Определение силы тяжести при укладке рельсошпальной решётки

Верхнее строение пути - сооружение, которое служит для направления движения подвижного состава, восприятия силовых воздействий от его колес и передачи их на нижний слой. Наличие электропроводности, высокая жесткость - недостатки железобетонных шпал.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 25.05.2022
Размер файла 319,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Министерство образования науки Республики Саха (Якутия)

ГБПОУ РС(Я) «Транспортный техникум им. Р.И. Брызгалова»

Курсовая

Тема: Определение силы тяжести при укладке рельсошпальной решётки

Максимов Дмитрий Иванович

Нижний Бестях - 2022

Введение

Верхнее строение пути - рельсы, скрепления, соединяющие рельсы между собой и с основанием, шпалы, балластный слой - представляет собой инженерное сооружение, все элементы которого взаимосвязаны. Изменение в условиях работы одного из них сразу же отражается на всех остальных элементах. Наиболее ответственным элементом верхнего строения пути является рельс, который первым принимает динамические нагрузки от колес подвижного состава.

Актуальность обусловлена тем, что сила тяжести - это проявление закона всемирного тяготения, т. е. силы притяжения тел к Земле вблизи ее поверхности. Известно, что все тела имеют силу тяжести.

Цель: определить силы тяжести при укладке РШР.

Задачи:

Изучить конструкцию верхнего строения пути;

Рассмотреть технологию укладки РШР;

Рассчитать силу тяжести при укладке РШР;

Сделать вывод.

1. Верхнее строение пути

Верхнее строение пути служит для направления движения подвижного состава, восприятия силовых воздействий от его колес и передачи их на нижнее строение.

Верхнее строение пути представляет собой комплексную конструкцию, включающую в себя балластный слой, шпалы, рельсы, рельсовые скрепления, противоугоны, стрелочные переводы, глухие пересечения, мостовые и переводные брусья. Рельсы, соединенные со шпалами, образуют рельсошпальную (путевую) решетку. При этом шпалы заглубляются в балластный слой, укладываемый на основную площадку земляного полотна (рис. 1.)

Толщина балластного слоя и расстояние между шпалами должны быть такими, чтобы давление на земляное полотно не превышало величины, обеспечивающей его упругую осадку, исчезающую после снятия нагрузки.

Верхнее строение пути, подверженное воздействию неблагоприятных факторов (проходящие поезда, атмосферные осадки, ветер, колебания температуры), должно быть достаточно прочным, устойчивым, долговечным и экономичным.

Рис. 1. Элементы верхнего строения пути

Балластный слой

Основным назначением балластного слоя является восприятие давления от шпал и равномерное распределение его по основной площадке земляного полотна; обеспечение устойчивости шпал, находящихся под воздействием вертикальных и горизонтальных сил, упругости подрельсового основания и возможности выравнивания рельсошпальной решетки в плане и профиле; отвод от нее поверхностных вод. Во избежание переувлажнения основной площадки вода не должна задерживаться на поверхности балластного слоя.

Материал для балласта должен быть прочным, упругим, устойчивым под нагрузкой и атмосферными воздействиями, а также дешевым. Кроме того, он не должен дробиться при уплотнении, пылить при проходе поездов, раздуваться ветром, размываться дождями и прорастать травой. В качестве балласта используют сыпучие, хорошо дренирующие упругие материалы: щебень, гравий, песок, ракушечник. Лучшим материалом для балласта является щебень из естественного камня, валунов и гальки.

Путевой щебень, применяемый на железных дорогах России, выпускают в виде двух основных фракций с размерами частиц 25... 60 и 25... 50 мм. Для балластировки станционных путей и применения в качестве строительного материала стандартом предусмотрен также мелкий щебень с размерами частиц 5...25мм.

Балластный слой укладывают в виде призмы, которая имеет откосы крутизной, как правило, 1:1,5. Ширина ее верхней части, устанавливается техническими условиями.

