Методы диагностики тягового электродвигателя
Назначение и принцип работы тягового электродвигателя ТЛ-2К. Анализ возможных неисправностей и причин их возникновения. Обзор и характеристика методов диагностирования тяговых электродвигателей. Особенности виброакустического метода диагностирования.
Рубрика | Транспорт |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.10.2017 |
Размер файла | 489,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
- СОДЕРЖАНИЕ
- Введение
- 1.1 Назначение тягового двигателя ТЛ-2К
- 1.2 Принцип работы тягового электродвигателя ТЛ-2К
- 1.3 Основные неисправности и причины их возникновения
- Глава II. Методы диагностирования
- 2.1 Обзор и описания методов диагностирования
- 2.2 Способы очистки тягового электродвигателя
- Глава III. Диагностика тягового электродвигателя
- 3.1 Контроль состояния якорных подшипников
- 3.2 Анализ результатов и принятие решения по организации ремонта
- 3.3 Техника безопасности
- Заключение
- Список использованной литературы
ВВЕДЕНИЕ
Тяговый электродвигатель «ТЛ-2К» установлен на электровозы серии ВЛ, предназначен для индивидуального привода колёсной пары. Крутящий момент передаётся на ось посредством шарнирной муфты. Двигатели постоянного тока с последовательным возбуждением, 6-полюсные с добавочными полюсами. Двигатели имеют независимую вентиляцию. Тяговые электродвигатели преобразуют поступающую из контактной сети электрическую энергию в механическую работу, затрачиваемую на преодоление всех сил сопротивления движению поезда и силы его инерции при ускоренном движении.
Модель тягового электродвигателя постоянного тока электрического подвижного состава как объекта диагностирования включает в себя электроизоляционную конструкцию, коллекторно-щеточный аппарат и механическую часть. Поэтому отказы тяговых двигателей имеют различную природу и могут происходить вследствие:
- пробоя изоляции и межвитковых замыканий обмоток якоря;
- пробоя изоляции и межвитковых замыканий обмоток главных и дополнительных полюсов;
- пробоя изоляции компенсационной обмотки;
- повреждений выводов катушек полюсов;
- повреждений выводных кабелей, выплавления припоя из петушков коллектора;
- разрушения якорных бандажей;
- повреждения якорных подшипников;
- повреждения пальцев, кронштейнов и щеткодержателей;
- кругового огня по коллектору.
Необходимо отметить, что для определения неисправностей тяговых двигателей электровозов и электропоездов можно использовать одинаковые подходы. тяговой электродвигатель неисправность диагностирование
Определению неисправностей в электрических машинах посвящено значительное количество публикаций в периодической печати, имеются научные монографии и патенты.
В последние годы активно внедряется методология диагностирования зарождающихся дефектов роторных узлов, в т.ч. и подшипников. Использование системы диагностирования, ориентированной на обнаружение зарождающихся дефектов и прогнозирование оптимальных сроков проведения технических обслуживаний, позволяет обеспечить максимально возможный экономический эффект за счет снижения трудозатрат, расхода запасных частей и простоев подвижного состава.
ГЛАВА I. НАЗНАЧЕНИЕ И РАБОТА ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ТЛ-2К
1.1 Назначение тягового двигателя ТЛ-2К
На электровозе ВЛ10 установлены восемь тяговых электродвигателей типа ТЛ2К. Тяговый электродвигатель постоянного тока ТЛ2К предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники двигателя не получают добавочных нагрузок по аксиальному направлению. Подвеска электродвигателя опорно-осевая. Электродвигатель с одной стороны опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой на раму тележки через шарнирную подвеску и резиновые шайбы. Система вентиляции независимая, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом сверху с противоположной стороны вдоль оси двигателя. Электрические машины обладают свойством обратимости, заключающимся в том, что одна и та же машина может работать как двигатель и как генератор. Благодаря этому тяговые электродвигатели используют не только для тяги, но и для электрического торможения поездов. При таком торможении тяговые двигатели переводят в генераторный режим, а вырабатываемую ими за счет кинетической или потенциальной энергии поезда электрическую энергию гасят в установленных на электровозах резисторах (реостатное торможение) или отдают в контактную сеть (рекуперативное торможение).
Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.
Остов двигателя
Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.
Главные полюса
Рис.1. Тяговый двигатель ДК-117 в разрезе
Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья -- подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.
Добавочные полюса
Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.
Якорь
Рис.2. Тяговый двигатель ДК-108 в разрезе
Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном -- для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса -- изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления -- форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.
Подшипниковые щиты
В щитах установлены шариковые или роликовые подшипники -- надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.
Щеточный аппарат
Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей -- четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим -- в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.
Вентилятор
В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.
1.2 Принцип работы тягового электродвигателя ТЛ-2К
При прохождении тока по проводнику, расположенному в магнитном поле, возникает сила электромагнитного взаимодействия, стремящаяся перемещать проводник в направлении, перпендикулярном проводнику и магнитным силовым линиям. Проводники обмотки якоря в определенном порядке присоединены к коллекторным пластинам. На внешней поверхности коллектора установлены щетки положительной (+) и отрицательной (-) полярностей, которые при включении двигателя соединяют коллектор с источником тока. Таким образом, через коллектор и щетки получает питание током обмотка якоря двигателя. Коллектор обеспечивает такое распределение тока в обмотке якоря, при котором ток в проводниках, находящийся в любое мгновение времени под полюсами одной полярности, имеет одно направление, а в проводниках, находящихся под полюсами другой полярности - противоположное.
