Основные механизмы воздействия солнечного ветра на Землю
Анализ особенностей межпланетного пространства в системе Солнце-Земля. Изучение механизмов формирования солнечного ветра. Гипотезы происхождения комет. Взаимодействие кометных ионосфер с солнечным ветром. Эволюция, физико-химические свойства астероидов.
Рубрика | Астрономия и космонавтика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.06.2013 |
Размер файла | 551,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
Глава 1. Солнечный ветер. Особенности межпланетного пространства в системе Солнце- Земля
1.1 Солнечный ветер, механизмы формирования
1.2 Воздействие солнечного ветра на Землю
Глава 2. Кометы как структурные образования в межпланетном пространстве
2.1 Гипотезы происхождения комет
2.2 Анатомия комет
2.3 Взаимодействие кометных ионосфер с солнечным ветром
2.4 Влияние комет на планеты солнечной системы
Глава 3. Астероиды
3.1 Открытие астероидов
3.2 Семейство астероидов
3.3 Астероиды вблизи Земли и планет солнечной системы
3.4 Эволюция, физико-химические свойства астероидов
Заключение
Литература
Введение
Кажется, что в мире нет ничего более постоянного, чем Солнце. Наблюдаемые с древних времен пятна на диске Солнца кому-то казались курьезом, а кому-то - кознями дьявола. Лишь в XIX веке было замечено, что после появления солнечных пятен на Земле усиливаются полярные сияния и регистрируются колебания геомагнитного поля - магнитные бури. В начале XX века выдающийся российский ученый А. Л. Чижевский(1897-1964) впервые высказал идею о влиянии солнечной активности на неживой мир, биосферу и социальные процессы и назвал ее "космической погодой". Так как физические основы подобного воздействия были тогда совершенно неизвестны, взгляды Чижевского многие считали близкими к мистицизму. Это трагически сказалось на судьбе ученого, а его основополагающие труды были изданы только спустя много лет. В настоящее время благодаря космическим исследованиям природа нашей зависимости от Солнца стала более понятной, а предупреждения о влиянии солнечных вспышек и магнитных бурь на состояние здоровья и работоспособность технических систем стали частью нашей жизни. Интересно, что впервые о существовании солнечного ветра догадались еще до наступления космической эры при изучении комет. Если бы на кометы действовало только световое давление Солнца, то их хвосты были бы направлены точно от Солнца. Американский ученый Людвиг Бирман в 1951 году обнаружил, что хвосты комет отклонены в среднем на 4 градуса от этого направления. Такое отклонение можно объяснить только наличием потока ионов и электронов - "ветра", "дующего" от Солнца со скоростью около 400 км/с. Позднее данные, полученные первыми советскими космическими аппаратами "Луна" в 1959 году, позволили сотруднику Института космических исследований К. И. Грингаузу с коллегами впервые экспериментально обнаружить солнечный ветер. Кометы имеют для исследователей не меньший интерес. Первое письменное упоминание о появлении кометы датируется 2296 годом до нашей эры. Движение кометы по созвездиям тщательно наблюдалось китайскими астрономами. Древним китайцам небо представлялось огромной страной, где яркие планеты были правителями, а звезды - органами власти. Поэтому постоянно перемещающуюся комету древние астрономы считали гонцом, курьером, доставляющим депеши. Считалось, что любое событие на звёздном небе предварялось указом небесного императора, доставляемым кометой-гонцом. Комет боялись потому, что не могли найти достаточно понятного и логичного объяснения этому явлению. Отсюда появляются многочисленные мифы о кометах. Древним грекам головой с распущенными волосами представлялась любая достаточно яркая и видимая невооружённым взглядом комета. Древние летописцы передают лишь состояние ужаса, которое охватывало наших далеких пращуров перед непонятным явлением. Более спокойные и детальные описания комет, даже некоторые измерения их дошли до нас в записях древних и средневековых астрономов. Но там нет никаких объяснений природы этого явления.
