Принятие решений в условиях неопределенности

Проблема принятия решения с точки зрения системного анализа. Принципы системного подхода. Основные критерии, используемые в процессе принятия решений в условиях неопределенности. Практическое применение критерия Гурвица. Теория многомерной полезности.

Рубрика Менеджмент и трудовые отношения
Вид курсовая работа
Язык русский
Дата добавления 30.07.2017
Размер файла 378,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Принятие решений в условиях неопределенности

Введение

Каждый человек в жизни сталкивается с необходимостью принятия важных и не очень важных решений. Но не всякий задумывается, как сделать свой индивидуальный выбор наилучшим образом, получить наибольшую пользу и уменьшить возможные негативные последствия от реализованного решения.

В современных условиях резко повысилась цена, которую приходится платить обществу за недостаточно обоснованные экономические или социальные решения. Одновременно увеличилась и мера ответственности руководителей, принимающих решение. Как никогда ранее, усилилась взаимная зависимость всех лиц, участвующих в подготовке и принятии решения. Каждый руководитель, решая конкретные вопросы на своем уровне управления, должен увязывать интересы разных сторон, учитывать сложившиеся связи и последствия их нарушения.

Возрастающие требования к качеству управления в разных сферах человеческой деятельности диктуют необходимость выполнения специальной аналитической работы при формировании и принятии решения. Современный руководитель должен принимать решение не интуитивно, а используя соответствующий инструментарий для поиска лучшего варианта и обоснования сделанного выбора.

Для подготовки решения привлекаются специалисты-эксперты, консультанты, системные аналитики, а в сложных и уникальных ситуациях выбора их участие обязательно. Основная задача экспертов состоит в разработке альтернативных вариантов, выявлении достоинств и недостатков каждого из них, оценке последствий выбора того или иного варианта. Для эффективного выполнения своих функций эти специалисты должны обладать знаниями о существующих методах и средствах поддержки принятия решений, а также умением применять такой инструментарий на практике.

Теория принятия решений -- комплексная научная дисциплина, направленная на разработку методов и средств, помогающих одному или нескольким лицам сделать обоснованный выбор наилучшего из имеющихся вариантов.

В курсовой работе рассматриваются несколько вопросов:

1. Принципы системного подхода;

2. Принятие решения в условиях неопределенности. Постановка задачи;

3. Критерий Гурвица;

4. Теория многомерной полезности.

1. Системный анализ

Системный анализ - наука, занимающаяся проблемой принятия решения в условиях анализа большого количества информации различной природы.

Из определения следует, что целью применения системного анализа к конкретной проблеме является повышение степени обоснованности принимаемого решения, расширение множества вариантов, среди которых производится выбор, с одновременным указанием способов отбрасывания заведомо уступающим другим.

В системном анализе выделяют:

- методологию;

- аппаратную реализацию;

- практические приложения.

Методология включает определения используемых понятий и принципы системного подхода.

Элемент - некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.

Связь - важный для целей рассмотрения обмен между элементами веществом, энергией, информацией.

Система - совокупность элементов, которая обладает следующими признаками:

- связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;

- свойством, отличным от свойств отдельных элементов совокупности.

Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.

Большая система - система, которая включает значительное число однотипных элементов и однотипных связей. В качестве примера можно привести трубопровод. Элементами последнего будут участки между швами или опорами. Для расчетов на прочность по методу конечных элементов элементами системы считаются небольшие участки трубы, а связь имеет силовой (энергетический) характер - каждый элемент действует на соседние.

Сложная система - система, которая состоит из элементов разных типов и обладает разнородными связями между ними. В качестве примера можно привести ЭВМ, лесной трактор или судно.

Автоматизированная система - сложная система с определяющей ролью элементов двух типов:

- в виде технических средств;

- в виде действия человека.

Для сложной системы автоматизированный режим считается более предпочтительным, чем автоматический. Например, посадка самолета или захват дерева харвестерной головкой выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях. Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.

Структура системы - расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом. Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу. Пример материальной структуры - структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения. Пример функциональной структуры - деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи крутящего момента. Пример алгоритмической структуры - алгоритм программного средства, указывающего последовательность действий или инструкция, которая определяет действия при отыскании неисправности технического устройства.

