Review of global practice of using cell phone data to measure traveller data
Updating the issue of the need for a comprehensive solution to the problems of functioning of passenger railway transport. Crowdsourcing smartphone traffic data collection. Explore the technologies and methods that use mobile phone data around the world.
Рубрика | Транспорт |
Вид | статья |
Язык | английский |
Дата добавления | 20.03.2024 |
Размер файла | 17,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ukrainian State University of Railway Transport, Ukraine
Review of global practice of using cell phone data to measure traveller data
Yurii Yashchuk
post graduate student
Scientific adviser: Tetiana Butko
Dr. Sc. (Tech.), professor, professor
of the Department of management of operational work
JSC "Ukrzaliznytsia" is a national integrated railway company and the largest employer in the country, playing a crucial role in the Ukrainian economy and the labour market. The rail companies faces significant risks, mainly due to prolonged disruptions due to the ongoing armed conflict on Ukrainian territory [1]. In such conditions, the question of the need for a comprehensive solution to the problems of the functioning of passenger railway transport, where the number of travellers serves as a pivotal indicator of the demand for transportation services, offering essential information for planning and evaluations. Advancements in technology have enabled the collection of crowd-sourced traffic data [2]. Crowdsourced smartphone data can collect information about user locations, travel paths, route choices, travel times, and speeds. This analysis explores how the number of passengers in trains is measured, examining technologies and methods that use cell phone data globally to assess their potential application in Ukraine.
When looking at global practices, two significant challenges emerge in the search for ridership data. One challenge is the tendency of train operators to regard such information, especially high-resolution data, as confidential business details [3]. Another challenge lies in the varying quality and coverage of the available data. Previous research, exemplified by [4], has addressed the unreliability of ridership data.
Quantification of rail travel demand typically relies on the number of passengers, with more intricate metrics including the common origin / destination matrix format. Traditionally, there are various approaches to determine the demand between an origin and destination point. The most prevalent method is the O-D matrix, which delineates population transitions between different geographical regions representing the route's origin (O) and destination (D). User surveys are the most commonly used method to populate these matrices. Traditional surveys offer strengths, such as including crucial responses' informa tion such as age and sex, along with details about the purpose of the trip [5]. However, a significant challenge with user surveys is the declining response rates, potentially introducing bias into the samples [6]. These surveys are typically conducted no more than once a year and may lack regularity. Consequently, this method may suffer from low frequency, high cost, variable data quality, low precision, and susceptibility to errors.
Mobile phone data can elucidate people's movement patterns, as demonstrated in [7] study, where the mobile phone records of a million users in Boston were analysed to describe transportation needs. Passenger counting serves as the pivotal measurement parameter associated with ridership. Different types of measurement and ridership estimation techniques are applied for different network levels. The selection of the appropriate network level depends on the specific use and issue being addressed outline the uses of passenger counting and ridership calculation based on data measurement methods. These uses vary for each measurement type, and operators typically employ multiple types to fulfil various purposes.
Considerable research has concentrated on developing methodologies to extract valuable insights into human mobility from mobile phone traces and understanding their limitations [5]. Mobile phone data can be used to estimate commuting patterns and travel times for individuals. Chaudhary et al. [8] discuss the collection of information about occupancy levels in public transportation systems using smartphones, demonstrating the predictive accuracy of patterns in bus occupancy levels up to 92%. Higuchi et al. [9] identify innovative uses based on mobile devices, including technologies commonly found in smartphones such as GPS, Wi-Fi, and Bluetooth. Various approaches involve analysing the exchange of information between the mobile base station and the cellular network to calculate this information. Most studies perform trip extraction from raw cell network data to extract relevant movements for traffic analysis [5 etc.]. The authors use different scaling factors to estimate total travel demand in terms of the number of people travelling.
Mobile phones, through activated apps, are an expanding data source. Apps can track entire journeys, especially when users have allowed GPS tracking. These applications can be supplied by private or public transportation entities or can be used for navigation, health monitoring, or other purposes. Data from these apps are typically managed by the app-issuing organisation, not by the mobile network managers. The use of mobile phone data has both advantages and disadvantages. For example, CDR data provide approximate locations when the phone communicates with a cell phone tower, offering an incomplete and imprecise view of daily trips. Furthermore, mobile phone data cannot provide information about the traveller, such as age, income, or the purpose of the trip, as a survey would [5]. However, mobile phone data are automatically collected, making them more frequent and economical than surveys. Additionally, since mobile phone data can be gathered over a more extended period, they can capture information about variations in travellers' daily travel behaviour.
Thus, there is the possibility to use mobile phone data to depict travel patterns, specifically those involving train travel. A notable positive surge is observed when trains pass and it becomes feasible to integrate mobile data with information on train traffic. This integrated approach can be applied in the organisation of train passenger travel by train using crowd-sourced traffic data.
References
passenger railway transport crowdsourcing
1. Бутько, Т.В., Horsin, T. & Ящук, Ю.І. (2022). Організація подорожей пасажирів на основі технологій ризик-менеджменту з використанням краудсорсингових даних про трафік. 3-я міжнародна науково-технічна конференція «Інтелектуальні транспортні технології» (с.14-16). 22-23 листопада, 2022, Харків, Україна: УкрДУЗТ.