Кометы вызывают интерес людей, они являются предметом изучения многих ученых со всего мира, постоянно проводятся достаточно сложные и дорогостоящие космические исследования и эксперименты. Чем же вызван такой живой интерес к этому явлению? Его можно объяснить тем, что кометы - эти удивительные и таинственные небесные тела - являются ёмким и ещё далеко не полностью исследованным источником полезной науке информации. Например, кометы «подсказали» учёным о существовании солнечного ветра; кометное ядро оказалось очень похожим на спутники Марса Фобос и Деймос, а также на малые спутники Сатурна и Урана, а это свидетельствует о том, что на заре формирования Солнечной системы кометные ядра могли образовываться в сравнительной близости от Солнца приблизительно в районе между орбитами планет-гигантов Юпитера и Нептуна; имеется гипотеза о том, что кометы являются причиной возникновения жизни на земле, так как могли занести в атмосферу Земли сложные органические соединения; кометы могут дать ценную информацию о возникновении галактик, о начальных стадиях протопланетного облака, из которого образовались также Солнце и планеты. Наблюдение комет может дать представление о первичной материи, из которой сформировались их тела, причем эта материя дошла до нас в «законсервированном » виде и сохраняется без изменений, возможно, около 10 миллиардов лет!.. Кроме того, многих людей волнует то, что кометы представляют собой реальную угрозу всему человечеству
Современные астрономы, занимающиеся исследованием этих небесных тел, могут рассказать о природе и поведении комет довольно много: откуда появляются кометы, чем объясняется их необычный облик и даже предскажут, когда и где можно будет наблюдать какую-нибудь из них. Кометы - это своеобразные космические айсберги, состоящие из замороженных газов сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. Кометы относятся к группе малых тел, куда входят также астероиды, метеориты, метеорные рои и облака межпланетной пыли. Внешне они разительно отличаются от астероидов. Если астероиды светят отражённым солнечным светом и в поле зрения телескопа напоминают медленно движущиеся слабые звёздочки, то кометы интенсивно рассеивают солнечный свет в некоторых наиболее характерных для комет участках спектра, и поэтому многие кометы видны невооружённым глазом, хотя диаметры их ядер редко превышают 1 - 5 км.
О том, что в Солнечной системе между орбитами Марса и Юпитера движутся многочисленные мелкие тела, самые крупные из которых по сравнению с планетами всего лишь каменные глыбы, узнали менее 200 лет назад. Их открытие явилось закономерным шагом на пути познания окружающего нас мира. Путь этот не был легким и прямолинейным, и лишь из дали сегодняшнего дня история открытия астероидов и их исследований, уже подернутая дымкой забвения, представляется довольно простой. Ушли в прошлое ошибки, сомнения, неудачи, отчаяние. Мы бережно храним кирпичики знания, добытого предками и позволяющего нам продвигаться вперед, но склонны забывать, каких усилий требовало приобретение того знания, которое досталось нам, и часто снисходительно смотрим на прошлое. А между тем человечеству постоянно требуется максимальное напряжение сил и способностей для разрешения клубка трудностей и противоречий.
Кто в эпоху открытия первых астероидов мог предположить, что эти малые тела Солнечной системы, тела, о которых еще недавно нередко говорили с оттенком пренебрежения, станут объектом внимания специалистов самых различных областей естествознания космогонии, астрофизики, небесной механики, физики, химии, геологии, минералогии, газовой динамики и аэромеханики? Тогда до этого было еще очень далеко. Еще предстояло осознать, что стоит лишь наклониться, чтобы поднять с земли кусочек астероида - метеорит. Наука о метеоритах - метеоритика - зародилась в начала XIX в., когда были открыты и их родительские тела - астероиды. Но в дальнейшем она развивалась совершенно независимо. Метеориты изучались геологами, металлургами и минералогами, астероиды - астрономами, преимущественно небесными механиками. Трудно привести другой пример столь абсурдной ситуации : две разные науки исследуют одни и те же объекты, а между ними практически не возникает никаких точек соприкосновения, не происходит обмена достижениями. Это отнюдь не способствует осмыслению получаемых результатов. Но сделать ничего нельзя, и так все и остается, пока новые методы исследований - экспериментальные и теоретические - не поднимут уровень исследований настолько, что создадут реальную основу для слияния обеих наук в одну. Это произошло в начале 70-х годов XX в., и мы стали свидетелями нового качественного скачка в познании астероидов.
Глава 1. Солнечный ветер. Особенности межпланетного пространства в системе Солнце - Земля
1.1 Солнечный ветер, механизмы формирования
Рисунок 1. Гелисфера
Рисунок 2. Солнечная вспышка.
Солнечный ветер - непрерывный поток плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий собой Солнечную систему до гелиоцентрический расстояний порядка 100 а.е. С.в.образуется при газодинамическом расширении солнечной короны в межпланетное пространство.
Средние характеристики Солнечного ветра на орбите Земли: скорость 400 км/с, плотность протонов - 6 на 1, температура протонов 50 000 К, температура электронов 150000 К, напряжённость магнитного поля 5·эрстед. Потоки Солнечного ветра можно разделить на два класса: медленные - со скоростью около 300 км/с и быстрые - со скоростью 600-700 км/с. Солнечный ветер возникающий над областями Солнца с различной ориентацией магнитного поля, образует потоки с различно ориентированным межпланетным магнитным полем - так называемую секторную структуру межпланетного магнитного поля.
Межпланетная секторная структура - это разделение наблюдаемой крупномасштабной структуры Солнечного ветра на чётное число секторов с различным направлением радиального компонента межпланетного магнитного поля.
