Методика обучения решению задач на построение

Организация обучения и методика решения задач по геометрии. Основные проблемы, связанные с методикой решения задач на построение. Устное и письменное фронтальное решение математических задач. Индивидуальный подход при организации обучения решению задач.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 30.01.2013
Размер файла 61,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика обучения решению общей схеме задач на построение.

Содержание

  • Введение
  • Глава первая. Методы решения задач
  • 1.1 Анализ и синтез при решении задач
  • 1.2 Другие общие методы решения задач
  • 1.3 Организация обучения решению математических задач
  • 1.4 Индивидуальное решение задач
  • 1.5 Заключительный этап в решении учебной математической задачи
  • Глава вторая. Методика обучения решениям общей схеме задач на построение
  • Заключение
  • Список литературы

Введение

Любой образовательный предмет в средней школе преподается по определенной методике. Методика - это совокупность методов обучения чему-нибудь, практического выполнения чего-нибудь. То есть методика - это и совокупность средств для достижения поставленной задачи.

Соответственно, чем вернее выбрана методика, тем лучше будет достигнутый результат. На данный момент существует множество новых педагогических методик, направленных на улучшение достижения результата восприятия учащимися материала. Большинство из них направлено на то, чтобы сделать учебный материал наиболее наглядным - для этого используются компьютерные технологии и новые практические примеры и опыты.

Но так как предмет данной работы - методика решения задач по геометрии, для начала необходимо рассмотреть основные проблемы связанные с методикой решения задач на построение.

Выделим основные из них: это необходимость максимальной наглядности при изучении данного материала, показать практическое применение или хотя бы какое-то обоснование применения (например архитектура, компьютерные стратегии и др.), т.к. в сегодняшнее время ученики уже и в данном возрасте ищут практические обоснования всему новому.

К сожалению, практических рекомендаций в методических пособиях для учителей фактически нет. Внимание уделяется лишь построению самой структуры урока и некоторыми дополнительными рекомендациями. Методические пособия по учебникам Погорелова А.В., Атанасяна Л.С., Шарыгина И.Ф. Погорелов А.В. Геометрия. Учеб. Для 7 - 11 кл., М. - 1998., Атанасян Л.С. Геометрия 7 - 9 класс.М. - 2001. Шарыгин И.Ф. Геометрия 7 - 9 кл., М. - 1999.

Данная работа преследует цель представить методику обучения решению общей схеме задач на построение, также показать некоторые общепринятые методы решения задач и методики работы с учениками на уроках геометрии.

В соответствии с этим данную работу я разделила на две основные части. Первая часть посвящена некоторым методикам в геометрии. Вторая глава является описанием методики обучения решению общей схеме задач на построение. Поскольку во второй главе предметом являются задачи на построение, то первая глава содержит в основном методы изучения и решения именно задач, а не другого материала из курса геометрии.

Глава первая. Методы решения задач

1.1 Анализ и синтез при решении задач

Анализ и синтез находят широкое применение при решении математических задач. Известно, что анализ - это метод рассуждений от искомых к данным. Синтез - метод рассуждений, ведущий от данных к искомым. Оба эти метода чаще всего применяются во взаимосвязи. Анализ и синтез находят применение практически при решении каждого вида задач, каждой задачи.

1) Анализ и синтез при решении задач на доказательство.

2) Анализ и синтез при решении текстовых задач. Текстовыми задачами чаще всего называют математические задачи, в которых входная информация содержит не только математические данные, но еще и некоторый сюжет (фабулу задачи).

При решении текстовых задач с помощью аппарата арифметики роль анализа сводится к составлению плана решения, задача же чаще всего решается синтетическим методом.

3) Анализ и синтез при решении задач на построение в геометрии. Анализ и синтез, естественно, применяются и при решении задач на построение в геометрии, иначе, конструктивных задач геометрии. Как известно, решение этих задач выполняется по следующему плану: анализ, построение, доказательство, исследование. Название первой части - анализ говорит само за себя: это действительно метод анализа, ведущий от искомых ("предположим, что искомая фигура построена") к данным, точнее, к их использованию в построении. При анализе намечается план построения, которое выполняется синтетическим путем. При доказательстве возможно использование, как анализа, так и синтеза, но чаще применяется последний. Исследование, соответственно, предполагает преимущественное применение метода анализа.

1.2 Другие общие методы решения задач

Рассмотренные в предыдущем пункте анализ и синтез являются самыми общими методами решения задач. Ниже излагаются также общие методы решения задач, которые имеют более ограниченное применение.

Один из них - метод исчерпывающих проб, основой которого является выявление всех логических возможностей и отбор из них таких, которые удовлетворяют условию задачи. Если логических возможностей, соответствующих условию задачи, - конечное число, то может оказаться возможным перебрать все их и в ходе этого перебора выделить вполне удовлетворяющие условию. С помощью этого приема решаются, в частности, некоторые элементарные задачи теоретико-числового содержания. Методом исчерпывающих проб с большим успехом можно пользоваться и для решения многих логических задач. Развитием указанного приема служат некоторые методы решения в целых или рациональных числах неопределенных уравнений, и в частности хорошо известный метод рассеивания.