Шпалы

На железных дорогах России наряду с деревянными получили широкое распространение железобетонные шпалы (рис. 2.) с предварительно напряженной арматурой. Их достоинствами являются долговечность (40...50 лет), обеспечение высокой устойчивости пути и плавности хода поездов, что обусловлено одинаковыми размерами и равной упругостью шпал. Кроме того, применение железобетонных шпал позволяет сберечь древесину для других нужд. Благодаря указанным качествам они уже используются на главных путях всех основных направлений сети, в том числе на участках скоростного движения поездов.

Рис. 2. Железобетонная шпала

железобетонный шпала подвижной силовой

К недостаткам железобетонных шпал относятся большая масса, наличие электропроводности, высокая жесткость и сложность крепления рельсов к ним. Для повышения упругости пути с железобетонными шпалами под рельсы укладывают амортизирующие прокладки. Во избежание утечки электрического тока применяют рельсовые скрепления специальной конструкции с электроизоляционными деталями.

Железобетонные шпалы изготавливают из тяжелого бетона с арматурой из стальной углеродистой холоднотянутой проволоки периодического профиля диаметром 3 мм.

Порядок расположения шпал по длине рельсового звена называют их эпюрой. На железных дорогах России применяют три эпюры, соответствующие укладке 1600, 1840 и 2000 шпал на 1 км пути.На станциях метро и при устройстве смотровых канав в депо вместо сплошных шпал используются полушпалы, заглубленные в бетон.

Рельсы.

Рельсы предназначены для направления движения колес подвижного состава, восприятия нагрузки от него и передачи ее на шпалы. Кроме того, на участках с автоблокировкой рельсы служат проводниками сигнального тока, а при использовании электротяги -- проводниками обратного тягового тока.

Для надежной работы рельсы должны быть достаточно прочными, долговечными, износоустойчивыми, твердыми и в то же время нехрупкими, так как они воспринимают ударно-динамическую нагрузку. Материалом для их изготовления служит высокопрочная углеродистая сталь. В зависимости от массы и поперечного профиля рельсы подразделяют на несколько типов: Р50, Р65 и Р75. Буква Р означает рельс, а число -- округленное значение массы, кг, одного погонного метра рельса.

Поскольку наибольшее воздействие на рельс оказывает вертикальная нагрузка, стремящаяся изогнуть его, рациональной формой рельса считается двутавровая, одновременно обеспечивающая и меньший расход металла.

Рис. 3. Профиль рельса

Выбор того или иного типа рельсов зависит от грузонапряженности линии, нагрузок и скоростей движения поездов. На линиях скоростного движения пассажирских поездов укладывают рельсы Р65.

Рельсы выпускают стандартной длины 25 м. Кроме того, для укладки в кривых изготавливают укороченные рельсы длиной 24,92 и 24,84 м. В качестве уравнительных рельсов для бесстыкового пути, а также при укладке стрелочных переводов используют рельсы прежней стандартной длины (12,5 м) и укороченные (12,46; 12,42 и 12,38 м).

Срок службы рельсов, измеряемый числом тонн брутто проследовавшего по ним груза до их перекладки, в среднем составляет для термически упрочненных рельсов Р65 500 млн т, а для Р50 -- 350 млн т. Срок службы рельсов Р75 примерно на 30 % больше, чем у рельсов Р65.

Рельсовые скрепления

Рельсовый путь представляет собой две непрерывные рельсовые нити, расположенные на определенном расстоянии одна от другой благодаря креплению рельсов к шпалам и отдельных рельсовых звеньев друг к другу. Рельсы соединяют со шпалами с помощью промежуточных скреплений, которые должны обеспечивать надежную и достаточно упругую их связь, неизменную ширину колеи и необходимый уклон рельсов, не допускать их продольного смещения и опрокидывания, а при использовании железобетонных шпал помимо этого электрически изолировать рельсы и шпалы. Существуют три основных типа промежуточных скреплений: нераздельные, смешанные и раздельные (рис. 4.).