Структура системы может быть охарактеризована по имеющимся в ней типам связей.

Декомпозиция - деление системы на части, удобное для каких-либо операций с этой системой. Примерами будут: разделение объекта на отдельно проектируемые части, зоны обслуживания; рассмотрение физического явления или математическое описание отдельно для данной части системы.

Иерархия - структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом. Виды иерархических структур разнообразны, но важных для практики иерархических структур всего две - древовидная и ромбовидная (рис.1.2).

Древовидная структура наиболее проста для анализа и реализации. Кроме того, в ней всегда удобно выделять иерархические уровни - группы элементов, находящиеся на одинаковом удалении от верхнего элемента. Пример древовидной структуры - задача проектирования технического объекта от его основных характеристик (верхний уровень) через проектирование основных частей, функциональных систем, групп агрегатов, механизмов до уровня отдельных деталей.

1.1 Принципы системного подхода

Принципы системного подхода - это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Их часто считают ядром методологии. Известно около двух десятков таких принципов, ряд из которых целесообразно рассмотреть:

- принцип конечной цели: абсолютный приоритет конечной цели;

- принцип единства: совместное рассмотрение системы как целого и как совокупности элементов;

- принцип связности: рассмотрение любой части совместно с ее связями с окружением;

- принцип модульного построения: полезно выделение модулей в системе и рассмотрение ее как совокупности модулей;

- принцип иерархии: полезно введение иерархии элементов и(или) их ранжирование;

- принцип функциональности: совместное рассмотрение структуры и функции с приоритетом функции над структурой;

- принцип развития: учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации;

- принцип децентрализации: сочетание в принимаемых решениях и управлении централизации и децентрализации;

- принцип неопределенности: учет неопределенностей и случайностей в системе.

Аппаратная реализация включает стандартные приемы моделирования принятия решения в сложной системе и общие способы работы с этими моделями. Модель строится в виде связных множеств отдельных процедур. Системный анализ исследует как организацию таких множеств, так и вид отдельных процедур, которые максимально приспосабливают для принятия согласующихся и управленческих решений в сложной системе.

Модель принятия решения чаще всего изображается в виде схемы с ячейками, связями между ячейками и логическими переходами. Ячейки содержат конкретные действия - процедуры. Совместное изучение процедур и их организации вытекает из того, что без учета содержания и особенностей ячеек создание схем оказывается невозможным. Эти схемы определяют стратегию принятия решения в сложной системе. Именно с проработки связанного множества основных процедур принято начинать решение конкретной прикладной задачи.

Отдельные же процедуры (операции) принято классифицировать на формализуемые и неформализуемые. В отличие от большинства научных дисциплин, стремящихся к формализации, системный анализ допускает, что в определенных ситуациях неформализуемые решения, принимаемые человеком, являются более предпочтительными. Следовательно, системный анализ рассматривает в совокупности формализуемые и неформализуемые процедуры, и одной из его задач является определение их оптимального соотношения.

Формализуемые стороны отдельных операций лежат в области прикладной математики и использования ЭВМ. В ряде случаев математическими методами исследуется связное множество процедур и производится само моделирование принятие решения. Все это позволяет говорить о математической основе системного анализа. Такие области прикладной математики, как исследование операций и системное программирование, наиболее близки к системной постановке вопросов.

Практическое приложение системного анализа чрезвычайно обширно по содержанию. Важнейшими разделами являются научно-технические разработки и различные задачи экономики. Ссылки на системность исследований, анализа, подхода включает биологию, экологию, военное дело, психологию, социологию, медицину, управление государством и регионом, лесное и сельское хозяйство, обучение и многое другое.

2. Принятие решений в условиях неопределенности

2.1 Постановка задачи

Неопределенность - это фундаментальное свойство природы, а еще более (и точнее) - свойство, характеризующее неточность, незамкнутость, неокончательность, неполноту наших представлений о внешнем мире, и принципиальную непредсказуемость будущих его состояний для сознания, мыслящего этот мир в динамических категориях.

Исследование всех эффектов, влияющих на условие неопределенности, - задача, конечно, колоссальной сложности, и ее решение, по всей вероятности, возможно лишь на пути объединения усилий не только экономистов-теоретиков и экспериментаторов, но и психологов, социологов, философов, математиков в рамках масштабной междисциплинарной исследовательской программы.