Второй метод - это метод сведения. Суть его состоит в том, что, данные задачи подвергаются последовательным преобразованиям. Концом получающейся таким образом цепочки преобразований может быть состояние, простое рассмотрение которого дает требуемый 'результат. Если, например, нужно решить уравнение, то обычно составляют такую конечную последовательность уравнений, эквивалентных данному, последним звеном которой является уравнение с очевидным решением. Точно так же поступают при решении систем уравнений, неравенств, систем уравнений и неравенств. Решение задач на доказательство очень часто представляет собой цепочки тождественных преобразований, тянущиеся от левой части доказываемых тождеств к правой, или наоборот, или от левой и правой частей к одному и тому же выражению. Конечно, указанное сведение нужно понимать и как выведение, как конечную последовательность, ведущую от искомых к данным. Этот метод наиболее часто применяется в тех случаях, в которых заданное отношение обладает свойством транзитивности. Таковы отношения эквивалентности (равенства, уравнения, тождества, логическая равносильность, параллельность) м порядка (строгие и нестрогие неравенства, включение множеств, логическое следование). Прием "сведения" лежит в основе решения геометрических задач на построение. В каждой задаче этого вида содержится требование: исходя из данных фигур (или данных их элементов), с помощью указанных конструктивных элементов построить фигуру, удовлетворяющую определенным условиям. Это означает, что требуемое построение должно быть сведено к так называемым элементарным построениям, выполняемым реальными инструментами.

Метод сведения находит постоянные применения при решении текстовых задач арифметическими способами. Суть дела здесь состоит в том, что данная задача сводится к простым задачам.

Решение задач на доказательство теорем в своей основе имеет также сведение: доказываемое утверждение сводится к ранее доказанным теоремам и ранее введенным аксиомам и определениям данной научной области. Доказать - это значит свести новую теорему (задачу) в конечном счете к аксиомам.

Третий метод решения задач имеет своей основой моделирование (математическое и предметное). Для моделирования привлекаются различные математические объекты: числовые формулы, числовые таблицы, буквенные формулы, функции, уравнения алгебраические или дифференциальные и их системы, неравенства, системы неравенств (а также неравенств и уравнений), ряды, геометрические фигуры, разнообразные графосхемы, диаграммы Венна, графы и т.д.

Математическое моделирование находит применение при решении многих текстовых (сюжетных) задач. Уже уравнение, составленное по условию текстовой задачи, является ее алгебраической (аналитической) моделью. Чертеж фигуры, заданной в геометрической задаче, с обозначенными на ней данными и искомыми тоже является геометрической моделью задачи. Но нередко решению задачи помогает и предметная ее модель (например, объемная геометрическая фигура, модель с использованием или изображением предметов и объектов, заданных в задаче, и др.).

Большое практическое значение имеют методы нахождения приближенных значений искомых величин.

Все графические приемы решения задач на вычисление дают приближенные решения. Но приближенные решения могут получаться и с помощью численных методов (например, при решении квадратных уравнений по формулам их корней).

В геометрии используются приближенные методы построения. Примерами их служат спрямление окружности, построение квадрата, равновеликого данному кругу, деление угла на равные части и т.д.

Таковы основные приемы решения задач по курсу математики средней школы. Остается подчеркнуть, что в практике решения задач они часто комбинируются.

Одна из основных целей решения задач в школьном курсе математики и состоит в том, чтобы обеспечить действенное усвоение каждым учеником основных методов и приемов решения учебных математических задач.

Общие советы учителя ученику при решении задач. Для того чтобы научиться решать задачи, надо приобрести опыт их решения. Редкие ученики самостоятельно приобретают такой опыт. Долг учителя - помочь учащимся приобрести опыт решения задач, научить их решать задачи. Однако помощь учителя не должна быть чрезмерной. Если учитель много будет помогать ученику, на долю последнего ничего не останется или останется слишком мало работы по приобретению опыта решения задач. Так ученик не научится решать задачи. Если же помощь учителя будет мала, ученик также может не научиться решать задача. Учитель должен помогать ученику путем советов, как решать задачу, или вопросов, отвечая на которые ученик успешнее решит задачу. Иногда учитель разыгрывает решение задачи, сам, задавая вопросы и сам же отвечая на них. Ученики подражают ему в этом, постепенно приучаясь решать задачи. Но такой вариант обучения требует большей затраты времени и не всегда приводит к хорошим результатам. Можно сказать, что механическое подражание не метод обучения решению задач. Нужны вопросы и советы учителя ученику, вызывающие развивающие мыслительную деятельность школьников, помогающие развивать творческий подход к решению задач.

Такие вопросы и советы должны обладать общностью для различных задач, иначе ученики не научатся решать многие задачи, а будут учиться решать каждую конкретную задачу в отдельности. В то же время вопросы и советы должны быть естественны и просты, должны иметь своим источником простой здравый смысл. Они должны оказывать ученику действенную, но не назойливую помощь.

Но одних вопросов и советов учителя ученику недостаточно для обучения решению задач. Нельзя забывать, что "умение решать задачи есть искусство, приобретаемое практикой".

Вопросы и советы ученику условно можно подразделить на четыре группы. Это подразделение вопросов, вообще говоря, не является категоричным. Может оказаться, что вопросы, рекомендуемые для первого этапа, окажут помощь и на втором этапе, а рекомендуемые для второго этапа - на третьем и т.п. Дело в том, что этапы решения задачи не могут быть строго изолированы один от другого, между ними существует определенная связь, в их единстве заключается процесс решения задачи.

Далее формулируются и поясняются вопросы и советы учителя ученику, предлагаемые на каждом этапе решения задачи.

1) Вопросы и советы для усвоения содержания задачи (1-й этап). Нельзя приступать к решению задачи, не уяснив четко, в чем заключается задание, т.е. не установив, каковы данные и искомые или посылки и заключения. Первый совет учителя: не спешить начинать решать задачу. Этот совет не означает, что задачу надо решать как можно медленней. Он означает, что решению задачи должна предшествовать подготовка, заключающаяся в следующем: а) сначала следует ознакомиться с задачей, внимательно прочитав ее содержание. При этом схватывается общая ситуация, описанная в задаче; б) ознакомившись с задачей, необходимо вникнуть в ее содержание. При этом нужно следовать такому совету: выделить в задаче данные и искомые, а в задаче на доказательство - посылки и заключения.

