Назначение и виды авиационных силовых установок

Рассмотрение классификации воздушных винтов и их геометрических характеристик. Расчет скорости движения и угла атаки элемента лопасти винта. Определение зависимости тяги винта от скорости полета. Характеристика влияния высоты полета на тягу винта.

Рубрика Транспорт
Вид статья
Язык русский
Дата добавления 04.12.2018
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Назначение и виды авиационных силовых установок

Силовая установка предназначена для создания силы тяги, необходимой для преодоления лобового сопротивления и обеспечения поступательного движения самолета.

Сила тяги создается установкой, состоящей из двигателя, движителя (винта) и систем, обеспечивающих работу двигательной установки (топливная система, система смазки, охлаждения и т.д.).

В настоящее время в транспортной и военной авиации широкое распространение получили турбореактивные и турбовинтовые двигатели. В спортивной, сельскохозяйственной и различного назначения вспомогательной авиации пока еще применяются силовые установки с поршневыми авиационными двигателями внутреннего сгорания, которые преобразует тепловую энергию сгорающего топлива в энергию вращения воздушного винта..

Рис. 1 Однорядный звездообразный двигатель

Рис. 2 Двухрядный звездообразный двигатель

На самолетах Як-18Т, Як-52 и Як-55 силовая установка состоит из поршневого двигателя М-14П и воздушного винта изменяемого шага В530ТА-Д35.

Рис. 3 Двигатель М-14П (вид спереди)

Рис. 4 Двигатель М-14П (вид сзади)

На многих спортивных самолётах используются двигатели Rotax:

Рис. 5

КЛАССИФИКАЦИЯ ВОЗДУШНЫХ ВИНТОВ

Винты классифицируются:

по числу лопастей - двух-, трех-, четырех- и многолопастные;

по материалу изготовления - деревянные, металлические, смешанные;

по направлению вращения (смотреть из кабины самолета по направлению полета) - левого и правого вращения;

по расположению относительно двигателя - тянущие, толкающие;

по форме лопастей - обычные, саблевидные, лопатообразные;

по типам - фиксированные, неизменяемого и изменяемого шага.

Воздушный винт состоит из ступицы, лопастей и укрепляется на валу двигателя с помощью специальной втулки.

Винт неизменяемого шага имеет лопасти, которые не могут вращаться вокруг своих осей. Лопасти со ступицей выполнены как единое целое.

Винт фиксированного шага имеет лопасти, которые устанавливаются на земле перед полетом под любым углом к плоскости вращения и фиксируются. В полете угол установки не меняется.

Винт изменяемого шага имеет лопасти, которые во время работы могут при помощи гидравлического или электрического управления или автоматически вращаться вокруг своих осей и устанавливаться под нужным углом к плоскости вращения.

Рис. 6 Воздушный двухлопастный винт неизменяемого шага

Рис. 7 Воздушный винт В530ТА Д35

По диапазону углов установки лопастей воздушные винты подразделяются:

на обычные, у которых угол установки изменяется от 13 до 50°, они устанавливаются на легкомоторных самолетах;

на флюгируемые - угол установки меняется от 0 до 90°;

на тормозные или реверсные винты, имеют изменяемый угол установки от -15 до +90°, таким винтом создают отрицательную тягу и сокращают длину пробега самолета.

К воздушным винтам предъявляются следующие требования:

винт должен быть прочным и мало весить;

должен обладать весовой, геометрической и аэродинамической симметрией;

должен развивать необходимую тягу при различных эволюциях в полете;

должен работать с наибольшим коэффициентом полезного действия.

На самолетах Як-18Т, Як-52 и Як-55 установлен обычный веслообразный деревянный двухлопастный тянущий винт левого вращения, изменяемого шага с гидравлическим управлением В530ТА-Д35 (Рис. 2).

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

Лопасти при вращении создают такие же аэродинамические силы, что и крыло. Геометрические характеристики винта влияют на его аэродинамику.

Рассмотрим геометрические характеристики винта.

Форма лопасти в плане - наиболее распространенная симметричная и саблевидная.

Рис. 8. Формы воздушного винта: а - профиль лопасти, б - формы лопастей в плане

Рис. 9 Диаметр, радиус, геометрический шаг воздушного винта

Рис. 10 Развертка винтовой линии

Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной.