Можно утверждать, что решение задач с учетом разного вида неопределенностей является общим случаем, а принятие решений без их учета - частным. Однако, из-за концептуальных и методических трудностей в настоящее время не существует единого методологического подхода к решению таких задач. Тем не менее, накоплено достаточно большое число методов формализации постановки и принятия решений с учетом неопределенностей. При использовании этих методов следует иметь в виду, что все они носят рекомендательный характер и выбор окончательного решения всегда остается за человеком (ЛПР).

Как уже указывалось, при решении конкретных задач с учетом неопределенностей инженер сталкивается с разными их типами. В исследовании операций принято различать три типа неопределенностей:

- неопределенность целей;

- неопределенность наших знаний об окружающей обстановке и действующих в данном явлении факторах (неопределенность природы);

- неопределенность действий активного или пассивного партнера или противника.

В приведенной выше классификации тип неопределенностей рассматривается с позиций того или иного элемента математической модели. Так, например, неопределенность целей отражается при постановке задачи на выборе либо отдельных критериев, либо всего вектора полезного эффекта.

С другой стороны, два другие типа неопределенностей влияют, в основном, на составление целевой функции уравнений ограничений и метода принятия решения. Конечно, приведенное выше утверждение является достаточно условным, как, впрочем, и любая классификация. Мы приводим его лишь с целью выделить еще некоторые особенности неопределенностей, которые надо иметь в виду в процессе принятия решений.

Дело в том, что кроме рассмотренной выше классификации неопределенностей надо учитывать их тип (или "род") с точки зрения отношения к случайности.

По этому признаку можно различать стохастическую (вероятностную) неопределенность, когда неизвестные факторы статистически устойчивы и поэтому представляют собой обычные объекты теории вероятностей - случайные величины (или случайные функции, события и т.д.). При этом должны быть известны или определены при постановке задачи все необходимые статистический характеристики (законы распределения и их параметры).

Примером таких задач могут быть, в частности, система технического обслуживания и ремонта любого вида техники, система организации рубок ухода и т.д.

Другим крайним случаем может быть неопределенность нестохастического вида (по выражению Е.С.Вентцель - "дурная неопределенность"), при которой никаких предположений о стохастической устойчивости не существует. Наконец, можно говорить о промежуточном типе неопределенности, когда решение принимается на основании каких-либо гипотез о законах распределения случайных величин. При этом ЛПР должен иметь в виду опасность несовпадения его результатов с реальными условиями. Эта опасность несовпадения формализуется с помощью коэффициентов риска.

Принятие решений в условиях неопределенности основано на том, что вероятности различных вариантов ситуаций развития событий субъекту, принимающему рисковое решение, неизвестны. В этом случае при выборе альтернативы принимаемого решения субъект руководствуется, с одной стороны, своим рисковым предпочтением, а с другой -- соответствующим критерием выбора из всех альтернатив по составленной им «матрице решений».

Основные критерии, используемые в процессе принятия решений в условиях неопределенности, представлены ниже.

- критерий Вальда (критерий «максимина»)

- критерий «максимакса»

- критерий Гурвица (критерий «оптимизма-пессимизма» или «альфа-критерий»)

- критерий Сэвиджа (критерий потерь от «минимакса»)

3. Критерий Гурвица

Критерий Гурвица (критерий «оптимизма-пессимизма» или «альфа-критерий») позволяет руководствоваться при выборе рискового решения в условиях неопределенности некоторым средним результатом эффективности, находящимся в поле между значениями по критериям «максимакса» и «максимина» (поле между этими значениями связано посредством выпуклой линейной функции). Оптимальная альтернатива решения по критерию Гурвица определяется на основе следующей формулы:

А i=а *Э MAXi+ (1 - а) * Э MINi, (1)

где A i -- средневзвешенная эффективность по критерию Гурвица для конкретной альтернативы;

а -- альфа-коэффициент, принимаемый с учетом рискового предпочтения в поле от 0 до 1 (значения, приближающиеся к нулю, характерны для субъекта, не склонного к риску; значение равное 0,5 характерно для субъекта, нейтрального к риску; значения, приближающиеся к единице, характерны для субъекта, склонного к риску);

Э MAXi -- максимальное значение эффективности по конкретной альтернативе;

Э MINi -- минимальное значение эффективности по конкретной инициативе.