в) Если задача геометрическая или связана с геометрическими фигурами, полезно сделать чертеж к задаче и обозначить на чертеже данные и искомые (это тоже совет, которому должен следовать ученик).

г) В том случае, когда данные (или искомые) в задаче не обозначены, надо ввести подходящие обозначения. При решении текстовых задач алгебры и начал анализа вводят обозначения искомых или других переменных, принятых за искомые.

д) Уже на первой стадии решения задачи, стадии понимания задания, полезно попытаться ответить на вопрос: "Возможно ли удовлетворить условию?" Не всегда сразу удается ответить на этот вопрос, но иногда это можно сделать.

Отвечая на вопрос: "Возможно ли удовлетворить условию?", полезно выяснить, однозначно ли сформулирована задача, не содержит ли она избыточных или противоречивых данных. Одновременно выясняется, достаточно ли данных для решения задачи.

2) Составление плана решения задачи (2-й этап). Составление плана решения задачи, пожалуй, является главным шагом на пути ее решения. Правильно составленный план решения задачи почти гарантирует правильное ее решение. Но составление плана может оказаться сложным и длительным процессом. Поэтому крайне необходимо предлагать ученику ненавязчивые вопросы, советы, помогающие ему лучше и быстрее составить план решения задачи, "открыть" идею ее решения:

а) Известна ли решающему какая-либо родственная задача? Аналогичная задача? Если такая или родственная задача известна, то составление плана решения задачи не будет затруднительным. Но далеко не всегда известна задача, родственная решаемой. В этом случае может помочь в составлении плана решения совет.

б) Подумайте, известна ли вам задача, к которой можно свести решаемую. Если такая задача известна решающему, то путь составления плана решения данной задачи очевиден: свести решаемую задачу к решенной ранее. Может оказаться, что родственная задача неизвестна решающему и он не может свести данную задачу к какой-либо известной. План же сразу составить не удается.

Стоит воспользоваться советом: "Попытайтесь сформулировать задачу иначе". Иными словами, попытайтесь перефразировать задачу, не меняя ее математического содержания.

При переформулировании задачи пользуются либо определениями данных в ней математических понятий (заменяют термины их определениями), либо их признаками (точнее сказать, достаточными условиями). Надо отметить, что способность учащегося переформулировать текст задачи является показателем понимания математического содержания задачи.

Некоторые авторы относят к переформулировке задачи и перевод ее на язык математики, т.е. язык алгебры, геометрии или анализа. Это, скорее, формализация задачи, "математизация" ее. К такому приему и приходится часто прибегать при решении многих текстовых задач.

г) Составляя план решения задачи, всегда следует задавать себе (или решающему задачу ученику) вопрос: "Все ли данные задачи использованы?" Выявление неучтенных данных задачи облегчает составление плана ее решения.

д) При составлении плана задачи иногда бывает полезно следовать совету: "Попытайтесь преобразовать искомые или данные". Часто преобразование искомых или данных способствует более быстрому составлению плана решения. При этом искомые преобразуют так, чтобы они приблизились к данным, а данные - так, чтобы они приблизились к искомым. Так, при каждом случае тождественных преобразований данные преобразуются, постепенно приближаясь к результату (искомому). Аналогично уравнение, систему уравнений, неравенство или систему неравенств преобразуют в равносильные, чтобы найти их корни или множество решений.

е) Нередко случается так, что, следуя указанным выше советам, решающий задачу все же не может составить план ее решения. Тогда может помочь еще один совет: "Попробуйте решить лишь часть задачи", т.е. попробуйте сначала удовлетворить лишь части условий, с тем, чтобы далее искать способ удовлетворить оставшимся условиям задачи.

ж) Нередко в составлении плана решения задачи помогает ответ на вопрос: "Для какого частного случая возможно достаточно быстро решить эту задачу?" Обнаружив такой частный случай, решающий ставит перед собой новую цель - воспользоваться решением задачи в найденном частном случае для более общего (но, может быть, не самого общего) случая. Так можно поступить, постепенно обобщая задачу до исходной, решаемой задачи. Предполагаемый вариант рассуждений - явное применение полной индукции. Итак, совет: "Рассмотрите частные случаи задачной ситуации, решите задачу для какого-нибудь частного случая, примените индуктивные рассуждения".

3) Реализация плана решения задачи (3-й этап). План указывает лишь общий контур решения задачи. При реализации плана решающий задачу рассматривает все детали, которые вписываются в этот контур. Эти детали надо рассматривать тщательно и терпеливо. Но при этом ученику (решающему задачу) полезно следовать некоторым советам:

а) Проверяйте каждый свой шаг, убеждайтесь, что он совершен правильно. Иными словами, нужно доказывать правильность каждого шага ссылками на соответствующие, известные ранее математические факты, предложения.

б) При реализации плана поможет и совет: "Замените термины и символы их определениями". Так, термин "параллелограмм" заменяется его определением: "Четырехугольник, у которого противоположные стороны попарно параллельны", термин "предел числовой последовательности" для доказательства, например, того предложения, что предел суммы двух последовательностей, имеющих пределы, равен сумме пределов этих последовательностей, можно заменить, и вполне успешно, его определением.

в) При решении некоторых задач помогает совет: "Воспользуйтесь свойствами данных в условии объектов".