Катушки возбуждения и обмотка якоря могут получать питание от разных источников тока, т. е тяговый двигатель будет иметь независимое возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены параллельно и получать питание от одного и того же источника тока, т.е тяговый двигатель будет иметь параллельное возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены последовательно и получать питание от одного источника тока, т.е тяговый двигатель будет иметь последовательное возбуждение. Сложным требованием эксплуатации наиболее полно удовлетворяют двигатели с последовательным возбуждением, поэтому их применяют на электровозах.
1.3 Основные неисправности и причины их возникновения
Неисправности тягового электродвигателя:
1. круговой огонь по коллектору или чрезмерное искрение под щетками, подгар коллектора;
2. потеки смазки внутри тягового двигателя;
3. перегрев подшипника;
4. перекрытие или пробой кронштейна щеткодержателя;
5. пробой изоляции обмоток якорей и полюсов;
6. сильное искрение под щетками и срабатывание токовой защиты;
7. чрезмерное нагревание коллектора;
8. чрезмерное нагревание якоря;
9. порванные сетки в вентиляционных отверстиях или торчащие из них остатки бандажей;
10. На моторном вагоне срабатывает быстродействующий выключатель во время первой поездки после замены двигателя.
Причины их возникновения:
1. щетки плохо притерты к коллекторным пластинам, неплотное прилегание. Изоляция между коллекторными пластинами выступает над ними, коллектор плохо прошлифован. Недопустимый износ щеток, недостаточное или неравномерное нажатие щеток. Биение коллектора, низкое качество щеток, коллектора и изоляторов. Оборван проводник обмотки якоря, короткое замыкание в обмотке дополнительных полюсов. Заклинивание щетки, коллектор загрязнен, межвитковое замыкание или выпаивание секции обмотки якоря из петушков коллектора;
2. избыток смазки, перекос подшипника;
3. недостаточно смазки, повреждение подшипника;
4. попадание влаги в тяговый двигатель, перенапряжение, грязный изолятор или кронштейн щеткодержателя;
5. механические повреждения, резкое снижение сопротивления изоляции при частых перенапряжениях на двигателях, попадании влаги, пыли и т.д;
6. механическое повреждение изоляции, старение изоляции, снижение изоляционных свойств, вследствие частых перенапряжений;
7. щетки слишком сильно прижаты к коллекторным пластинам;
8. замыкание между секциями обмоток якоря или коллекторными пластинами;
9. размотаны бандажи якоря и часть обломков отброшена в сторону вентиляционных отверстий;
10. неправильный монтаж проводов.
Способ устранения неполадок тягового электродвигателя:
1. приработать щетки к коллекторным пластинам при малых скоростях движения, продорожить зачистить и отшлифовать коллектор. Заменить щетки, отрегулировать нажатие щеток, проточить и отшлифовать коллектор. Заменить щетки, изоляторы, отремонтировать обмотку в деповских условиях, отыскать поврежденную катушку дополнительного полюса и заменить её (в депо). Обеспечить свободный ход щетки, очистить коллектор, отремонтировать якорь в деповских условиях;
2. снять потеки и наблюдать за подшипниковым узлом. Если повреждение повториться, снять тяговый двигатель с тележки, разобрать подшипниковый узел и заменить подшипник. Устранить перекос, подтянув болты крышки подшипника;
3. добавить смазку. Снять тяговый двигатель с тележки, разобрать подшипниковый узел, заменить подшипник и смазку;
4. протереть тяговый двигатель чистой салфеткой, смоченной бензином, заменить изолятор или кронштейн щеткодержателя;
5. устранить повреждения в депо;
6. отключить тяговый двигатель, по прибытии в депо устранить повреждение;
7. установить нормальное нажатие щеток;
8. отключить тяговый двигатель, по прибытии в депо отремонтировать якорь;
9. отключить тяговый двигатель, по прибытии в депо отремонтировать;
10. пересоединить концы тягового двигателя.
ГЛАВА II. МЕТОДЫ ДИАГНОСТИРОВАНИЯ
2.1 Обзор и описания методов диагностирования
Для диагностирования тяговых электродвигателей используются основные методы диагностирования: неразрушающий контроль и разрушающий контроль.
Неразрушающий контроль включает в себя: электрический, вихретоковый, тепловой, радиоволновой, ультразвуковой методы, виброакустический.
Неразрушающий контроль - последняя и в ряде случаев единственно возможная технологическая операция, позволяющая выявлять недопустимые дефекты в технических объектах и тем самым предотвращать возникновение чрезвычайных ситуаций на железнодорожном транспорте.
Техническая диагностика - область знаний, охватывающая теорию, методы и средства определения технического состояния объектов.
Техническое диагностирование - процесс установления технического состояния объекта с указанием места, вида и причин возникновения дефектов и повреждений.
Надёжностью является наиболее полной оценкой качества объектов (изделий). Под надёжностью понимают свойство объекта (изделия) сохранять во времени в установленных пределах значения всех параметров, Характеризующих способность его выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования. Надёжность - сложное свойство, состоящее из сочетания таких свойств, как безотказность, долговечность, ремонтопригодность и сохраняемость.
Безотказность - это свойство объекта (изделия) непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.
Долговечность - свойство объекта (изделия) сохранять работоспособное состояние до наступления предельного состояния при - установленной системе технического обслуживания и ремонта.
Ремонтопригодность - свойство объекта (изделия), заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов и повреждений, а также поддержанию и восстановлению работоспособного состояния путём проведения технического обслуживания и ремонтов.
Ультразвуковая дефектоскопия
Ультразвуковой контроль основан на способности ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пластины вводится в контролируемый шов. При встрече с дефектным участком ультразвуковая волна отражается от него и улавливается другой пластиной, которая преобразует ультразвуковые колебания в электрические. Эти колебания после усиления подаются на экран электронно-лучевой трубки дефектоскопа, свидетельствуя в виде импульса о наличии дефектов. При контроле щуп перемещают вдоль шва, прозвучивая таким образом различные по глубине зоны шва. По характеру импульсов судят о протяженности дефектов и глубине их залегания.