Критерий Гурвица используют при выборе рисковых решений в условиях неопределенности те субъекты, которые хотят максимально точно идентифицировать степень своих конкретных рисковых предпочтений путем задания значения альфа-коэффициента.

Критерий Гурвица - это взвешенная позиция “пессимизма-оптимизма”.

При С =1- критерий Гурвица просто соответствует Максиминному критерию.

Составные критерия принятия решений в условиях неопределенности.

Шаг А: требования к допустимому риску.

Вот на этом шаге уточняется критический уровень дохода(или потерь), приемлемый для ЛПР в конкретной ситуации. За основу бреется опорное значение для выбранного опорного критерия. После задается допустимое для ЛПР максимально возможное отклонение Едоп>0 от опорного значения(в худшую сторону).

Шаг Б: блокировка решений с недопустимом риском.

Вот на этом шаге удаляются из исходной матрицы все решения, который не подходят требованиям ЛПР, которые предъявляются к допустимому риску применительно к анализируемой ситуации.

Шаг В: требования к компенсации за риск.

Этот шаг уточняет требования к анализируемым решениям, для которых баланс между риском потерь( при -) и компенсации( при +) является приемлемым для ЛПР.

Шаг Г: блокировка решений с недостаточной компенсацией риска.

Вот на этом шаге из матрицы полезностей(которая будет получена после шага Б) удаляются все решения, которые не соответствуют требованиям ЛПР.

Шаг Д: выбор оптимального решения.

И наконец, на этом шаге для оставшейся «урезанной» матрицы находится оптимальное решение по заранее оговоренном критерию. Это найденное решение и будит являться оптимальным выбором для соответствующего составного критерия. Последствия решений менеджера, экономиста, инженера проявятся в будущем. А будущее неизвестно. Мы обречены принимать решения в условиях неопределенности. Мы всегда рискуем, поскольку нельзя исключить возможность нежелательных событий. Но можно сократить вероятность их появления. Для этого необходимо спрогнозировать дальнейшее развитие событий, в частности, последствия принимаемых решений.

3.1 Пример решения задачи с помощью критерия Гурвица

Предприятие выпускает два вида продукции: А и В. При этом используются pecypcы: Rl, R2 и R3. Нормы расхода на ресурсы составляют соответственно:

R1: a1, a2

R2: b1,b2

R3: c1, c2

Рыночная цена продукции А составляет-Р1, продукции В-Р2. Необходимо принять решение относительно плана выпуска продукции обеспечивающего максимальный доход. Оценить устойчивость выбранного решения относительно колебания цен на продукцию. Объемы ресурсов: Rl -Vl, R2-V2, R3-V3

al

а2

bl

Ь2

cl

с2

Р1

Р2

VI

V2

V3

3

5

2

1

4

6

3

2

30

20

48

Обозначим - количество продукции А, - Количество продукции В.

Найти Х=(, ), удовлетворяющие системе

1+5х2 ? 30 -количество ресурса

12 ? 20 -количество ресурса

1+6х2 ? 48 - количество ресурса

и условию

при котором функция дохода принимает максимальное значение.

V = P1 + P2 = 3+ 2 > max

Формулировка задачи.

Графический метод.

Построим ОДЗ и

Неравенства , задают первый квадрант координатной плоскости.

Неравенство 3x1+5x2 ? 30 задает полуплоскость, расположенную под прямой 3x1+5x2=30, включая эту прямую.

Неравенство 2x1+x2?20 задает полуплоскость, расположенную под прямой 2x1+x2=20, включая эту прямую.

Неравенство 4x1+6x2?48 задает полуплоскость, расположенную под прямой 4x1+6x2=48, включая эту прямую.

Таким образом, получаем, что множество точек, удовлетворяющее всем неравенствам, Область ОАВС.

Построим вектор N{3;2}. Его проекция на ось равна 3, на ось 2.

Поскольку необходимо найти максимум функции V, будем перемещать прямую l, перпендикулярно вектору H, от начала к концу вектора H, т.е. в направлении возрастания функции V. Перейдя в точку В, прямая l окажется на выходе из многоугольной области ОАВС. Точка В - (крайняя) последняя точка области при движении в направлении вектора H, поэтому значение функции V в этой точке будет наибольшим по сравнению с ее значениями в других точках области.