Для большей прочности применяют лопасти с переменной толщиной - постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной. Ребро лопасти, рассекающее воздух, называется передней кромкой, а заднее - задней кромкой. Плоскость, перпендикулярная оси вращения винта, называется плоскостью вращения винта (Рис. 8).

Диаметром винта называется диаметр окружности, описываемой концами лопастей при вращении винта. Диаметр современных винтов колеблется от 2 до 5 м. Диаметр винта В530ТА-Д35 равен 2,4 м.

Геометрический шаг винта - это расстояние, которое движущийся поступательно винт должен пройти за один свой полный оборот, если бы он двигался в воздухе как в твердой среде (Рис. 9).

Угол установки лопасти винта ц - это угол наклона сечения лопасти к плоскости вращения винта (Рис. 10).

Для определения, чему равен шаг винта, представим, что винт движется в цилиндре, радиус г которого равен расстоянию от центра вращения винта до точки Б на лопасти винта. Тогда сечение винта в этой точке опишет на поверхности цилиндра винтовую линию. Развернем отрезок цилиндра, равный шагу винта Н по линии БВ. Получится прямоугольник, в котором винтовая линия превратилась в диагональ этого прямоугольника ЦБ. Эта диагональ наклонена к плоскости вращения винта БЦ под углом ц. Из прямоугольного треугольника ЦВБ находим, чему равен шаг винта:

(3.1)

Шаг винта будет тем больше, чем больше угол установки лопасти ц. Винты подразделяются на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг), переменным шагом (сечения имеют разный шаг).

Воздушный винт В530ТА-Д35 имеет переменный шаг вдоль лопасти, так как это выгодно с аэродинамической точки зрения. Все сечения лопасти винта набегают на воздушный поток под одинаковым углом атаки.

Если все сечения лопасти винта имеют разный шаг, то за общий шаг винта считается шаг сечения, находящегося на расстоянии от центра вращения, равном 0,75R, где R-радиус винта. Этот шаг называется номинальным, а угол установки этого сечения - номинальным углом установки.

Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде (см. Рис. 4).

Поступь воздушного винта - это действительное расстояние, на которое движущийся поступательно винт продвигается в воздухе вместе с самолетом за один свой полный оборот. Если скорость самолета выражена в км/ч, а число оборотов винта в секунду, то поступь винта Нп можно найти по формуле

(3.2)

Поступь винта несколько меньше геометрического шага винта. Это объясняется тем, что винт как бы проскальзывает в воздухе при вращении ввиду низкого значения плотности его относительно твердой среды.

Разность между значением геометрического шага и поступью воздушного винта называется скольжением винта и определяется по формуле

S=H-Hn. (3.3)

СКОРОСТЬ ДВИЖЕНИЯ И УГОЛ АТАКИ ЭЛЕМЕНТА ЛОПАСТИ ВИНТА

К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.

Углом атаки элементов лопасти винта б называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 11).

Рис. 11 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости элемента лопасти

Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна

где nс - обороты двигателя.

Поступательная скорость-это скорость самолета V. Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U.

При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.

Рассматривая Рис. 6, а, нетрудно заметить, что:

когда воздушный винт вращается, а поступательная скорость равна нулю (V=0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти ц;

при поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его);

угол атаки будет тем больше, чем больше угол установки элемента лопасти винта;

результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника

(3.5)

чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.

В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v, которую называют скоростью подсасывания. В результате истинная скорость W' будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки б' будет отличаться от угла б (Рис. 6, б).

Анализируя вышесказанное, можно сделать выводы:

при поступательной скорости V=0 угол атаки максимальный и равен углу установки лопасти винта;

при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;

при большой скорости полета угол атаки лопастей может стать отрицательным;

чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;

если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.

Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.

Сила тяги винта возникает в результате действия аэродинамической силы ?R на элемент лопасти винта при его вращении (Рис.1).

Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению ?Х элемента лопасти винта.

Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р.

Тяга винта зависит от диаметра винта Д, числа оборотов в секунду n, плотности воздуха с и подсчитывается по формуле (в кгс или Н)

где б - коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-18Т, Як-52 и Як-55 - В530ТА-Д35 равен 1,3.

Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.

Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.

Сила сопротивления вращению определяется по формуле

(3.7)

где Схл - коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;

W - результирующая скорость, м/с;

Sл - площадь лопасти;

К - количество лопастей.