К преимуществам ультразвуковой дефектоскопии относятся: возможность обнаружения внутренних дефектов, большая проникающая способность, высокая чувствительность, возможность определения места и размера дефекта. Вместе с тем, метод имеет ряд отрицательных особенностей. К ним относится необходимость специальных методик контроля отдельных типов изделий, высокой чистоты поверхности детали в месте контроля, что особенно затрудняет дефектоскопию наплавленных поверхностей. Поэтому указанным методом контролируются детали, для которых разработаны необходимые технологии, регламентирующие зоны и чувствительность контроля; места ввода ультразвуковых волн в изделие; тип дефектоскопа; тип искательной головки.
Вихретоковая дефектоскопия
Метод вихретоковой дефектоскопии дает возможность обнаружения поверхностных и подповерхностных дефектов. Он основан на использовании действия вихревых токов, возникающих в поверхностном слое контролируемой детали от пронизывания его магнитным потоком, на первичную или особую измерительную катушку.
Сущность метода состоит в следующем. Если к контролируемой поверхности приблизить катушку, по которой протекает переменный ток, то в металле возникнут замкнутые вихревые токи. Величина этих токов зависит от частоты возбуждающего тока, электропроводности и магнитной проницаемости материала изделия, относительного расположения катушки и детали, от наличия на поверхности дефектов типа нарушения сплошности. Магнитное поле вихревых токов направлено против основного магнитного потока и несколько гасит его, что может быть измерено величиной полного сопротивления генерирующей катушки. В случае изменения вихревых токов, изменяется и полное сопротивление. Изменение величины вихревых токов может быть обнаружено с помощью другой (измерительной) катушки.
Виброакустический метод
Виброакустическая метод - это наиболее эффективный из известных методов технической диагностики двигателей. Метод позволяет на работающем двигателе вести обнаружение ключевых дефектов, определяющих его надежность и ресурс, проводить локацию местоположения дефектов, контролировать и управлять их развитием.
2.2 Способы очистки тягового электродвигателя
Предварительно двигатель очищают снаружи вручную с помощью скребков и ветоши. Для окончательной очистки двигатель обмывают в специальных моечных (одно- или двухкамерных) машинах.
Двухкамерная моечная машина состоит из двух герметически закрывающихся камер. В камере двигатель обмывают горячей (80-- 90 °С) водой, которую насосом подают во вращающееся, от привода душевое устройство. Чтобы внутрь двигателя не попала влага, все вентиляционные и другие отверстия в остове тщательно закрывают специальными заглушками и крышками, а на место крышки верхнего коллекторного люка прикрепляют специальный патрубок, через который в двигатель подают от вентилятора воздух, создавая внутри него избыточное давление. После обмывки поднимают промежуточную дверь и перемещают двигатель на самоходной тележке в камеру 2, где при закрытой двери в течение 15--20 мин сушат его потоком нагретого от калорифера воздуха.
Частота вращения душевого и сушильного устройств 2 об/мин. Обе камеры могут работать одновременно.
Очищенную машину устанавливают на позицию для осмотра, где ее тщательно осматривают
Осмотр по выявлению внешних дефектов осуществляют визуально. Одновременно сверяют номера остова, подшипниковых щитов и шапок моторно-осевых подшипников.
Затем измеряют электрические параметры машины, определяют осевой разбег якоря, биение и износ коллектора, радиальные зазоры якорных подшипников и биение наружных колец.
Для выполнения перечисленных измерений ремонтная позиция оснащена необходимыми измерительными приборами, статическим преобразователем с колонкой выводов и индукционным нагревателем для снятия внутренних колец подшипников и лабиринтных колец.
Сопротивление изоляции тяговых двигателей измеряют мегаомметром на 2,5 кВ. (Для исключения дополнительной погрешности сопротивление изоляции следует измерять мегаомметрами на соответствующее напряжение.)
При измерении сопротивления изоляции соединяют начало (или конец) цепи главных полюсов с началом (или концом) другой цепи -- добавочных полюсов и якорной обмотки. К этим выводам подсоединяют зажим «Л» мегаомметра. Второй его зажим «3» соединяют с корпусом машины. В процессе измерения необходимо следить, чтобы выводные концы контролируемых обмоток не касались пола или корпуса двигателя, в противном случае показания прибора будут неправильными. У исправных тяговых двигателей сопротивление изоляции должно быть не менее 5 МОм. Если оно окажется меньше, следует измерить сопротивление отдельных цепей (главных и добавочных полюсов, обмоток якоря) и выявить поврежденное место, имея в виду, что снижение сопротивления могло быть вызвано увлажнением или неисправностью кронштейнов, межкатушечных соединений.
Сопротивление изоляции измеряют до обмывки двигателя.
Сопротивление изоляции вспомогательных машин должно быть не менее 3 МОм. Способы проверки и выявления дефектных мест в изоляции для вспомогательных машин те же, что и для тяговых двигателей.
Активное сопротивление обмоток электрических машин измеряют обычно мостом МД6 (или УМ13) и сравнивают с установленным для машины данного типа значением. Увеличение активного сопротивления может быть вызвано дефектами в полюсных катушках, выплавлением кабелей в патронах или наконечниках, обрывом жил выводных кабелей или межкатушечных соединений и нарушением контакта в этих соединениях.
Для выявления причины увеличения сопротивления подозреваемую обмотку машины подключают к статическому преобразователю и устанавливают в ней ток, равный удвоенному значению ее тока часового режима. Дефектное место выявляют на ощупь по повышенному нагреву.
Затем при вращении двигателя под напряжением 220--400 В без нагрузки проверяют работу якорных подшипников, вибрацию двигателя, биений коллектора и работу щеточного аппарата.