4) Анализ и проверка правильности решения задачи (4-й этап). Даже очень хорошие ученики, получив ответ и тщательно изложив ход решения, считают задачу решенной. А ведь получение результата не означает еще, что задача решена правильно. Тем более не означает, что для решения выбран лучший, наиболее удачный, изящный, если можно так выразиться, вариант. По В.М. Брадису, задачу можно считать решенной, если найденное решение:

1) безошибочно,

2) обоснованно,

3) имеет исчерпывающий характер. Поэтому анализ решения задачи, проверка решения и достоверности результата должны быть этапом решения задачи. Итак, два совета: "Проверьте результат", "Проверьте ход решения". Проверка результата может производиться различными способами. Проверяя правильность хода решения, мы тем самым убеждаемся и в правильности результата. Значит, надо выполнить совет: "Проверьте все узловые пункты решения", еще раз убедитесь в истинности проведенных рассуждений.

Второй способ проверки результата заключается в получении того же результата применением другого метода решения задачи, поэтому полезно всегда задавать решающему вопрос: "Нельзя ли тот же результат получить иначе?" Иными словами, стоит последовать совету: "Решите задачу другим способом". Если при решении задачи другим способом получен тот же результат, что и в первом случае, задачу можно считать решенной правильно. К тому же получение различных вариантов решения одной и той же задачи имеет важное обучающее значение.

Изложенные выше советы для решения задач позволяют решать многие задачи, но, разумеется, не могут служить рецептом для решения любой задачи. Эти советы, многие из которых сформулировал Д. Пойа, правильно ориентируют решающего задачи на поиск решения, сокращают время решения многих задач, повышают вероятность отыскания верного и рационального способа решения задач. Единого же рецепта для решения любых задач попросту не существует.

5) От общих советов к частным. Начинать надо с общих вопросов, с общих советов, т.е. именно с тех, которые были приведены выше. Может оказаться, что общие вопросы не окажут помощи какому-то ученику. Тогда надо обратиться к дополнительным, более частным вопросам, так чтобы дойти до вопросов, соответствующих уровню развития и математической подготовке ученика. Переходить к частным, конкретным вопросам надо постепенно, чтобы на долю ученика досталась наибольшая часть работы по решению задачи.

Задавая более частные, дополнительные вопросы, нужно учитывать следующее: вопросы должны быть такими, чтобы они направляли мысль ученика в нужную сторону, заставляя его активно мыслить над решением задачи. Разумеется, предлагая вопросы ученикам, надо предоставить время на обдумывание ответов на эти вопросы.

Ясно, что систематизирующие рассмотрения не только ценны для повторения теории и решения задач, но и имеют еще и явно выраженный исследовательский характер, содержат элементы творчества. Существенно, наконец, что они являются верным средством установления связей между различными математическими вопросами.

1.3 Организация обучения решению математических задач

Фронтальное решение задач. Под фронтальным решением задач обычно понимают решение одной и той же задачи всеми учениками класса в одно и то же время. Организация фронтального решения задач может быть различной.

1) Устное фронтальное решение задач наиболее распространено в IV-VII классах, несколько реже, хотя и находит применение, в старших классах средней школы. Это, прежде всего, выполняемые устно упражнения в вычислениях или тождественных преобразованиях и задачи-вопросы, истинность ответов на которые подтверждается устными доказательствами. В настоящее время учителя математики IV-VII классов почти на каждом уроке проводят "пятиминутки" устных упражнений. К сожалению, часто этим и ограничивается выполнение устных упражнений.

2) Письменное решение задач с записью на классной доске. В практике обучения немало таких ситуаций, в которых удобнее, чтобы одну и ту же задачу решали все ученики класса одновременно с решением этой же задачи на доске. При этом задачу на доске может решать либо учитель, либо ученик по указанию учителя. Наиболее часто такую организацию решения задач на уроках математики применяют: а) при решении первых после показа учителем задач по ознакомлению с новыми понятиями и методами; б) при решении задач, самостоятельно с которыми могут справиться не все ученики класса; в) при рассмотрении различных вариантов решения одной и той же задачи - для сравнения и выбора лучшего варианта; г) при разборе ошибок, допущенных несколькими учениками класса при самостоятельном решении задачи и т.д. Во всех этих случаях бывает полезно и коллективное решение (или коллективный разбор решения задач).

Рассмотрим подробнее, как можно провести сравнение различных вариантов решения задачи. Учитель может при фронтальном устном анализе условия задачи наметить вместе с учениками несколько вариантов решения задачи. Некоторые из них как нерациональные могут быть сразу отвергнуты. Другие же неотвергнутые варианты для лучшего рассмотрения, оценки и сравнения стоит записать на доске. В этих целях можно сразу вызвать двух-трех учеников к доске для одновременного решения задачи разными способами (если позволяют размеры доски). Надо только учесть, что руководство решением задачи в этом случае требует некоторого мастерства от учителя: необходимо правильно распределить свое внимание между учащимися, решающими задачу у доски, и остальными учениками класса. Нужно также предусмотреть, чтобы внимание учащихся класса, решающих задачу, не рассеивалось действиями учеников у доски. Можно варианты решения воспроизводить на доске поочередно, но это займет больше времени. Для ускорения работы учитель может сам быстро выполнить на доске необходимые записи некоторых вариантов решения.

3) Письменное самостоятельное решение задач. Наиболее эффективной является такая организация решения математических задач, при которой ученики обучаются творчески думать, самостоятельно разбираться в различных вопросах теории и приложений математики. Самостоятельное решение учащимися задач на уроках математики имеет многие преимущества.

Во-первых, оно значительно повышает учебную активность учащихся, возбуждает их интерес к решению задач, стимулирует творческую инициативу. Таким образом, повышается эффективность урока. Самостоятельное решение задач развивает мыслительную деятельность учащихся, а в этом заключается одно из основных назначений задач и упражнений на уроках математики. Во-вторых, не имея возможности копировать решение задачи с доски, ученик вынужден сам разбираться в решении задачи, а потому и лучше готовиться к урокам математики. В-третьих, самостоятельное решение математических задач часто сокращает время, необходимое для опроса учащихся на уроках математики, так как оценивать успехи учащихся в некоторых случаях можно и по итогам самостоятельного решения задач. В-четвертых, учитель получает возможность направлять индивидуальную работу учеников по решению задачи, предотвращать ошибки, указывать пути их исправления.