Рис. 4. Рельсовые скрепления

При нераздельном скреплении рельс и подкладки, на которые он опирается, крепят к шпалам одними и теми же костылями или шурупами.

При смешанном скреплении подкладки, кроме того, крепят к шпалам дополнительными костылями. Смешанное костыльное скрепление с применением клинчатых подкладок, имеющих уклон 1:20, широко распространено на дорогах нашей страны. Его достоинствами являются простота конструкции, небольшая масса, сравнительная легкость зашивки, перешивки и разборки пути. Однако такое скрепление не гарантирует постоянства ширины колеи и способствует механическому изнашиванию шпал.

При раздельном скреплении рельс соединяют с подкладками жесткими или упругими клеммами и клеммными болтами, а подкладки крепят к шпалам болтами или шурупами. Достоинства раздельного скрепления (возможность смены рельсов без снятия подкладок, большое сопротивление продольным усилиям, обеспечение постоянства ширины колеи) способствуют все более широкому его применению, хотя оно несколько дороже и сложнее по конструкции скреплений других видов.
На железных дорогах России широко распространено раздельное скрепление КБ-65. Его недостатками являются большое число деталей, значительная масса и высокая жесткость. Поэтому в настоящее время началось активное внедрение нового бесподкладочного пружинного раздельного скрепления пониженной жесткости -- ЖБР-3-65, у которого масса и число деталей уменьшены более чем в 1,5 раза. Кроме того, разработано анкерное рельсовое скрепление АРС-4, наиболее перспективное для пути с железобетонными шпалами. Благодаря отсутствию резьбовых соединений оно не требует обслуживания, что позволяет существенно сократить затраты на содержание пути.

Рельсовые звенья соединяют друг с другом с помощью стыковых скреплений, основными элементами которых являются накладки, болты с гайками и пружинные шайбы. Стыковые накладки предназначены для восприятия в стыке изгибающих и поперечных сил. Двухголовые накладки изготавливают из высокопрочной стали и подвергают закалке. Болты, как и накладки, должны обладать высокой прочностью. Под их гайки для обеспечения постоянного натяжения подкладывают пружинные шайбы. В последнее время переходят на применение шестидырных накладок (рис. 5.).

Рис. 5. Шестидырные накладки

По расположению относительно шпал в качестве стандартных приняты стыки на весу, что обеспечивает большую упругость и удобство подбивки балласта под стыковые шпалы. Так как с изменением температуры длина рельсов меняется, между их торцами в стыках оставляют зазор, наибольшая величина которого во избежание сильных ударов колес подвижного состава не должна превышать 21 мм. Каждому значению температуры воздуха (и рельсов) соответствует определенный стыковой зазор.

Для обеспечения возможности некоторого перемещения концов рельсов в стыках болтовые отверстия в ранее изготавливавшихся рельсах имели форму овала (с большой осью, направленной вдоль рельса) или круга большего диаметра, чем у болтов. Вновь выпускаемые рельсы имеют только круглые отверстия, что повышает прочность рельсов и упрощает технологию их изготовления.

На линиях с автоблокировкой на границах блок-участков применяют изолирующие стыки, препятствующие прохождению электрического тока от одного из соединяемых рельсов к другому. В стыковой зазор помещают прокладку из текстолита или трикопа, имеющую очертания рельса. В последнее время все шире применяют клееболтовые стыки, в которых металлические стыковые накладки, изолирующие прокладки из стеклоткани и болты с изолирующими втулками соединяют с помощью эпоксидного клея с концами рельсов в монолитную конструкцию.
На линиях с электрической тягой и автоблокировкой для беспрепятственного прохождения тока через стык устанавливают специальные стыковые соединители.

Под действием сил, которые возникают при движении поездов, особенно при торможении на затяжных спусках, может происходить продольное перемещение рельсов по шпалам или вместе со шпалами по балласту, называемое угоном пути. Для предотвращения угона пути применяют противоугоны. Стандартные пружинные противоугоны представляют собой пружинную скобу, защемляемую на подошве рельса и упирающуюся в шпалу. На 25-метровом рельсовом звене устанавливают от 18 до 44 пар противоугонов

Бесстыковой путь.