Якорные подшипники проверяют по их нагреву и на слух при вращении якоря двигателя с частотой около 700--750 об/мин в течение 5--10 мин в каждую сторону. Исправный подшипник должен работать без треска, щелчков, заеданий и в режиме холостого хода машины не перегреваться относительно температуры окружающей среды более чем на 10 °С.
Вибрацию двигателя проверяют также при его работе на холостом ходу при частоте вращения 700 об/мин. Измеряют вибрацию ручным вибрографом ВР-1. Место приложения вибрографа к корпусу двигателя может быть любым. Если вибрация двигателя окажется более 0,15 мм, якорь необходимо балансировать.
Биение коллектора измеряют индикаторов, который подводят к коллектору через коллекторный люк и закрепляют струбциной на кромке остова. Биение замеряют по средней части рабочей длины коллектора и на расстоянии 10-20 мм от его наружного среза. Если оно превысит предельно допустимое значение, то коллектор подлежит обточке.
Биение коллектора можно измерять и с помощью приспособления, корпус которого закрепляют на кронштейне щеткодержателя. Переместив ползунок на рабочую часть коллектора, устанавливают индикатор на нуль и при вращении коллектора определяют биение.
Выработку (износ) рабочей части коллектора можно измерить, также используя это приспособление. Для этого ползунок вначале отводят на нерабочую часть коллектора, устанавливают индикатор на нуль, а затем при неподвижном коллекторе перемещают ползунок по всей рабочей части коллектора и фиксируют по индикатору наибольшее значение выработки.
При отсутствии описанного приспособления выработку можно измерить шаблоном или щупом и линейкой.
Шаблон устанавливают на коллектор и удерживают рукой так, чтобы колодка приспособления располагалась строго параллельно коллекторным пластинам, а ее торец совпадал с концом коллектора. Вращая поочередно головки микрометров, определяют выработку в двух точках по длине коллектора.
Для определения выработки щупом и линейкой, линейку устанавливают узким ребром на коллекторную пластину и щупом по всей ее длине измеряют зазор между нижней кромкой линейки и рабочей поверхностью пластины. Такие замеры делают в нескольких местах по окружности коллектора.
Коммутацию машины оценивают по степени искрения под щетками. Если при визуальной оценке искрение под щетками окажется более 1.5 балла, а у щеточно-коллекторного узла дефектов выявлено не будет, то необходима тщательная проверка магнитной системы машины, ее отдельных узлов и настройка коммутации.
Радиальные зазоры якорных подшипников проверяют пластинчатыми щупами на неподвижной машине. Для этого снимают наружные крышки и лабиринтные кольца подшипников щитов и проверяют щупом зазор между роликом и внутренним кольцом подшипника в его нижней части. Для тяговых двигателей большинства типов он должен находиться в пределах 0,09--0,22 мм.
Биение наружных колец подшипников является следствием их перекосов при установке на двигатели. Такие перекосы приводят к значительному повышению напряжений на краю дорожки качения, повышенному износу и повреждениям сепараторов, к радиальному или осевому защемлению роликов, а иногда и к разрушению подшипников.
Выявить перекос колец можно специальным прибором, разработанным ВНИИЖТом. Прибор имеет кольцо, которое надевается на вал двигателя до упора во внутреннее кольцо подшипника и закрепляется на нем тремя центрирующими винтами. На кольце закреплена стойка с индикатором. Шток индикатора должен упираться своим концом в наружное кольцо подшипника.
Для измерения вертикального перекоса прибор закрепляют на валу и устанавливают индикатор в верхнем положении на нуль. Затем поворачивают индикатор относительно вала на 180° и определяют биение торца (с учетом знака отклонения стрелки). Таким же образом определяют биение и в горизонтальной плоскости. Значение биения определяют как максимальную разность в показаниях индикатора. У правильно установленного подшипника биение торца наружного кольца не должно превышать 0,12 мм.
Осевой разбег якоря измеряют индикатором. Для этого якорь сдвигают до упора в одну сторону, а с противоположной стороны закрепляют на специальной стойке индикатор и прижимают его к торцу вала якоря или коробки (на двигателях электровозов ЧС2) так, чтобы стрелка головки стояла на нуле. Затем якорь перемещают до упора в другое крайнее положение. Отклонение стрелки индикатора укажет осевой разбег. У тяговых двигателей с прямо- и косозубой передачами он должен быть соответственно не более 0,2--0,8 и 5,9--8,4 мм, у вспомогательных машин -- 0,6--0,15 мм.
Воздушные зазоры между сердечниками полюсов и якорем машины проверяют щупами. Зазоры не должны превышать значения, установленные Правилами ремонта для машин данного типа.
В противном случае нарушится магнитная симметрия машины, изменятся ее характеристики, снизится коммутационная устойчивость. Недопустимые отклонения значений воздушных зазоров при ремонте машины должны быть устранены, а при ее испытании следует провести тщательную отладку коммутации.
Результаты осмотра электрических машин и проведенных измерений вносят в специальный журнал для использования в дальнейшем при определении необходимого объема их ремонта, после чего двигатель передают на позицию его разборки.
ГЛАВА III. ДИАГНОСТИКА ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ
3.1 Контроль состояния якорных подшипников
Якорные подшипники служат для поддержания вала якоря. Количество порч и неисправностей на 1 млн км пробега колеблется от 0,44 до 3,68 для якорных подшипников электровозов. Большое количество порч и неисправностей якорных подшипников обусловлено тяжелыми условиями их работы. Тяжелые условия работы якорных подшипников определяются сравнительно высокими динамическими нагрузками, большим числом оборотов якоря, перекосами, возникающими вследствие отклонений, допускаемых при монтаже и изготовлении деталей, сопрягаемых с подшипниками, и в результате упругого прогиба вала якоря, а также нагревом деталей, обусловленным внутренним трением в самом подшипнике, притоком тепла от обмоток двигателя и другими факторами.