Допустимы различные формы организации самостоятельного решения задач учащимися.

Некоторые учителя так организуют самостоятельные работы по решению задач на уроках математики: учитель подбирает задачи; в процессе работы учитель помогает некоторым ученикам советом, как лучше их решить, другим он советует обратиться к учебнику, третьи справляются с работой без помощи учителя. Учитель все время наблюдает за работой учеников, отмечая, кому из учеников и в чем он помог. Затем самостоятельная работа проверяется и оценивается с учетом степени самостоятельности ученика. При такой организации самостоятельной работы осуществляется и обучение, и контроль знаний по изучаемому разделу математики. Чаще всего учитель заранее предопределяет цели самостоятельных работ по решению задач. Такие работы могут быть обучающими новым знаниям, умениям и навыкам, могут быть предназначены для закрепления изученного и тренировки в применении теоретических сведений, могут быть предложены с целью проверки подготовленности учащихся по изученным вопросам. На обучающих самостоятельных работах по решению математических задач учитель может оказывать помощь отдельным учащимся, а может предложить самостоятельное решение задачи после предварительного ее анализа и составления плана решения.

Существуют и такие формы самостоятельных обучающих работ по математике, при выполнении которых учащиеся самостоятельно изучают небольшой теоретический материал, разбирают образцы решения задач, предложенные учителем, самостоятельно решают аналогичные задачи.

Для лучшего проведения самостоятельных работ учащихся по решению математических задач полезно перед началом такой работы проводить инструктаж, в котором четко указать, что должны выполнить учащиеся в такой работе, каков порядок ее выполнения, сроки и пр. Желательно после проверки правильности самостоятельных решений проанализировать с учащимися результаты такой работы. Это возможно на следующих уроках или на консультациях.

4) Комментирование решения математических задач. Комментирование решения задач заключается в следующем: все ученики самостоятельно решают одну и ту же задачу, а один из них последовательно поясняет (комментирует) решение. Некоторые учителя превращают комментирование в запись под диктовку: один ученик воспроизводит голосом все, что он записывает в тетрадь (без каких-либо пояснений), а все остальные поспешно записывают сказанное им. Ясно, что такое применение комментирования не приносит должной пользы.

Комментирование обозначает объяснение, толкование чего-нибудь. Именно так и следует понимать комментирование при решении математических задач. Ученик-комментатор объясняет, на каком основании он выполняет то или иное преобразование, проводит то или иное рассуждение, построение. При этом каждый шаг в решении задачи должен быть оправдан ссылкой на известные математические предложения.

1.4 Индивидуальное решение задач

1) Необходимость индивидуального подхода при организации обучения решению задач. Фронтальное решение учебных математических задач не всегда приводит к желаемым результатам в обучении математике. При фронтальной работе все ученики класса решают одну и ту же задачу. Для одних учащихся эта задача может оказаться очень легкой, и они при решении такой задачи практически не почерпнут ничего нового. У других, наоборот, задача может вызвать серьезное затруднение. Поэтому необходим учет индивидуальных особенностей учащихся и в связи с этим индивидуальный подбор задач. Задачи следует подбирать и систематизировать так, чтобы, с одной стороны, учитывались возможности и способности ученика, с другой стороны, его способности развивались бы.

Задача учителя заключается, следовательно, в том, чтобы выяснить подготовку, возможности и способности к изучению математики каждого ученика класса и в соответствии с этим организовать решение математических задач. Стоит подчеркнуть эту мысль. Мысль об индивидуализации учебных математических задач по силам и возможностям учащихся. Это позволяет овладеть необходимыми умениями и навыками слабым ученикам и в значительной степени совершенствоваться более сильным.

2) Индивидуализация самостоятельных работ учащихся по решению задач. В условиях, когда все ученики самостоятельно решают одну и ту же задачу, учитель может учитывать индивидуальные особенности учащихся лишь при оказании им помощи в решении задачи, при проверке выполненной работы. При этом не полностью учитываются возможности учащихся. Для более полного учета способностей и математической подготовки учащихся, использования их возможностей необходимо предлагать для самостоятельного решения учащихся не одинаковые, а различные задачи с учетом индивидуальных особенностей ученика. Но поскольку в классе есть примерно равные по успехам в математике ученики, то можно подбирать задачи не для каждого ученика в отдельности (это было бы затруднительно для учителя), а для отдельных групп школьников класса. В этих целях полезно использовать издающиеся теперь "Дидактические материалы по алгебре", "Дидактические материалы по геометрии" для различных классов. При такой постановке обучения слабые ученики, справившись самостоятельно или при помощи учителя с простейшими задачами, обретают веру в свои силы. Сильные же учащиеся имеют возможность совершенствовать свои способности и познания в математике. Разумеется, подбор индивидуальных заданий преследует цель для каждой выбранной учителем группы учащихся составить систему задач. Желательно, чтобы учащиеся не знали о том, кого из них в какую группу определил учитель. Эти группы не должны иметь постоянного состава: по мере овладения необходимыми знаниями учащиеся "переводятся" из группы для менее подготовленных в другую - для более подготовленных.