В настоящее время на железных дорогах широкое распространение получил наиболее совершенный бесстыковой путь. Благодаря устранению стыков ослабляется динамическое воздействие на путь, существенно уменьшаются износ колес подвижного состава и сопротивление движению поездов, что снижает расход топлива и электроэнергии на обеспечение тяги поездов. Значительное сокращение числа стыковых скреплений посредством сварки отдельных рельсовых звеньев в плети позволяет сэкономить до 1,8 т металла на каждый километр пути, снизить расходы на его содержание и ремонт. Срок службы рельсов бесстыкового пути возрастает примерно на 20 % по сравнению со стыковым, деревянных шпал -- на 8... 13%, балласта (до очистки) -- на 25%, а затраты труда на текущее содержание пути снижаются на10...30%.

Для бесстыкового пути рельсовые плети изготавливают, как правило, из термически упрочненных рельсов Р65 или Р75 стандартной длины, не имеющих болтовых отверстий. Рельсы сваривают электроконтактным способом на стационарных или передвижных контактно-сварочных машинах.

Между сварными плетями укладывают 2--4 пары уравнительных рельсов длиной 12,5 м или переменной длины (12,5; 12,46; 12,42 и 12,38 м) для сезонного регулирования длины плетей перед летними и зимними периодами. Весь комплект уложенных на путь уравнительных рельсов называется уравнительным пролетом. Для обеспечения необходимой прочности пути рельсовые стыки в уравнительных пролетах соединяют только шестиядерными накладками и стыковыми болтами из стали повышенной прочности.

На первых этапах внедрения бесстыкового пути длина сварных плетей на сети железных дорог России обычно не превышала 800 м, что соответствовало длине специальных поездов, которые составляли из платформ, оборудованных роликами. Этими поездами плети доставляли на перегон. С 1986 г. после многолетних опытов разрешена укладка плетей, длина которых совпадает с длиной блок-участка и даже перегона, с введением ряда дополнительных требований к их изготовлению и эксплуатации.

Одна из основных особенностей бесстыкового пути состоит в том, что длина хорошо закрепленных рельсовых плетей при повышении или понижении температуры не может изменяться. Вследствие этого в них возникают значительные продольные растягивающие или сжимающие силы, достигающие 100...200 кН, действие которых в жаркую погоду может привести к выбросу пути в сторону, а в сильный мороз -- к излому плети с образованием опасного зазора. Поэтому бесстыковой путь обычно укладывают на железобетонных шпалах с раздельным скреплением и щебеночном балласте. Балластную призму тщательно уплотняют.
Применение бесстыкового пути особенно эффективно на участках скоростного движения поездов. На этих участках к верхнему строению пути предъявляют повышенные требования, уделяя особое внимание предотвращению и устранению волнообразного износа поверхности катания рельсов, который ликвидируется их обработкой, осуществляемой специальными рельсошлифовальными поездами.

Рельсы, шпалы и рельсошпальная решетка.

Рельсошпальная решетка (РШР) - практически готовое к укладке ж/д полотно. Такая решетка включает в себя шпалы, рельсы и весь набор промежуточных и стыковых креплений между ними. Стыковые крепления используются для соединения рельс между собой, промежуточные - для соединения рельс и шпал.

Рельсы - стальные балки специального сечения, укладываемые на шпалах или других опорах для образования пути, по которому перемещается подвижной состав железнодорожного транспорта, городских железных дорог, специализированный состав в шахтах, карьерах, крановое оборудование и так далее.

Шпала - опора для рельсов в виде брусьев или железобетонных изделий. В железнодорожном пути шпалы обычно укладываются на балластный слой верхнего строения пути и обеспечивают неизменность взаимного расположения рельсовых нитей, воспринимают давление непосредственно от рельсов или от промежуточных скреплений и передают его на подшпальное основание (обычно- балластный слой, в метрополитене - бетонное основание).