Важным условием, обусловливающим надежную работу подшипника, является посадка внутреннего кольца на вал с гарантированным натягом. Невыполнение этого условия приводит к тому, что при максимальном натяге внутренних колец на валах радиальный зазор может отсутствовать и возможно появление преднатяга в подшипнике. В этих случаях он греется, изнашивается, происходит разрушение сепаратора и заклинивание подшипника. Также следует учитывать, что на величину потерь трения и на тепловой режим подшипника весьма сильно влияет степень заполнения корпуса при постоянном объеме смазки. Избыток смазки так же, как и ее недостаток, всегда вызывает нагрев подшипников.
В якорных подшипниках некоторые дефекты появляются как следствие изнашивания и развития усталостных микротрещин. Износ возникает из-за проскальзывания тел качения по кольцу, что значительно возрастает при загрязнении, ухудшении качества смазки, ржавлении. Вследствие циклических нагрузок возникает явление усталости металла как на рабочих поверхностях внутреннего и наружного колец, так и на сепараторе подшипника. Периодические деформации приводят к образованию микротрещин и отслаиванию металла.
Для определения состояния подшипников в локомотивных депо используются методы виброакустической диагностики.
Вибрация, возбуждаемая подшипниками качения, обусловлена в первую очередь дефектами изготовления и монтажа, а также дефектами, возникающими в процессе эксплуатации.
Физическим носителем информации о состоянии элементов подшипника в виброакустической диагностике служат упругие волны, которые возбуждаются в подшипнике соударением этих элементов.
Наряду с методами виброакустической диагностики используется способ акустической эмиссии в ультразвуковой полосе частот.
На этом принципе работает индикатор ресурса подшипников ИРП-12, который предназначен для проверки на работающем оборудовании технического состояния подшипников качения:
- степени износа подшипников в режимах экспресс контроля;
- наличие смазки в подшипниковых узлах;
- правильность сборки подшипниковых узлов при изготовлении и ремонте.
Прибор состоит из пьезоэлектрического датчика, присоединительного кабеля со штекером, измерительного блока, корпус которого изготовлен из алюминиевого сплава. На корпусе измерительного блока имеется гнездо, кнопка «включено - выключено», кнопка ПИК для фиксации наибольших показаний на дисплее, отсек источников питания с крышкой. Масса прибора (без источника питания) не более 0,4 кг. Устройство и принцип работы прибора иллюстрируется функциональной схемой (рис. 3).
Схема обеспечивает обработку ультразвуковых сигналов от дефектов всех частей подшипника и оценку их совокупного значения в виде обобщенного критерия степени износа подшипника в балльной форме. Критерии степени износа подшипников в цифровой форме выводятся на дисплей. Оценка состояния износа определяется путем сравнивания фактического показания дисплея при проверке технического состояния подшипника с данными, полученными экспериментально по различным дефектам якорных подшипников.
Рис. 3. Функциональная схема прибора ИРП-12
Зависимость между техническим состоянием (степенью износа якорного подшипника) и показанием дисплея D прибора ИРП-12 от времени работы при номинальной нагрузке подшипника представлена на рис.4.
Рис. 4. Зависимость между состоянием подшипника и показателями дисплея прибора ИРП-12
Кривая Dm-a-b-c-d-e в координатах D (показания дисплея) и Т (суммарное время работы в часах с момента установки подшипника при рабочей нагрузке оборудования) показывает степень износа подшипника от времени. Точки кривой соответствуют следующим состояниям подшипника (если дефекты смазки и монтажа отсутствуют):
- Dm -- исходное состояние;
- точка a -- накопленные усталостные микротрещины в поверхностном и приповерхностном слоях тел и дорожек качения приводят к микровыкрашиваниям;
- участок а-b -- развитие поверхностных трещин, мелких выкрашиваний, зарождение пятен выкрашивания на телах и дорожках качения;
- участок b-c -- развитие трещин на телах и дорожках качения, приводящих в дальнейшем к выкрашиванию металла с образованием раковин, начало интенсивного износа сепаратора, рост пятен выкрашивания;
- участок c-d -- образование мелких раковин, развитие трещин до сквозных на кольцах подшипника;
- точка e -- работа подшипника с крупными раковинами, трещинами, генерация значительной вибрации до заклинивания с большим тепловыделением;
- точка d -- вероятное разрушение сепаратора.
Oбласть кривой Dm-a определяет зону устойчивой работы подшипника, a-c -- область возможной эксплуатации, а переход показаний прибора в зону c-e сигнализирует о недопустимости дальнейшей эксплуатации. Для каждого конкретного подшипникового узла кривая D(T) снимается экспериментально. На ней устанавливают границы областей износа.
Прибор работает следующим образом. Пьезодатчик включенного прибора прикладывается к наружной поверхности подшипникового узла в месте нахождения подшипника. Акустико-эмиссионный сигнал от работающего подшипника в полосе частот 20--300 кГц, несущий информацию об износных дефектах подшипника, после обработки в балльной цифровой форме выводится на дисплей.
С использованием компьютерных технологий работает диагностический комплекс ВЕКТОР-2000.
Программно-методический комплекс виброакустической диагностики ВЕКТОР-2000 предназначены для:
- контроля технического состояния подшипников качения после их монтажа на локомотиве и в процессе эксплуатации;
- раннего обнаружения дефектов подшипниковых узлов с определением вида и величины всех 12 возможных дефектов подшипника;
- контроля за развитием дефектов вплоть до предаварийного состояния или замены подшипника с максимально возможными интервалами между измерениями;
- экспресс-прогноза технического состояния подшипников качения по однократным или периодическим измерениям вибрации для назначения сроков технического обслуживания или ремонта;
- накопления и хранения информации о состоянии подшипников качения в процессе эксплуатации.