3) Индивидуализация самостоятельных работ учащихся по устранению пробелов в знаниях математики. Исключительное значение приобретают самостоятельные работы учеников по устранению пробелов в знаниях математики. Такие пробелы могут быть выявлены с помощью проверочных и контрольных работ, а также при решении задач на уроке или дома. Ученикам, работающим над устранением пробелов в своих знаниях по математике, надо указать в тетради допущенные ошибки. При этом сильным ученикам достаточно подчеркнуть неверный результат, а ошибку такой ученик найдет сам. Одним ученикам полезно подчеркнуть допущенные ошибки, а некоторым, наиболее слабо подготовленным, исправить. В тетрадях указываются разделы учебника, которые ученик обязан восстановить в своей памяти, и выписываются задачи (можно указать номера задач из задачников или учебников), которые надлежит ученику решить, чтобы восполнить имеющийся пробел в знаниях и умениях. Конечно, задачи подбираются с учетом причин, вызвавших ошибку. Дело в том, что одна и та же ошибка может быть допущена по различным причинам и устранять надо не ошибку, а причину, ее породившую. Такая организация решения задач по ликвидации пробелов в знаниях школьников приносит большую пользу, чем фронтальные работы над ошибками. При этом учитываются как индивидуальные особенности учащихся, так и характер изучаемого материала.

4) Домашнее решение задач учащимися. Содержание задач и упражнений, предлагаемых для домашней работы учащихся, должно быть подготовлено предшествующей работой на уроке. Это не означает, что для домашнего решения должны предлагаться лишь задачи, аналогичные решенным в классе. Такие домашние задания мало помогают усвоению математики. Решая домашние задачи "как в классе", ученики в лучшем случае прибегают к аналогии, а одной аналогии для обучения решению задач недостаточно. При такой работе ученики, как правило, сначала решают задачи (выполняют письменное задание), а затем читают учебник по математике. Порядок же должен быть иной: сначала повторение по учебнику теоретических сведений, затем решение задач.

Домашнее задание имеет целью не только повторение изученного на уроке, но и дальнейшее совершенствование математических знаний, умений и навыков. С учетом этого оно и должно быть составлено. Учитель дает необходимые указания по решению домашних задач, однако не устраняет всех трудностей, которые должны преодолеть учащиеся в процессе решения домашних задач. Ученики, решая задачи самостоятельно дома, обязаны проявлять свою инициативу, смекалку и настойчивость, мобилизовать для решения задач свои знания. Домашние задания по решению задач целесообразно связывать с углублением и уточнением изученного, с открытием каких-то новых его сторон.

Поскольку ученики обычно имеют индивидуальные особенности, различную подготовку по математике, следует индивидуализировать домашние задания по решению математических задач. При этом надо учитывать многие факторы: ученики при решении домашних задач должны устранить пробелы в знаниях (у кого они имеются), закрепить приобретенные на уроке знания, совершенствовать их. Через индивидуальные домашние задания (параллельно с работой на уроке) можно выявить наклонности отдельных учащихся, воспитывать у них увлечение математикой. Посильные же задания для слабых и отстающих учащихся помогут им преодолеть многие трудности в обучении решению задач. Надо заметить, что ученики с особым желанием решают задачи, предложенные им в индивидуальном порядке. Такие задания можно заготовить на специальных карточках.

1.5 Заключительный этап в решении учебной математической задачи

Для учебных задач особое значение имеет не получение ответа, а процесс нахождения его, процесс переработки входной информации в выходную. Ответ особенно существен для задач, которые человеку приходится решать в практической деятельности, для учебной же задачи на первом месте стоят поиски решения, осуществление его и познавательные выводы из проделанной работы. Поэтому необходим заключительный этап работы над учебной задачей.

Основным содержанием его должно быть осмысление выполненного решения, формулирование и решение других задач (если оказывается возможным), явно связанных с первой, порождаемых ею, и извлечение из всей проделанной работы выводов о том, как находятся и выполняются решения.

1) Необходимость обсуждения задачи и ее решения вытекает из основного назначения учебных математических задач. При обсуждении решения задачи нужно остановиться на следующих вопросах:

а) Более полное использование условия задачи. При решении многих задач следует стремиться к достаточно полному использованию содержащейся в них входной информации. Практически это означает, что по одному и тому же условию полезно решать не одну, а несколько задач, целью которых является получение различных результатов. Значит, многие задачи должны явно содержать несколько вопросов. В противном случае целесообразно задавать и дополнительный вопрос: "Что еще можно узнать из условия задачи?"

Можно сделать вывод, что в методическом отношении гораздо полезней многовопросные задачи. Действительно, многовопросность развивает основательность мышления. Она приучает школьников к установлению многосторонних связей в рассматриваемых ситуациях. Многовопросные задачи позволяют более экономно использовать время, отведенное для решения задач на уроках математики, так как на усвоение содержания задачи при этом расходуется гораздо меньше времени, чем при решении нескольких различных по условию одновопросных задач.

б) Обсуждение работы по поиску решения. Основная трудность при решении математической задачи состоит в нахождении решения, а не в осуществлении его. Поэтому оказывается необходимым выявление идеи (главной мысли), положенной в основу решения (как эта идея возникла? Что помогло найти решение?), иначе говоря, нуждается в обсуждении подход к решению задачи, поиск решения.

Приступая к решению задачи, ищут прежде всего ведущую идею (принцип), из которой следует исходить. Если такая идея найдена, то дальнейшее решение представляет собой ее конкретизацию, воплощение. Но может случиться так, что найденная идея не обеспечивает достижения цели. Тогда ищут иные идеи, подходящие для данной задачи, и испытывают их. Вот эти поиски и отбор идей, из которых можно исходить при решении задач, наверное, и составляют основную трудность решения. Поэтому важно учесть и использовать факторы, помогающие этим поискам, и преодолеть факторы, мешающие им.