Поскольку точка В - точка пересечения первой и второй прямой, то ее координаты можно найти, решая систему уравнений:

3x1+5x2 =- 30

2x1+x2=-20

Выразим из второго уравнения :

x2 = 20-2x1

И подставим в первое уравнение

3x1+5(20-2x1) = 30

Откуда x1 = 10

Подставив в выражение для , получим x2 = 0

Таким образом оптимальное решение - точка В (10,0)

Оценим устойчивость выбранного решения относительно колебания цен на продукцию.

Функция V=3x1+2x2 достигает максимального значения в угловой точке В. При изменения коэффициентов целевой функции точка В останется точкой оптимального решения до тех пор, пока угол наклона прямой l будет лежать между углами наклона двух прямых, пересечением которых является точка В. Этими прямыми являются (ограничение на ресурс R1) и (ограничение на ресурс R2).

Таким образом найденное решение будет оптимальным, пока отношение цены продукции А к цене продукции В будет находиться в диапазоне от 0,6 до 2.

4. Теория многомерной полезности

Теория многомерной полезности позволяет для задач в условиях риска и неопределенности получить функцию многомерной полезности, максимальное значение которой соответствует наиболее предпочтительному варианту. Многомерная функция полезности обычно получается как аддитивная или мультипликативная комбинация одномерных функций, которые строятся на основании опроса экспертов и позволяют провести ранжирование возможных исходов без взаимного сравнения альтернатив. При этом делается допущение о взаимной независимости критериев по полезности. Процедура построения функции полезности требует привлечения значительных объемов информации и является достаточно трудоемкой. Достоинством этого подхода является возможность оценки любого количества альтернативных вариантов с использованием полученной функции. В случае неустойчивой исходной информации применение методов теории полезности становится малоэффективным.

В общем случае полезность каждого варианта зависит от его оценок по многим частным критериям. Необходимость учета этого обстоятельства привела к созданию аксиоматической теории многомерной полезности (Multi-Attribute Utility Theory -- MAUT), существенный вклад в построение которой внесли Р. Кини, Г. Рай- фа, П. Фишберн (США).

Теория опирается на формальные допущения (аксиомы), характеризующие предпочтения ЛПР и задающие определенный вид функции полезности. Предложены разные системы таких аксиом. Представим одну из наиболее известных аксиоматик многомерной полезности, которая включает в себя аксиомы, аналогичные используемым в теории одномерной полезности, и ряд дополнительных аксиом, устанавливающих независимость предпочтений ЛПР.

МП1. Аксиома полной сравнимости. При сравнении любых двух вариантоввыполняется одно и только одно бинарное отношение между полезностями вариантовлибо равенство, либо строгий порядок или

МП2. Аксиома транзитивности. Отношения равенства и строгого порядка между полезностями вариантов транзитивны:

МП3. Аксиома растворимости. Для любых вариантов таких, чтонайдется такая вероятность р, что полезности вариантаи простой лотереи равны:

МП4. Аксиома Архимеда. Для любых вариантов таких, что|, найдутся вероятности р и q

такие, что полезности вариантаи простых лотерей удовлетворяют неравенствам

МП5. Аксиома независимости по предпочтению. Для любых вариантовтаких, чтонайдется такая вероятность р, что полезности простых лотерейи при любом вариантеудовлетворяют неравенству

МП6. Аксиома независимости по полезности. Для любых простых лотерейтаких, что, найдется такая вероятность р, что полезности составных лотерей ипри любом вариантеудовлетворяют неравенству

Аксиомы МП1 и МП2 совпадают с аксиомами ОП1 и ОП2. Аксиомы МПЗ и МП4 в совокупности аналогичны аксиомам ОПЗ и ОП4. Аксиомы независимости по предпочтению МП5 и полезности МП6 означают, что на результаты сравнения двух конкретных вариантов или лотерей не влияет присутствие каких-либо третьих вариантов. На критериальном языке это звучит так: предпочтительность вариантов и лотерей, которые различаются лишь значениями оценок по отдельным частным критериям, не зависит от одинаковых фиксированных значений оценок по остальным частным критериям.

