели работы двигателя, приведение масс кривошипно-шатунного механизма, силы инерции. Расчет деталей двигателя на прочность.
курсовая работа [1,4 M], добавлен 09.04.2010Техническое обслуживание и ремонт подвижного состава как одно из главных направлений технического процесса при создании предприятий автомобильного транспорта. Расчет численности рабочих и годовой производственной программы по сервису и починке машин.
курсовая работа [144,7 K], добавлен 06.02.2011Обзор и анализ существующих конструкций кранов-трубоукладчиков на базе тракторов. Расчёт грузоподъемности крана. Схема привода механизма подъёма груза и стрелы, расчёт их конструкции. Расчёт металлоконструкции и нагрузка на ось направляющего блока.
курсовая работа [1,2 M], добавлен 09.06.2012Применение бензина автомобильного. Технология производства бензина, нормируемые показатели качества в соответствии с требованиями стандартов. Контроль качества бензина автомобильного, стандарты на правила его приемки, транспортирования и хранения.
курсовая работа [1,5 M], добавлен 13.09.2013Появление новых видов транспорта. Позиции в транспортной системе мира и России. Технологии, логистика, координация в деятельности автомобильного транспорта. Инновационная стратегия США и России. Инвестиционная привлекательность автомобильного транспорта.
реферат [44,8 K], добавлен 26.04.2009