Чтобы иметь возможность выбрать идею решения задачи, нужно располагать достаточным запасом таких идей. Этот запас и создается в практике решения задач (при обсуждении решений). Успешные действия при решении подкрепляются, и добытая ценная информация фиксируется в долговременной памяти. Так накапливается хороший опыт решения задач.

в) Выявление связей с ранее решенными задачами. При решении математических задач часто используются методы и результаты решения предшествующих задач. Именно поэтому полезно выявление связей рассматриваемой задачи с решенными ранее. Но не только поэтому. Сравнивая задачу с решенными ранее сходными задачами, ученики выявляют их общие и различные черты, лучше усваивают идею решения данной задачи, глубже познают метод решения класса сходных задач и таким образом готовятся к решению следующих задач.

2) Вторая часть заключительного этапа в решении задачи - поиски и осуществление новых способов ее решения, их сравнение и выбор лучшего варианта решения.

Стоит только отметить, что более эффективного пути для воспитания гибкости математического мышления и находчивости, чем путь поисков различных решений задач, пожалуй, нет.

3) Третья составная часть заключительного этапа работы с задачей - формулирование и решение некоторых других задач, "порожденных" разобранной. Мы имеем здесь в виду обобщения и специализации исходной задачи, а также получение других задач из данной в результате частичного изменения ее условия.

Это могут быть задачи, в которых часть данных исходной задачи принимается за искомое, а некоторые искомые считаются данными; задачи, полученные заменой одних объектов другими (без изменения искомых) и т.д. Так возникают задачи, обратные данным, суперпозиции задач, серии задач с различными данными, приводящими к одному результату, и т.п. Эту часть заключительного этапа можно назвать развитием темы задачи. Трудно переоценить значение развития темы задачи для воспитания математического мышления учащихся, развития познавательных способностей, формирования личности ученика. Очень полезно развитие темы задачи и в практическом отношении, так как изменения, обобщения и специализации задач воспитывают творческое отношение к тем задачам, которые ставит перед нами жизнь, делают наше мышление инициативным и более оперативным. В методическом отношении развитие темы задачи особенно ценно тем, что приучает учащихся к переконструированию задач, а это, как известно, основной прием поиска решений.

Развитие темы задачи в качестве заключительного этапа работы с ней особенно ценно при творческом подходе учителя к обучению решению задач.

4) По отношению к некоторым задачам с ярко выраженными особенностями (по содержанию и приемам решения) следует говорить и о четвертой части заключительного этапа. Мы имеем в виду прежде всего поучительные выводы (фиксации) из проделанной работы о том, как в подобных случаях находится и осуществляется решение, а также какие особенности задач подсказывают прием решения.

К этой части следует отнести и систематизацию различных возможных подходов к задачам определенного содержания. В ходе работы по решению серии связанных между собой задач наступает момент, когда оказывается очень полезным подвести итоги проделанной работы, систематизировать приемы решений, полнее выявить возможности для осуществления решений задач рассматриваемого вида и сходных с ними.

Ясно, что систематизирующие рассмотрения не только ценны для повторения теории и решения задач, но и имеют еще и явно выраженный исследовательский характер, содержат элементы творчества. Существенно, наконец, что они являются верным средством установления связей между различными математическими вопросами.

геометрия решение задача фронтальный

Глава вторая. Методика обучения решениям общей схеме задач на построение

В данной главе представлена методика обучения решениям общей схеме основных задач на построение. Которые, являются традиционными для курса планиметрии: построение перпендикуляра к прямой, деление отрезка пополам (задача 1); построение треугольника, равного данному (задача 2), построение угла, равного данному (задача 3), построение биссектрисы угла (задача 4); построение прямой, параллельной данной (задача 5); построение касательной к окружности (задача 6).

В результате изучения этой части учащиеся должны: знать: алгоритмы построения перпендикуляра к прямой; деления отрезка пополам; треугольника, равного данному, угла, равного данному; биссектрисы угла; прямой, параллельной данной; касательной к окружности; и уметь: применять изученные алгоритмы при решении конкретных задач на построение.

Цель решения задач на построение заключается в нахождении способа построения, и желательно наиболее экономного. Этой цели подчинена та часть решения, которая называется анализом. Предполагая, что задача решена, необходимо сделать приблизительный чертеж искомой фигуры и выяснить такие соотношения между данными задачи, которые позволят свести ее решение к другим, известным ранее, или основным задачам на построение. Целью этапа анализа является составление плана решения.

Вторая часть решения - это само построение, которое выполняется соответственно выбранному плану решения.

Для того чтобы убедиться в правильности построения, проводится доказательство (на основании известных теорем) того, что построенная фигура обладает требуемыми свойствами.

Важно отметить, что при изучении задач на построение огромное значение имеет чертеж, который наиболее целесообразно выполнять на доске перед всем классом. Но необходимо помнить, что "…переход от абстрактного (мышление) к конкретному (чертеж) воспринимается учащимися легко. А вот обратный переход, от конкретного к абстрактному, представляет для их понимания немалые трудности. Объясняется это тем, что учащиеся привыкли доверять чертежу полностью, а значит относиться к нему критически не умеют. " Медяник А.И. Учителю о школьном курсе геометрии. М., 1989. с., 13.

В частности поэтому, должен быть проведен еще один этап решения - исследование, где решается вопрос, при каких данных задача имеет решение, сколько решений имеет задача, нет ли каких-либо частных случаев, требующих особого рассмотрения.

Во всех задачах, приведенных в учебниках геометрии, этапы анализа и исследование отсутствуют. Поскольку основные задачи на построение являются сравнительно простыми задачами, отсутствие анализа при ее решении вполне оправдано, однако в учебнике есть задачи, при решении которых проведение анализа обеспечивает построение. При наличии времени учитель может продемонстрировать указанный этап решения на примере решения нескольких задач.