Доказано, что при выполнении аксиом МП1 -- МП6 существует действительная многомерная функцияполезности, заданная на множестве вариантовв виде полилинейной функции

Здесь-- полезность оценкивариантапо q-му частному критериюудовлетворяющая условию нормировки причемхудшая и лучшая оценка по шкале критериячастный шкалирующий параметр, который определяется значением функции полезности Общая шкалирующая константанаходится из характеристического уравнения

Прифункция полезностиприобретает аддитивную формуа примультипликативную форму

При к = 0 мультипликативная функция полезности (15.5) сводится к аддитивной функции (15.4). Как и в одномерном случае, вариантпредпочтительнее для ЛПР вариантатогда и только тогда, когдаварианты эквивалентны для ЛПР

На практике нахождение численных значений шкалирующих константи конкретного выражения для функции многомерной полезности сопряжено со значительными трудностями. Это связано с большими расхождениями, которые может допускать ЛПР при выражении своих предпочтений.

Заключение

В данной курсовой работе мы рассмотрели системный анализ с точки зрения принятия решений, были подробно рассмотрены основные принципы системного анализа. Главной задачей было рассмотрение принятие решений в условиях неопределенности. Также рассмотрели основные критерии, используемые в процессе принятия решений в условиях неопределенности. Подробно рассмотрели критерий Гурвица, привели пример к данному критерию. Немаловажную роль в принятии решений играет теория многомерной полезности. В теории многомерной полезности рассмотрели общие положения.

Принятие решения -- это процесс рационального или иррационального выбора альтернатив, имеющий целью достижение осознаваемого результата.

Список используемой литературы

решение гурвиц системный

1. Райфа Г. Анализ решений. Введение в проблемы выбора в условиях неопределенности. М.: Наука, 1977.

2. Кирильченко А.А. Обоснование алгоритмов выбора пути в условиях неопределенности. // Препринт Ин-та прикл. матем. им. М.В. Келдыша АН СССР, 1991, N 108, 25 с.

3. Кирильченко А.А. Об исследовании эффективности алгоритмов выбора пути в условиях неопределенности. 2. Атлас особых ситуаций и атлас "неустойчивого доминирования" //М.:Препринт Ин-та прикл.матем. им. М.В. Келдыша РАН, 1997, N 44.-27с.

4. Гафт М.Г. Принятие решений при многих критериях.

5. Кипи Р. Л., Райфа X. Принятие решений при многих критериях: замещения и предпочтения. М.: Радио и связь, 1981.

6. Блюмин С.Л. Модели и методы принятия решений в условиях неопределенности / С.Л. Блюмин, ЛЭГИ, - 2001, - 139 с.

7. А.И. Орлов Теория принятия решений Учебное пособие. / Орлов А.И. - М.: Март, - 2004.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и сущность управленческих решений и их классификация. Основные понятия теории принятия решений. Применение методов принятия решений в условиях неопределенности. Выявление и диагностика проблем, возникающих в организации при изменении условий.

    курсовая работа [105,4 K], добавлен 01.04.2014

  • Неопределенности в среде принятия управленческих решений. Классификация рисков, способы их оценки и методика борьбы с ними. Управление рисками при принятии управленческих решений. Правила и критерии принятия решений в условиях неопределённости рынка.

    курсовая работа [129,7 K], добавлен 11.08.2014

  • Анализ и принятие управленческих решений в условиях определенности, в условиях риска, в условиях неопределенности. Общие модели и методы принятия решений в условиях определенности, неопределенности и риска. Эффективность работы персонала.

    реферат [34,0 K], добавлен 15.12.2006

  • Оценка и выбор многокритериальных решений в условиях определенности и ранжирование исходного множества альтернатив (без учета выполнения ограничений). Принятие решений в условиях риска и неопределенности. Вычисление минимаксного критерия Севиджа.

    курсовая работа [128,2 K], добавлен 22.01.2015

  • Понятия, связанные с принятием решений в различных условиях. Примеры принятия решений в условиях определенности, риска и неопределенности. Модели и методы принятия решений. Страховой, валютный, кредитный риск. Интуитивное и рациональное решение.