Программно-методическое обеспечение виброакустического комплекса позволяет производить:
- автоматическую обработку результатов измерений вибрации виброанализатором с определением значений диагностических параметров и выводом их на экран монитора;
- автоматическую идентификацию всех обнаруженных из 12 основных дефектов подшипников качения с указанием их глубины;
- автоматическое определение рекомендованных пороговых значений для каждого вида дефекта с возможностью их коррекции по результатам анализа накопленной пользователем информации;
- автоматическое определение гарантированного срока эксплуатации подшипника до 20 % от его среднего ресурса (при отсутствии опасных дефектов);
- выдачу рекомендаций по устранению дефектов или замене подшипника при обнаружении опасных дефектов;
- диагностирование неограниченного количества подшипников, формирование и корректировку баз данных;
- ввод в базу данных информации о подшипниках с ее автоматической корректировкой;
- автоматический поиск ошибок и проверка совместимости результатов периодических измерений вибрации;
- детальное диагностирование подшипника в автоматическом режиме с выводом промежуточных результатов на экран монитора;
- подробный анализ спектров огибающей в неавтоматическом режиме;
- внесение в базу данных дополнительной информации;
- вывод на экран монитора или печатающее устройство необходимой документации;
- коррекцию данных подшипников с их последующим автоматическим или ручным передиагностированием по имеющимся в базе данных спектрам огибающей вибрации.
Структура программно-методического комплекса виброакустической диагностики представлена на рис.5.
Рис.5. Программно-методический комплекс виброакустической диагностики.
1- испытуемый объект; 2- спектроанализатор; 3- персональный компьютер; 4- акселерометр
3.2 Анализ результатов и принятие решения по организации ремонта
Подшипник, как и любая деталь, не смотря на свою прочность конструкции, и долговечность в работе, имеет свойство ломаться. Преждевременный выход из строя подшипника может случиться по разным причинам. Так, основными причинами могут быть:
- неправильность монтажа подшипника, а именно пережим стяжной конусной муфты при грубом монтаже,
- неправильная регулировка, а также дефекты геометрии, из-за которых появляется люфт и перегрев детали;
- загрязнённость подшипника, попавшие внутрь детали твёрдые или жидкие инородные частицы повреждают герметизирующее уплотнение, что ведёт к утечке смазки;
- плохое качество смазочных материалов;
- использование подшипника при неприемлемых для него нагрузках;
- электрический ток, проходящий через подшипник.
Неустранимые дефекты
Обычно при причинах поломки описанных выше, неисправный подшипник нужно заменять на новый, особенно если при его внешнем осмотре видно следующие неустранимые дефекты:
- сколы или трещины на кольцах, телах качения или сепараторе;
- забоины или вмятины на поверхности дорожки качения внешнего или внутреннего колец;
- стук или повышенный шум в подшипнике, даже после его промывки;
- глубокие царапины на дорожках качения колец, расположенные поперёк движения тел качения;
- чёткие отпечатки тел качения на дорожках качения колец;
- выкрашивание или шелушение поверхности дорожки колец;
- повреждённые посадочные поверхности подшипника.
В остальных вариантах замену подшипника можно отложить, и неисправности можно отремонтировать. Но для начала необходимо провести диагностику неисправленной детали.
Диагностика при ремонте подшипника осуществляется в такой последовательности:
1. с помощью винтового съёмника необходимо снять с вала внутреннее кольцо;
2. установить дефект подшипника путём его осмотра, проверки его на лёгкость вращения и шум, а также измерив его осевой и радиальный зазор;
3. определить, необходима ли полная замена изношенной детали;
4. выявить степень износа подшипника, замерив зазор между телом качения и дорожкой качения;
5. результаты всех замеров необходимо сравнить с номинальными значениями.
Ремонт подшипника можно разделить на 2 вида:
- без переборки тел качения;
- с переборкой тел качения.
К первому варианту ремонта прибегают, когда диагностика показывает, что с телами качения неисправленного подшипника всё в порядке, чего не скажешь о других его деталях. Действия при таком ремонте, могут быт различные, в зависимости от дефекта: от замены внешнего и внутреннего колец, шлифовке их бортов или дорожек качения, до расточки и замены сепаратора.
Второй вариант ремонта применяется при выявлении дефектов в телах качения, требующих их ремонта или замены. Например, при повреждении чеканки, из-за чего происходит выпадение отдельных шариков или роликов. При таком варианте ремонта неисправный подшипник необходимо полностью разобрать, после чего проводят осмотр всех деталей. При осмотре особенно нужно обращать внимание на то, есть ли трещины в районе перехода основания к перемычкам. Кольца и тела качения подшипника необходимо хорошо отшлифовать. После чего необходимо провести замену и монтаж новых тел качения. При этом нужно помнить, что все заменяемые тела качения, обязательно должны быть одного диаметра и одной формы с теми, которые были установлены на заводе.
После замены старых дефектных деталей на новые и конечной сборки подшипника, его работу необходимо повторно диагностировать, чтобы убедится в том, что дефекты полностью устранены.
3.3 Техника безопасности
Работы по ТО и ТР, испытанию и наладке электрического и электронного оборудования ТПС необходимо производить в соответствии с требованиями Правил эксплуатации электроустановок потребителей (ПЭЭП). Правил техники безопасности при эксплуатации электроустановок потребителей (ПТБ) и технологическими процессами.