2. Технология укладки звеньев рельсошпальной решетки

Перед укладкой рельсошпальной решетки (РШР) земляное полотно должно быть приведено в соответствие с проектом. Грунт земляного полотна должен иметь плотность, предусмотренную требованиями СНиП 32-01-95. Готовое земляное полотно для укладки сдается заказчику с составлением акта освидетельствования готовности земляного полотна под укладку. Ось пути должна быть восстановлена и закреплена, а поверхность основной площадки про нивелирована. Монтаж звеньев пути производят строго по оси пути. При стыковке торцов рельсов в момент укладки устанавливают заборники. Работы по укладке выполняет комплексная бригада, состоящая из специализированных звеньев, которые производят все работы параллельно.

Выбор способа укладки пути зависит от годового объема путеукладочных работ. При годовых объемах работ 70 км/год и более целесообразно использовать укладочные краны УК-25, а при годовых объемах менее 70 км/год применяют портальный тракторный путеукладчик ПБ-ЗМ, а также мобильный путеукладчик на базе МоАЗ-6442. При малых объемах работ (менее 10 км/год) укладка пути может производиться путеукладчиками ПУ-4, ЗКУ или поэлементно с использованием железнодорожных стреловых кранов КДЭ-163 и КДЭ-253.

Для укладки звеньев пути из рельсов длиной 25 м, как с деревянными, так и с железобетонными шпалами, применяют консольный путеукладочный кран УК-25/21(рис.6.) грузоподъемностью 21 путь с деревянными шпалами укладывают укладочным краном УК-25/9 грузоподъемностью 9 тс, железобетонными шпалами - УК-25/18 грузоподъемностью 18 тс.

Рис. 6. Путеукладочный кран: Консольный путеукладочный кран УК-25: 1 грузовая тележка; 2, 3 - блоки; 4 - ферма; 5, 7, 20 - лебедки; б - пост управления оператора; 8 - средняя поперечная балка; 9 - ограничитель грузоподъемности; 10 - откидные балки; 11 - каретка портала; 12 - ограждение; 13 - гидравлический цилиндр подъема фермы; 14 - стойка портала; 15 - трехосная тележка; 16 - рама; 17 - силовая установка; 18 - пульт управления платформой; 19 - кабина управления; 21 - роликовый конвейер; 22 - укладываемое звено

По конструкции эти путеукладчики аналогичны, отличаются только грузоподъемностью. В состав путеукладчика входит укладочный кран типа УК, моторные платформы МПД и четырехосные платформы, оборудованные специальными приспособлениями для закрепления и перемещения вдоль укладочного поезда пакетов звеньев. Производительность этих путеукладчиков до 3-4 км/см.

После прибытия путеукладочного поезда к месту работ технологическая последовательность выполнения операций может быть представлена так:

1) подготовка (раскрепление) пакетов звеньев к укладке;

2) подготовка пакета звеньев к перетяжке;

3) перетяжка пакета звеньев на платформу крана;

4) строповка звена;

5) подъем звена и его вывод из портала крана;

6) опускание наклонного звена;

7) стыкование звена с ранее уложенным;

8) окончательное опускание звена на земляное полотно;

9) изгиб звена по оси пути;

10) переезд путеукладчика для укладки следующего звена.

После прибытия поезда с пакетами звеньев на место работ укладочный кран с частью платформ отцепляют от состава и перемещают к месту укладки. Количество сцепов, груженых пакетами, прицепляемых к путеукладчику УК-25, зависит от профиля участка и не должно превышать на площадке и уклоне пути до 5%о - пяти сцепов, на уклонах от 5%о до 10% - не более трех, на уклонах более 10%о - не более одного сцепа.

Укладку звеньев выполняет бригада, состоящая из машиниста крана, оператора, машиниста моторной платформы и 30 монтеров пути.