2. Kanhere, S.S. (2011). Participatory sensing: Crowdsourcing data from mobile smartphones in urban spaces. 2011 IEEE 12th International Conference on Mobile Data Management (pp. 3-6). June 6-9, 2011, Lulea, Sweden.
3. Vigren, A. (2017). Competition in Public Transport. Essays on Competitive Tendering and Open-access Competition in Sweden (Doctoral Thesis in Transport Science). KTH Royal Institute of Technology, Stockholm, Sweden.
4. Kezic, M.E.L. & Durango-Cohen, P.L. (2018). New ridership for old rail: An analysis of changes in the utilization of Chicago's urban rail system, 1990-2008. Research in Transportation Economics, (71), 17-26.
5. Alexander, L., Jiang, S., Murga, M. & Gonzalez, M.C. (2015). Origin-destination trips by purpose and time of day inferred from mobile phone data. Transport. Res. C: Emerg. Technol., (58, Part B), 240-250.
6. Schoeni, R.F., Stafford, F., Mcgonagle, K.A. & Andreski, P. (2013). Response rates in National panel surveys. Ann. Am. Acad. Polit. Soc. Sci., (645 (1)), 60-87.
7. Calabrese, F., Di Lorenzo, G., Liu, L. & Ratti, C. (2011). Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Computing, (10 (4)), 36-44.
8. Chaudhary, M., Bansal, A., Bansal, D., Raman, B., Ramakrishnan, K.K. & Aggarwal, N. (2016). Finding occupancy in buses using crowdsourced data from smartphones. Proceedings of the 17th International Conference on Distributed Computing and Networking (pp. 1-4). January 4-7, 2016, Singapore.
9. Higuchi, T., Yamaguchi, H. & Higashino, T. (2015). Mobile devices as an infrastructure: a survey of opportunistic sensing technology. Journal of information processing, (23 (2)), 94-104.
Размещено на Allbest.ru
...Подобные документы
The first rapid-transit system. History Metropolitan Railway. Network topologies, construction stages of London's Metropolitan Railway. Safety and security. Infrastructure 5-Line of Metro de Santiago (Chile), The Soviet Union's stations, Stockholm metro.
презентация [1,2 M], добавлен 13.05.2014International airports serving Moscow. A special program of creating night bus and trolleybus routes. The formation of extensive tram system to transport people. The development of the subway to transport passengers to different sides of the capital.
презентация [4,7 M], добавлен 08.08.2015The car as an integral part of people's lives. Design as a factor of business success in the automotive industry and transport engineering. The transition to an integrated supporting structures instead used on American cars spar frame side members.
презентация [6,3 M], добавлен 23.04.2015Construction of zone and flight plan. Modeling of zone in experimental program "Potok". Analysis of main flow direction of modeled airspace. Analysis of modeled airspace "Ivlieva_South" and determination of main flow direction, intensity, density.
курсовая работа [2,0 M], добавлен 21.11.2014Документация на новые элементы VIP-салона и их установку, электрические схемы и электроконструкции. Общее описание самолета Global Express XRS (Bombardier Aerospace). Аварийно-спасательное оборудование, противопожарная защита. Кислородное оборудование.
отчет по практике [39,6 K], добавлен 13.02.2014The air transport system in Russia. Project on the development of regional air traffic. Data collection. Creation of the database. Designing a data warehouse. Mathematical Model description. Data analysis and forecasting. Applying mathematical tools.
реферат [316,2 K], добавлен 20.03.2016Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.
доклад [25,3 K], добавлен 16.06.2012Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.
презентация [3,9 M], добавлен 17.02.2016A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.
топик [19,0 K], добавлен 29.06.2009Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.
курсовая работа [3,2 M], добавлен 19.05.2011Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.
контрольная работа [565,6 K], добавлен 02.09.2010Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа [728,4 K], добавлен 10.07.2017Історія виникнення комерційних додатків для комп'ютеризації повсякденних ділових операцій. Загальні відомості про сховища даних, їх основні характеристики. Класифікація сховищ інформації, компоненти їх архітектури, технології та засоби використання.
реферат [373,9 K], добавлен 10.09.2014Wireless LANs will provide the first layer of connectivity between mobile users and the global information infrastructure. Wireless application design, data reduction, caching, active documents, dynamic URLs. Interworking units for wireless connectivity.
реферат [23,7 K], добавлен 07.10.2010Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.
дипломная работа [2,5 M], добавлен 01.07.2017Research methods are strategies or techniques to conduct a systematic research. To collect primary data four main methods are used: survey, observation, document analysis and experiment. Several problems can arise when using questionnaire. Interviewing.
реферат [16,7 K], добавлен 18.01.2009The main products of the company Apple. The first programmable microcomputer. Apple's marketing policy. The encoding of the voice signal. Secure data transfer protocols. Infringement of the patent in the field of wireless data company Motorola Mobility.
презентация [640,7 K], добавлен 25.01.2013Определение программы управления корпоративными данными, ее цели и предпосылки внедрения. Обеспечение качества данных. Использование аналитических инструментов на базе технологий Big Data и Smart Data. Фреймворк управления корпоративными данными.
курсовая работа [913,0 K], добавлен 24.08.2017Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012