Перед началом ремонта электрооборудования ТПС должны быть обесточены все силовые электрические цепи, отключены выключатели тяговых электродвигателей, крышевой разъединитель поставлен в положение "Заземлено", выпущен воздух и перекрыты краны пневматической системы электроаппаратов. Кроме того, при необходимости ремонта отдельных аппаратов, должны быть вынуты предохранители данного участка, предусмотренные конструкцией.
Внешние электрические сети питания переносных диагностических приборов напряжением более 42 В переменного или 110 В постоянного тока должны быть оборудованы защитным заземлением ("занулением" или устройством защитного отключения).
Стенд для диагностики и ремонта электронного оборудования должен иметь защитное заземление ("зануление" или устройство защитного отключения).
Испытания электрических машин, аппаратов и счетчиков электрической энергии на электрическую прочность изоляции после ремонта перед установкой на ТПС (кран) должны производиться на специально оборудованной станции (площадке, стенде), имеющей необходимое ограждение, сигнализацию, знаки безопасности и блокирующие устройства.
Перед началом и во время испытаний на станции (площадке) не должны находиться посторонние лица.
Сборка схем на испытательных стендах должна осуществляться при полном снятии напряжения. Питающие кабели для испытания электрических машин и аппаратов высоким напряжением должны быть надежно присоединены к зажимам, а корпуса машин и аппаратов заземлены.
Подачу и снятие напряжения необходимо осуществлять контакторами с механическим или электромагнитным приводом или рубильником, имеющим защитный кожух.
Пересоединение на зажимах испытываемых машин и аппаратов должно производиться после отключения всех источников питания и полной остановки вращающихся деталей.
Измерение сопротивления изоляции, контроль нагрева подшипников, проверка состояния электрощеточного механизма должны производиться после отключения напряжения и полной остановки вращения якоря.
При пайке наконечников на проводе непосредственно на ТПС (кране) должен использоваться надежно закрепленный тигель, исключающий выплескивание из него припоя.
При измерении сопротивления изоляции электрических цепей мегаомметром на напряжение 0,5 и 2,5 кВ выполнение каких-либо других работ на электрооборудовании и электрических цепях ТПС запрещается.
Перед испытаниями высоким напряжением сопротивления изоляции электрических цепей ТПС (крана) все ремонтные работы должны быть прекращены, работники выведены, входные двери на ТПС (кране) закрыты, а с четырех сторон на расстоянии 2 м установлены переносные знаки "Внимание! Опасное место".
Перед подачей высокого напряжения необходимо подать звуковой сигнал и объявить по громкоговорящей связи: "На локомотив (кран), стоящий на такой-то канаве, подается напряжение". Управлять испытательным агрегатом должен руководитель работ, проводить испытания - персонал, прошедший специальную подготовку.
Корпус передвижного трансформатора и рамы испытываемого ТПС необходимо заземлить.
После ремонта ЭПС подъем токоприемника и опробование электровоза или электросекции под рабочим напряжением должно производить лицо, имеющее право управления, в присутствии проводившего ремонт мастера или бригадира, которые до начала опробования должны убедиться в том, что:
- все работники находятся в безопасных местах, и подъем токоприемника не грозит им опасностью
- закрыты люки машин, двери шкафов управления, щиты стенок ВВК, реостатных помещений, крышки подвагонных аппаратных ящиков;
- в ВВК и под кузовом нет людей, инструментов, материалов и посторонних предметов;
- закрыты двери в ВВК, складные лестницы и калитки технологических площадок для выхода на крышу;
- с машин и аппаратов после их ремонта сняты все временные присоединения;
- машины, аппараты, приборы и силовые цепи готовы к пуску и работе.
После этого работник, поднимающий токоприемник, должен громко объявить из окна кабины локомотива: "Поднимаю токоприемник", подать звуковой сигнал свистком локомотива и поднять токоприемник способом, предусмотренным конструкцией данного электровоза или электросекции.
При поднятом и находящемся под напряжением токоприемнике разрешается:
1.заменять перегоревшие лампы в кабине машиниста, в кузове (без захода в ВВК и снятия ограждений), лампы освещения ходовых частей, буферных фонарей, внутри вагонов электросекций при обесточенных цепях освещения;
2.протирать стекла кабины внутри и снаружи, лобовую часть кузова, не приближаясь к токоведущим частям, находящимся под напряжением контактной сети, на расстояние менее 2 м и не касаясь их через какие-либо предметы:
- заменять предохранители в обесточенных цепях управления;
- заменять прожекторные лампы при обесточенных цепях, если их смена предусмотрена из кабины машиниста:
- осматривать тормозное оборудование и контролировать выходы штоков тормозных цилиндров: на электровозах типа ЧС - только на смотровой канаве, на электросекциях - не залезая под кузов:
- проверять на ощупь нагрев букс;
- настраивать электронный регулятор напряжения;
- продувать маслоотделители и концевые рукава тормозной и напорной магистралей;
- заправлять песочные бункера электропоездов;
- контролировать подачу песка под колесную пару;
- вскрывать кожух и настраивать регулятор давления. Кроме того, на электровозах дополнительно разрешается:
- обслуживать аппаратуру под напряжением 50 В постоянного тока, которая находится вне ВВК;
- проверять цепи электронной защиты под наблюдением мастера, стоя на диэлектрическом коврике и в диэлектрических перчатках;
- контролировать по приборам и визуально работу машин и аппаратов, не снимая ограждений и не заходя в ВВК;
- включать автоматы защиты;
- обтирать нижнюю часть кузова;
- осматривать механическое оборудование и производить его крепление, не залезая под кузов;
- проверять давление в масляной системе компрессора;
- регулировать предохранительные клапаны воздушной системы;
- производить уборку (кроме влажной) кабины, тамбуров и проходов в машинном отделении.
...Подобные документы
Организация диагностирования и ремонта роликов моторно-осевых подшипников тягового электродвигателя электровоза вихретоковым контролем. Устройство, принцип работы, основные неисправности и дефекты. Порядок работы в режиме повторной выбраковки роликов.