Рис. 7. Расстановка рабочих: 1 - место машиниста водителя; 2 - место машиниста-оператора; 3, 4 - места монтеров пути - строповщиков; 5-14 - места монтеров пути нижней группы; 15 - место руководителя работ - четыре монтера пути снимают крепления пакетов звеньев, двое верхнее звено пакета

Звенья пути укладывают 10 монтеров пути. По сигналу бригадира оператор крана включает подъемные лебедки, поднимает звено на высоту 0,5 м от пакета, перемещает траверсу со звеном по стреле крана и опускает на земляное полотно. При приближении звена к поверхности основной площадки монтеры пути принимают звено, стыкуют один конец его с ранее уложенным звеном и направляют укладываемое звено по оси пути, после чего оператор крана опускает звено на земляное полотно.

Пакеты звеньев перетягивают на платформу укладочным краном, не прерывая его работы. Одновременно с перемещением крана к концу уложенного звена последнее звено пакета поднимают, передвигают по стреле крана и перетягивают следующий пакет на первую половину платформы крана. После укладки последнего звена пакета при перемещении крана вперед следующий пакет окончательно устанавливают на его платформе. Ближнее перетягивание пакетов выполняет машинист-водитель крана и два монтера пути, которые растягивают трос, сматывая его с барабана тяговой лебедки крана. Дальние пакеты звеньев перетягивают только после того, как на укладочный кран будет перетянут последний пакет с платформ, расположенных у крана.

Освободившиеся платформы отводят моторной платформой к составу со звеньями и на них перетягивают моторной платформой или локомотивом пакеты с груженых платформ. Работу выполняют машинист моторной платформы и два монтера пути, которые были заняты на ближней перетяжке пакетов. Затем груженые сцепы подают к укладочному крану. Вслед за проходом укладочного поезда четыре монтера пути снимают авто стыкователи, смазывают и монтируют стыковые накладки и болты, устанавливают стыковые шпалы по меткам.

Укладку звеньев рельсошпальной решетки длиной 25 м с рельсами типа Р65 включительно, как с деревянными, так и с железобетонными шпалами, осуществляет путеукладчик типа ПБ-ЗМ с темпом до 1,5 км в смену.

Путеукладчик ПБ-ЗМ состоит из трактора на комбинированном ходу и полунавесного оборудования - трубчатого портала с фермой на гусеничном ходу. Стойки портала телескопические, что дает возможность при движении выравнивать портал, когда гусеничные тележки находятся в разных уровнях. Высоту путеукладчика также можно менять.

Звенья подают к месту укладки в пакетах на четырехосных платформах. На базе путеукладчика имеется роликовый гидравлический механизм для рихтовки звеньев пути в кривых.

Общая численность бригады составляет 14 человек. Укладку звеньев осуществляет группа из 7 человек.

Путеукладчиком выполняется следующая технологическая последовательность работ: платформы со звеньями подают локомотивом в портал путеукладчика, опускают захваты на верхнее звено пакета. Строповка осуществляется автоматически при подъеме звена, затем портальный укладочный кран с поднятым звеном перемещают трактором по ходу укладки вперед на длину звена. После остановки крана звено опускают на земляное полотно, звенья стыкуют временными стыкователями.

Вслед за проходом укладочного поезда с интервалом в 50 м производят выправку и рихтовку пути, снимают временные стыкователи, регулируют зазоры, устанавливают накладки и стыковые шпалы на место.

3. Сила тяжести

Сила тяжести - сила, действующая на любое физическое тело вблизи поверхности астрономического объекта и складывающаяся из силы гравитационного притяжения этого объекта и центробежной силы инерции, вызванной его суточным вращением.

Прочие приложенные к телу силы - такие как движении тела по поверхности планеты и Архимеда при наличии атмосферы или жидкости - в силу тяжести не включаются.

В большинстве практических случаев анализируется сила тяжести вблизи Земли. Для неё величина центробежной силы составляет доли процента от величины гравитационной и иногда игнорируется.