Рис.12 Аэродинамические силы воздушного винта.

Рис. 13. Режимы работы воздушного винта

Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:

Мтр=Хвrв (3.8)

Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле

(3.9)

где Ne-эффективная мощность двигателя.

Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. 13, а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X=R. Это режим нулевой тяги (Рис. 13, б).

При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. 2, в).

При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. 13, г).

Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.

На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.

ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА.

С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.

Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.

Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 14. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.

Рис. 14 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-18Т, Як-52 и Як-55 с воздушным винтом В530ТА-Д35

воздушный винт лопасть полет

ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.

Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).

(3.6)

ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.

Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.

Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент Мт, равный произведению , был равен крутящему моменту двигателя Мкр, равному произведению Fd,.т.е. Мт=Мкр или =Fd (Рис. 15).

Рис. 15 Тормозящий момент воздушного винта и крутящий момент двигателя

Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.

Увеличение оборотов двигателя приводит к увеличению Мкр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.

МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА

Эта мощность затрачивается на преодоление сил сопротивления вращению винта.

Формула для определения мощности воздушного винта (в л. с.) имеет вид:

(3.10)

где в - коэффициент мощности, зависящий от формы воздушного винта, числа лопастей, угла установки, формы лопасти в плане, от условия работы воздушного винта (относительной поступи)

Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.

С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.

С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.

Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.

Работа, производимая силой тяги воздушного винта за 1 сек. при движении самолета, называется тягой или полезной мощностью воздушного винта.

Тяговая мощность воздушного винта определяется по формуле

(3.11)

где Рв - тяга, развиваемая воздушным винтом; V-скорость самолета.

С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА.

ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, nb, будет меньше мощности двигателя Ne, затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается з. Он определяется по формуле

(3.12)

Рис. 16 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 17 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 18 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 17.

График Рис. 18 называется характеристикой силовой установки по мощности.

При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 13.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.(3.12)

Рис. 19 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 20 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 21 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 20.

График Рис. 21 называется характеристикой силовой установки по мощности.

При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 22.

Рис. 22 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 22

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).

Рис. 23 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя Ne будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 23 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей ц возрастает от своего минимального значения цмин до максимального цмакс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 14, а видно, что угол атаки лопасти перед взлетом (V=0) за счет перетекания воздуха со скоростью ?V немного отличается от угла наклона лопасти на величину фмин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 23, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол цср.

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение рмакс (Рис. 23, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет сопротивления воды движению судна. Расчет контура лопасти гребного винта. Распределение толщин лопасти по ее длине. Профилирование лопасти винта. Построение проекций лопасти винта, параметры ступицы. Определение массы гребного винта судна.

    курсовая работа [444,4 K], добавлен 08.03.2015

  • Краткая характеристика несущего винта вертолета. Определение дальности и продолжительности полета. Подбор оптимальной конструкции лонжерона лопасти несущего винта легкого вертолета, с применением программы виртуального моделирования Solid Works.

    дипломная работа [3,4 M], добавлен 01.07.2012

  • Площадь смоченной поверхности судна. Расчет сопротивления трения судна для трех осадок. Расчет сопротивления движению судна с помощью графиков серийных испытаний моделей судов. Определение параметров гребного винта. Профилировка лопасти гребного винта.

    курсовая работа [785,6 K], добавлен 19.01.2012

  • Расчет летных характеристик самолета и его скороподъемности. Определение взлетных и посадочных параметров, вычисление дальности и продолжительности полета на заданной скорости. Расчет затрат топлива и дальности полета на участках набора высоты и снижения.

    курсовая работа [924,1 K], добавлен 19.12.2012

  • Линии пути, используемые в навигации. Системы отсчета высоты полета, учет ошибок барометрического высотомера, расчет высоты полета. Способы измерения высоты полета. Способы измерения курса. Зависимость между курсами. Навигационный треугольник скоростей.

    курсовая работа [1,1 M], добавлен 13.02.2014

  • Критерии работоспособности передачи винт-гайка. Определение размеров винта и гайки. Проверка соблюдения условия самоторможения. Определение КПД винтовой пары передачи винт-гайка. Проверка винта на устойчивость. Расчет элементов винта и гайки на прочность.