    реферат [90,4 K], добавлен 16.01.2011

  • Многокритериальный анализ вариантов. Стратегии принятия решений. Принятие решений в условиях неопределенности. Использование методов прогнозирования. Полный факторный эксперимент и имитационное моделирование. Динамическое программирование и теория игр.

    контрольная работа [1,9 M], добавлен 17.06.2012

  • Источники неопределенности ожидаемых условий на предприятии, возможности и особенности принятия решений в данной ситуации, выбор оптимальной стратегии действий. Технология и этапы принятия управленческого решения в условиях неопределенности спроса.

    курсовая работа [1,1 M], добавлен 19.05.2009

  • Использование методов комбинаторно-морфологического анализа и синтеза рациональных систем в подготовке принятия управленческих решений. Специфика принятия решений в государственных органах власти. Методы принятия решения в условиях неопределенности.

    контрольная работа [40,0 K], добавлен 13.11.2010

  • Роль управленческих решений в процессе управления, планирования, организации, координации и контроля. Принятие решения в условиях неопределенности, необходимость применения моделирования в производственных организациях. Анализ процесса принятия решений.

    контрольная работа [843,1 K], добавлен 19.05.2010

  • Разработка и реализация различного рода решений. Матрица эффективности принятия управленческих решений. Модель платежной матрицы. Проведение анализа перед принятием управленческого решения. Теория поиска оптимального поведения в условиях неопределенности.

    контрольная работа [73,8 K], добавлен 26.01.2013

  • Процесс подготовки и принятия управленческого решения. Методы принятия решений, направленных на достижение намеченных целей. Принятие управленческих решений в сложных кризисных условиях. Реализация альтернатив в условиях риска и неопределенности.

    курсовая работа [123,6 K], добавлен 30.03.2015

  • Понятия неопределенности и риска. Процесс влияния неопределенности и риска на деятельность организации. Научные методы принятия решений, рекомендуемые в условиях неопределенности и риска. Разработка управленческих решений на примере ЗАО "Молочный рай".

    курсовая работа [310,2 K], добавлен 17.10.2010

  • Основные свойства систем управления. Сущность, принципы и требования системного подхода к разработке и реализации управленческих решений. Механизм и процедуры системного анализа процесса принятия решений администрацией по благоустройству г. Якутска.

    курсовая работа [34,3 K], добавлен 17.04.2014

  • Понятие и содержание, общая характеристика внешней среды и исследование ее влияния на принятие, и реализацию управленческих решений. Принципы и отличительные особенности, этапы принятия решения на современном предприятии в условиях неопределенности.

    контрольная работа [30,4 K], добавлен 02.03.2014

  • Методы получения экспертных оценок. Проблема подбора экспертов. Нормативные документы, регулирующие деятельность экспертных комиссий. Принятие решений в условиях риска и в условиях неопределенности. Задачи на принятие решений в условиях неопределенности.

    контрольная работа [29,6 K], добавлен 15.07.2010

  • Критерии принятия управленческих решений в условиях неопределенности рыночной среды. Содержание и виды рисков при реализации управленческих решений. Классификация рисков, способы оценки их степени. Борьба с рисками в торговой организации "Молочный рай".

    курсовая работа [331,8 K], добавлен 16.06.2015

  • Определение системного анализа. Основные аспекты системного подхода. Процедура принятия решений. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач.

    курсовая работа [46,5 K], добавлен 07.12.2009

  • Сущность и факторы инвестиционной привлекательности, особенности ее исследования в соотношении "потенциал – риски". Учет риска при принятии инвестиционных решений, качественные и количественные критерии. Принятие решений в условиях неопределенности.

    курсовая работа [101,7 K], добавлен 05.01.2014

  • Виды управленческих решений. Технологии принятия решения в условиях неопрделенности. Характеристика предприятия и выявление проблем, подлежащих решению. Оценка альтернативных решений выявленных проблем. Разработка плана реализации управленческого решения.

    контрольная работа [92,4 K], добавлен 18.03.2013

  • Основные понятия теории принятия решений. Формализация задач принятия решений. Однокритериальные и многокритериальные задачи в условиях определенности. Методы оценки многокритериальных альтернатив. Методы построения аддитивной функции полезности.

    дипломная работа [2,9 M], добавлен 08.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.