где - сила тяжести, Н;

m - масса, кг;

g=9,8 - ускорение свободного падения, м/с2.

Сила тяжести действует на тело, имеющее опору или подвеску. Если тело их не имеет, то есть оно находится в состоянии свободного падения, тогда они говорят, что тело находится в невесомости. Сила тяжести всегда направлена к центру Земли.

4. Практическая работа

Определение силы тяжести при укладке РШР на рельсе Р-65.

Вес одной рельсы Р-65 - 811 кг;

Количество рельс-2 шт.

Длина рельса-12,5 м

Вес одной шпалы 85 кг;

Количество шпалы-23 шт.

Вид скрепления КД-65 - 9,7 кг;

Количество скреплении-46 шт.

Вес одной костылья-0.609 кг;

Количество костылей-184 шт.

Решения:

Общий вес рельс и шпал

Определение силы тяжести

Ответ:40525,5088H.

Вывод; при укладке РШР на рельсе Р-65 определена сила тяжести, что составила 40525,5088 H

Заключение

В теоретической части изучена конструкция верхнего строения пути, технология укладки звеньев рельсошпальной решетки и понятие «силы тяжести». В проектной части определена сила тяжести при укладке РШР на 12.5м. (рельсы Р-65 , шпалы весом 85 кг, скрепления КД-65 - 9,7кг, и костылей).

Литература

1. Книга Общий курс железных дорог: Учеб. пособие для учреждений сред. проф. образования / Ю. И. Ефименко, М. М. Уздин, В. И. Ковалев и др.; Под ред. Ю. И. Ефименко. - М.: Издательский центр «Академия», 2005. - 256 с.

2. Физика для профессий и специальностей технического профиля: учеб. для студ. учреждений сред. проф. Образования / В. Ф. Дмитриева.-6-е изд.,-М.: Издательский центр «Академия»,2019.-448 с.

Размещено на Allbest.ru

...

Подобные документы

  • Электромеханические характеристики передачи на ободе колеса. Расчет тяговых и тормозных характеристик подвижного состава троллейбуса. Построение кривых движения и тока подвижного состава в прямом и обратном направлениях, определение тормозного пути.

    курсовая работа [1,6 M], добавлен 16.03.2012

  • Обеспечение безопасности движения поездов при производстве ремонта пути. Определение технологии работ по укладке, балластировке пути и отделке балластной призмы с составлением перечня потребных основных путевых машин. Составление ведомости затрат труда.

    курсовая работа [100,2 K], добавлен 06.04.2014

  • Определение длины тормозного пути и времени торможения поезда при экстренном торможении способом ПТР. Расчет основного удельного сопротивления состава в режиме выбега и поезда. Определение осевой нагрузки для каждой группы вагонов, длины состава.

    курсовая работа [3,0 M], добавлен 24.10.2015

  • Кругобайкальская дорога как исторический инженерный памятник. Трудности, возникшие при строительстве Транссибирской магистрали. Верхнее строение пути Кругобайкальской дороги. Паромная переправа через Байкал. Строительство моста в Берёзовской бухте.

    реферат [192,8 K], добавлен 24.11.2009

  • Характеристика назначения железнодорожных рельсов и описание конструкции верхнего строения железнодорожного пути. Описание проекта и определение грузонапряженности на проектируемом участке пути. Расчет общей стоимости возведения верхнего строения пути.

    контрольная работа [18,5 K], добавлен 07.09.2012

  • Техническая характеристика подвижного состава автотранспортного предприятия. Корректирование нормативной периодичности ТО и пробега ПС до капитального ремонта. Определение суммарного годового объема работ по техническому обслуживанию подвижного состава.

    курсовая работа [1,5 M], добавлен 08.11.2012

  • Условия движения поезда, силы, действующие на поезд, и законы его движения под их воздействием. Спрямление профиля пути. Масса состава, ее проверка на трогание с места. Длина состава и поезда, число вагонов и осей состава. Решение тормозной задачи.