Этап исследования опускается в учебниках авторы объясняют это тем, что к данному моменту у учащихся еще отсутствуют в полном объеме нужные теоретические знания.

Как отмечено в учебниках, когда речь идет о задачах на построение, то, если не сделано никаких оговорок, построение должно быть выполнено с помощью циркуля и линейки. Заметим, что почти во всех задачах на построение решение, в конечном счете, сводится к построению отдельных точек. Учащимся уже известно, что прямая определяется любыми своими двумя точками, треугольник - вершинами, окружность - центром и любой ее точкой и т.д. Инструменты, которые используют при решении задач на построение (циркуль и линейка), позволяют проводить линии - прямые и окружности, а значит, точки строятся как пересечение двух линий: двух прямых, двух окружностей, окружности и прямой.

Все сказанное выше диктует настоятельную необходимость провести систематизацию знаний учащихся о взаимном расположении окружностей и прямых. Что и является первым, подготовительным этапом при решении данных задач.

1) Взаимное расположение прямых. Из первого основного свойства плоскости учащимся известно, что через любые две точки можно провести прямую, и притом только одну, любые две различные прямые плоскости пересекаются не более чем в одной точке. Кроме того, они знают, что существуют параллельные прямых, которые не имеют точек пересечения, и перпендикулярные прямые, причем для каждой точки плоскости перпендикулярная прямая к данной прямой единственна.

2) Взаимное расположение окружностей и прямых. Очевидно, что возможны случаи, когда окружность и прямая не имеют общих точек; имеют только одну общую точку, т.е.

прямая является касательной к окружности имеют две общие точки, т.е. прямая пересекается с окружностью, причем прямая может проходить через центр окружности и не проходить

3). Взаимное расположение окружностей. Очевидно, что возможны случаи, когда две окружности не имеют общих точек; имеют только одну общую точку, т.е. касаются, и общую касательную в этой точке к этим окружностям, причем касание может быть внутренним и внешним; имеют две общие точки, т.е. пересекаются.

Сразу после разбора задачи 1 полезно выполнить с учащимися следующие построения, используя при этом, рассмотренный в предыдущей главе фронтальную форму работы:

1. Дан треугольник. Постройте одну из его высот.

2. Постройте прямоугольный треугольник по его катетам.

Доказательство того факта, что построена середина отрезка, следует из свойства равнобедренного треугольника:

высота равнобедренного треугольника совпадает (является) с медианой.

Для закрепления изученного приема построения после разбора задачи 2 полезно выполнить с учащимися следующие построения, используя при этом фронтальную форму работы:

Дан треугольник. Постройте одну из его медиан.

Разделите данный отрезок на четыре части.

Построение треугольника, равного данному, уже рассматривалось в задаче ранее. Доказательство того факта, что построен треугольник, равный данному, следует из третьего признака равенства треугольников.

Для закрепления изученного приема построения полезно выполнить с учащимися следующее построение, используя при этом фронтальную форму работы.

Постройте равносторонний треугольник по его стороне.

Построение угла, равного данному, также рассматривается в параграфе о признаках равенства двух треугольников. Доказательство того факта, что построен угол, равный данному, следует из третьего признака равенства треугольников.

Сразу после разбора задачи 3 полезно выполнить с учащимися следующие построения, используя при этом фронтальную форму работы:

Постройте равнобедренный треугольник по основанию и углу, прилежащему к основанию.

Доказательство того факта, что построена биссектриса угла, следует из третьего признака равенства треугольников.

На закрепление алгоритма построения биссектрисы угла можно выполнить с учащимися следующее построение, используя при этом фронтальную форму работы:

Разделите данный угол на четыре части.

Построение прямой, параллельной данной и проходящей через данную точку, основано на двух следствиях из теоремы 4.2 Погорелов А.В. Геометрия. Учеб. Для 7 - 11 кл., М. - 1998., с. 51. . Первое: две прямые, перпендикулярные одной прямой, параллельны; второе: для построения прямой, перпендикулярной данной, проходящей через данную точку, надо построить точку, симметричную данной. Доказательство того факта, что построена прямая, параллельная данной, следует из теоремы 4.3 Погорелов А.В. Геометрия. Учеб. Для 7 - 11 кл., М. - 1998. с. 53.

На закрепление алгоритма построения прямой, параллельной данной и проходящей через данную точку, можно выполнить с учащимися следующее построение, используя при этом фронтальную форму работы.

Постройте прямую, параллельную основанию равнобедренного треугольника и проходящую через середину боковой стороны.

Построение касательной к окружности основано на признаке равенства прямоугольных треугольников.

В результате доказательных рассуждений, проведенных в ходе решения задачи 6 получены два утверждения: первое - "из данной точки к данной прямой можно провести ровно две касательные"; второе - полученные касательные равны.

Примерное планирование изучения материала на уроках.

Урок I. Рассмотреть весь материал пунктов: задачи на построение; построение перпендикуляра к прямой, деление отрезка пополам; построение треугольника, равного данному, и угла, равного данному.

Урок 2. Рассмотреть весь материал пунктов: построение биссектрисы угла; построение прямой, параллельной данной; построение касательной к окружности; решение подобных задач по теме.

Заключение

В данной работе была описана методика обучения решениям общей схеме задач на построение. В основном здесь используется фронтальный метод работы с классом. Безусловное его преимущество перед другими методами заключается в наглядности, простоте восприятия и усвоения материала. Существенным недостатком является то, что хотя данный метод и весьма нагляден, он плохо ориентирован на восприятие учеников, как жизненно важной части их знаний. То есть нет практического оправдания восприятия. Хотя данный недостаток можно отнести фактически ко всему курсу геометрии. По всей видимости, его исправление и есть основная будущая задача методистов школьного материала.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.