курсовая работа [2,3 M], добавлен 25.04.2014Назначение, конструкция и принцип работы тягового электродвигателя НБ-514Е магистрального грузового электровоза 3ЭС5К. Условия работы, неисправности, возникающие в процессе работы. Демонтаж и разборка тягового электродвигателя, очистка, дефектация.
курсовая работа [180,0 K], добавлен 30.05.2015Неисправности, возникающие в процессе эксплуатации тягового электродвигателя, причины их возникновения и способы предупреждения. Периодичность, сроки и объем технических обслуживаний и текущих ремонтов. Способы очистки и контроля технического состояния.
курсовая работа [672,5 K], добавлен 19.01.2015Расчет программы и фронта ремонта, инвентарного парка и процента неисправных локомотивов по видам ремонта, сериям. Определение штата работников электромашинного цеха и организация его работы. Разборка, ремонт, сборка тягового электродвигателя ТЭД НБ-520.
дипломная работа [383,7 K], добавлен 03.06.2014Использование индивидуального и групповых тяговых приводов для передачи вращающего момента от тягового электродвигателя или гидравлической передачи к движущим осям локомотива. Конструкция упругого зубчатого колеса тягового редуктора грузовых тепловозов.
реферат [1,4 M], добавлен 27.07.2013Назначение и основные элементы сборочной единицы. Условия работы и характерные повреждения. Приспособления, техническая оснастка, средства механизации, оборудование, применяемые при ремонте электродвигателя. Особенности сборки, проверки и испытания.
реферат [35,3 K], добавлен 10.11.2012Выбор числа пар полюсов и типа обмотки якоря. Расчёт размагничивающего действия реакции якоря, коллекторно-щёточного узла, магнитной цепи и катушек главных и добавочных полюсов. Расчёт массы и технико-экономических показателей тягового электродвигателя.
курсовая работа [304,6 K], добавлен 19.02.2013Изучение и сравнение различных методов и схем испытаний тяговых электрических машин. Управление испытательными стендами, их анализ и расчет. Экспериментальное измерение и теоретический расчет электромеханических характеристик тягового электродвигателя.
лабораторная работа [424,9 K], добавлен 09.01.2009Преимущества системы автоматического регулирования тягового привода автономного транспортного средства. Классификация автоматических систем на теплоэлектрическом подвижном составе: теплового двигателя, тягового генератора и тяговых электродвигателей.
контрольная работа [548,4 K], добавлен 25.07.2013Расчет и построение тяговых характеристик электровоза постоянного или переменного тока и их анализ. Электромеханические характеристики тягового двигателя. Расчет тяговых характеристик при различных способах регулирования режима работы двигателя.
контрольная работа [2,4 M], добавлен 10.11.2014Назначение тягового двигателя пульсирующего тока НБ-418К6 и его конструкция. Система технического обслуживания и ремонта электровоза. Контрольные испытания двигателей. Безопасные приёмы труда, применяемое оборудование, инструменты и приспособления.
дипломная работа [279,2 K], добавлен 09.06.2013Конструкция и принцип действия тягового двигателя. Технические данные двигателей ТЛ-2К1 и НБ-418К6 и их сравнительный анализ. Электрическая схема двигателя последовательного возбуждения с ее описанием и кривая намагничивания тягового двигателя Ф(Iя).
лабораторная работа [976,3 K], добавлен 02.04.2011Преобразование механической энергии дизеля в переменный ток. Устройство синхронного тягового генератора. Основные технические данные тяговых генераторов и тяговых агрегатов отечественных тепловозов. Система автоматического регулирования возбуждения.
реферат [1,0 M], добавлен 27.07.2013Назначение и принцип работы станций послеремонтных испытаний тяговых электродвигателей. Электротехнические характеристики и анализ работы станции. Расчет фронта ремонта и процента неисправных локомотивов. Технологические решения по улучшению станции.
дипломная работа [2,1 M], добавлен 11.04.2015Назначение, устройство, принцип работы тягового двигателя 1ДТ.003. Ремонт корпуса электрических машин. Дефектоскопия статоров и полюсов. Организация рабочего места и охрана труда слесаря. Линии сигнализации и связи, освещение сигнальных приборов.
контрольная работа [506,0 K], добавлен 30.05.2015Обзор систем измерения параметров контактного провода. Назначение, технические характеристики и принцип работы устройства слежения за параметрами контактного провода. Перспективы создания компьютеризированной системы диагностирования контактной сети.
дипломная работа [968,8 K], добавлен 02.07.2012Назначение и условия работы тягового трансформатора ОДЦЭ-5000/25Б. Основные неисправности, причины их возникновения и способы предупреждения. Предельно допускаемые размеры деталей при эксплуатации и различных видах технического обслуживания и ремонта.
курсовая работа [388,8 K], добавлен 16.05.2012Назначение, устройство и работа фильтров непрерывного действия. Действия локомотивных бригад при неисправности тягового электродвигателя. Переход на аварийный режим. Назначение электротягового магнита, схема его подключения. Прокачка маслом дизеля.
реферат [1,3 M], добавлен 09.02.2017Индикация современных средств диагностирования, стенды для диагностики тягово-экономических качеств автомобилей. Методика диагностирования автоматических трансмиссий на тягово-силовом стенде К467М. Датчик частоты вращения коленчатого вала автомобиля.
дипломная работа [7,6 M], добавлен 20.06.2010Расчет номинального тока тягового электродвигателя, сопротивления секций реостата и шунтирующих резисторов. Скоростные и электротяговые характеристики электровоза постоянного тока. Анализ работы системы управления электровозом при разгоне поезда.
контрольная работа [22,2 K], добавлен 01.03.2014