    курсовая работа [117,8 K], добавлен 16.05.2010

  • Расчёт буксировочных сопротивления и мощности. Выбор главного судового движителя для создания полезной тяги. Расчёт и выбор гребного винта посредством определения его оптимальных параметров и использования высокого коэффициента полезного действия.

    курсовая работа [1,0 M], добавлен 26.01.2015

  • Расчет буксировочного сопротивления и буксировочной мощности судов методом Холтропа. Подбор главной энергетической установки – дизеля. Уточнение характеристик гребного винта при работе с выбранным двигателем и определение достижимой скорости хода.

    курсовая работа [1,2 M], добавлен 04.12.2009

  • Оценка значимости многолетнего режима температуры на высотах над участками воздушной трассы. Расчет возможных пределов изменения практического потолка и предельно допустимой высоты полета конкретного типа самолета и максимально допустимой скорости полета.

    курсовая работа [531,4 K], добавлен 13.12.2014

  • Определение основного сопротивления движению поезда при различных видах тяги. Расчет средней скорости движения и времени хода поезда по участку. Определение расхода топлива тепловозом на тягу поездов и электроэнергии электровозом постоянного тока.

    курсовая работа [631,7 K], добавлен 20.12.2015

  • Анализ показателей судна и его энергетической установки. Определение параметров согласованного гребного винта. Расчет вспомогательной котельной установки. Система сжатого воздуха. Расчет нагрузки на судовую электростанцию и выбор дизель-генератора.

    курсовая работа [602,2 K], добавлен 19.12.2011

  • Расчет тяги несущего винта и крутящего момента лопасти вертолета. Построение трехмерной модели лонжерона. Применение метода конечных элементов для определения потенциальной энергии деформации и работы внешних сил. Решение задачи устойчивости вертолета.

    реферат [2,0 M], добавлен 23.09.2013

  • Скорость судна через час с после команды "стоп" и пройденное за это время расстояния. Расчет тормозящей силы винта, работающего в режиме гидротурбины. Вычисление времени падения скорости после команды "стоп", времени свободного торможения и выбега судна.

    лабораторная работа [22,9 K], добавлен 19.03.2015

  • Преобразование вращательного движения в поступательное. Условие прочности при продольном изгибе. Допускаемая гибкость для винтов. Нахождение диаметра винта по критериям, определяющим работоспособность передачи. Износостойкость рабочих поверхностей.

    контрольная работа [546,2 K], добавлен 17.10.2013

  • Проект винтового механизма авиационных устройств (домкрата самолетного для обслуживания авиационных изделий). Расчёт винта, гайки, пяты скольжения, корпуса. Характеристики подшипника шарикового радиально-упорного. Коэффициент полезного действия механизма.

    курсовая работа [216,1 K], добавлен 09.02.2012

  • Расчет геометрических характеристик фюзеляжа самолета, горизонтальное оперение. Расчет минимального коэффициента лобового сопротивления пилона. Взлетно-посадочные характеристики самолета. Построение зависимости аэродинамического качества от угла атаки.

    курсовая работа [1,2 M], добавлен 29.10.2012

  • Обоснование выбора конструкторской разработки. Расчет и построение тяговых характеристик трактора МТЗ-80 с использованием энергетического модуля и без него. Прочностной расчет сварного шва. Регулировка рабочих органов и узлов. Расчет винта на прочность.

    реферат [57,8 K], добавлен 18.09.2013

  • Определение энергетических, кинематических и геометрических параметров двигателя, газодинамические расчеты его основных узлов. Профилирование ступени компрессора, коэффициенты полезного действия винта и редуктора. Расчёт и формирование облика двигателя.

    курсовая работа [7,3 M], добавлен 22.02.2012

  • Правила полетов воздушных средств в зоне ожидания. Вход через контрольную точку VOR/DME на линии пути удаления. Скорости при ожидании. Минимальный запас высоты над препятствиями на равнинной местности. Расчет угловой скорости и радиуса разворота.

    презентация [2,5 M], добавлен 02.11.2014

  • Основное сопротивление движения при различных видах тяги. Расчет средней скорости движения и времени хода по участку. Определение касательной мощности локомотивов, расхода энергоресурсов различных видов тяги. Сравнение Тепловоза ТЭП70 с электровозом ЧС7.

    курсовая работа [1,1 M], добавлен 15.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.