    курсовая работа [174,5 K], добавлен 09.12.2013

  • Расчет программы технического обслуживания и ремонта подвижного состава. Расчет объемов трудоемкостей технических воздействий. Технологическая планировка поста смены колес. Выбор оборудования для участка. Расчет площади участка и количества рабочих.

    курсовая работа [480,9 K], добавлен 25.05.2014

  • Юридический статус, географическое и административное положение предприятия ООО "Генподряд". Принципы организации технического обслуживания и ремонта подвижного состава. Анализ существующих конструкций. Устройство для вывешивания колес автомобилей.

    курсовая работа [1,1 M], добавлен 22.06.2014

  • Расчет трудоемкости технического обслуживания и текущего ремонта подвижного состава. Определение численности ремонтных рабочих. Расчет затрат предприятия на выполнение на ТО и ТР подвижного состава. Калькуляция себестоимости одного обслуживания ТО-1.

    курсовая работа [2,2 M], добавлен 05.10.2012

  • Изучение технологического процесса усиленного капитального ремонта пути на новых рельсах с укладкой железобетонных шпал. Рассмотрение требований безопасности к организации работ с применением путевых механизмов, ручного и механизированного инструмента.

    курсовая работа [44,2 K], добавлен 28.12.2011

  • Определение потребной тормозной силы по длине пути. Выбор схемы тормозного нажатия. Определение параметров механической части тормоза. Проектирование принципиальной пневматической части тормозной системы. Расчет продольно-динамических сил в вагоне.

    курсовая работа [251,0 K], добавлен 15.01.2013

  • Корректирование нормативов периодичности технического обслуживания автомобилей. Определение коэффициента использования автомобиля. Определение общей годовой трудоемкости технических воздействий подвижного состава. Ремонт топливной аппаратуры дизелей.

    курсовая работа [35,5 K], добавлен 23.05.2013

  • Методика расчета технико-эксплуатационных показателей работы подвижного состава. Определение производственной программы по перевозкам для транспортной сети, количества водителей для выполнения данного объема перевозок, ТЭП работы подвижного состава.

    контрольная работа [86,6 K], добавлен 25.12.2011

  • Анализ объема перевозок по дороге. Наличие и объем работы тягового подвижного состава. Анализ влияния факторов на изменения среднесуточной производительности локомотивов. Рабочий парк грузового вагона, показатели объема работы и качества использования.

    курсовая работа [579,3 K], добавлен 22.01.2012

  • Анализ профиля пути и расчетного подъема. Определение массы состава. Проверка на преодоление элементов профиля большей крутизны, чем расчётный подъём, которая заключается в расчёте скорости движения поезда для подъёмов. Расчет силы тяги локомотива.

    курсовая работа [591,5 K], добавлен 21.12.2010

  • Электрический транспорт - совокупность электроподвижного состава и систем его энергоснабжения. Параметры профиля пути, состава и движения. Решение тяговой задачи. Определение кривых движения поезда. Определение тока и энергии, потребляемой данным ЭПС.

    курсовая работа [1,6 M], добавлен 02.07.2012

  • Определение скорости, ускорения, силы инерции звеньев механизма и давления в кинематических парах. Параметры нулевого зацепления зубчатых колес. Влияние изменения скорости скольжения на качество работы передачи. Значение коэффициента перекрытия.

    курсовая работа [303,4 K], добавлен 15.01.2011

  • Решение планировочной задачи для определения весовых показателей электрического подвижного состава. Определение колебательной модели электромобиля. Расчет мостов, пневмошин, упругих элементов и гасителей колебаний. Определение схемы тягового привода.

    курсовая работа [1,5 M], добавлен 15.03.2015

  • Рассмотрение особенностей расшифровывания модели подвижного состава. Общая характеристика способов определения общего объема и среднего расстояния перевозок груза. Знакомство с основными этапами расчета эксплуатационных качеств подвижного состава.

    контрольная работа [28,7 K], добавлен 28.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.