Характеристики Солнечного ветра (скорость, температура, концентрация частиц и др.) также в среднем закономерно изменяются в сечении каждого сектора, что связано с существованием внутри сектора быстрого потока Солнечного ветра. Границы секторов обычно располагаются внутри медленного потока Солнечного ветра Чаще всего наблюдаются два или четыре сектора, вращающихся вместе с Солнцем. Эта структура, образующаяся при вытягивании Солнечного ветра крупномасштабного магнитного поля короны, может наблюдаться в течение нескольких оборотов Солнца. Секторная структура является следствием существования токового слоя в межпланетной среде, который вращается вместе с Солнцем. Токовый слой создаёт скачок магнитного поля: выше слоя радиальный компонент межпланетного магнитного поля имеет один знак, ниже - другой. Токовый слой располагается приблизительно в плоскости солнечного экватора и имеет складчатую структуру. Вращение Солнца приводит к закручиванию складок токового слоя в спирали (так называемый "эффект балерины"). Находясь вблизи плоскости эклиптики наблюдатель оказывается то выше, то ниже токового слоя, благодаря чему попадает в секторы с различными знаками радиального компонента межпланетного магнитного поля.
При обтекании Солнечным ветром препятствия, способных эффективно отклонять Солнечный ветер (магнитные поля Меркурия, Земли, Юпитера, Сатурна или проводящие ионосферы Венеры и, по-видимому, Марса), образуется головная отошедшая ударная волна. Солнечный ветер тормозится и разогревается на фронте ударной волны, что позволяет ему обтекать препятствие. При этом в Солнечном ветре формируется полость - магнитосфера, форма и размер которой определяются балансом давления магнитного поля планеты и давления обтекающего потока плазмы. Толщина фронта ударной волны - порядка 100 км. В случае взаимодействия Солнечного ветра с непроводящим телом (Луна) ударная волна не возникает: поток плазмы поглощается поверхностью, а за телом образуется постепенно заполняемая плазмой Солнечного ветра полость.
На стационарный процесс истечения плазмы короны накладываются нестационарные процессы, связанные со вспышками на Солнце. При сильных солнечных вспышках происходит выброс вещества из нижних областей короны в межпланетную среду. При этом также образуется ударная волна, которая постепенно замедляется при движении через плазму Солнечного ветра.
Приход ударной волны к Земли приводит к сжатию магнитосферы, после которого обычно начинается развитие магнитной бури.
Солнечный ветер простирается до расстояния около 100 а.е., где давление межзвёздной среды уравновешивает динамическое давление Солнечного ветра. Полость, заметаемая Солнечным ветром в межзвёздной среде, образует гелиосферу. Солнечный ветер вместе с вмороженным в него магнитным полем препятствует проникновению в Солнечную систему галактических космических лучей малых энергий и приводит к вариациям космических лучей больших энергий.
Явление, аналогичное Солнечному ветру, обнаружено и у некоторых типов других звёзд (звёздный ветер).
Поток энергии Солнца, питаемый термоядерной реакцией в его центре, к счастью, исключительно стабилен, не в пример большинству других звезд. Большая его часть в конце концов испускается тонким поверхностным слоем Солнца - фотосферой - в виде электромагнитных волн видимого и инфракрасного диапазона. Солнечная постоянная (величина потока солнечной энергии на орбите Земли) равна 1370 Вт/. Можно представить, что на каждый квадратный метр поверхности Земли приходится мощность одного электрического чайника. Над фотосферой расположена корона Солнца - зона, видимая с Земли только во время солнечных затмений и заполненная разреженной и горячей плазмой с температурой в миллионы градусов.
Это самая нестабильная оболочка Солнца, в которой зарождаются основные проявления солнечной активности, влияющие на Землю. Косматый вид короны Солнца демонстрирует структуру его магнитного поля - светящиеся сгустки плазмы вытянуты вдоль силовых линий. Горячая плазма, истекающая из короны, формирует солнечный ветер - поток ионов (состоящий на 96% из ядер водорода - протонов и на 4% из ядер гелия - альфа- частиц) и электронов, разгоняющийся в межпланетное пространство со скоростью 400-800 км/с.
Солнечный ветер растягивает и уносит с собой солнечное магнитное поле.
Это происходит потому, что энергия направленного движения плазмы во внешней короне больше, чем энергия магнитного поля, и принцип вмороженности увлекает поле за плазмой. Комбинация такого радиального истечения с вращением Солнца (а магнитное поле "прикреплено" и к его поверхности) приводит к образованию спиральной структуры межпланетного магнитного поля - так называемой спирали Паркера.
Солнечный ветер и магнитное поле заполняют всю Солнечную систему, и, таким образом, Земля и все другие планеты фактически находятся в короне Солнца, испытывая воздействие не только электромагнитного излучения, но еще и солнечного ветра и солнечного магнитного поля.
В период минимума активности конфигурация солнечного магнитного поля близка к дипольной и похожа на форму магнитного поля Земли. При приближении к максимуму активности структура магнитного поля по не вполне понятным причинам усложняется. Одна из наиболее красивых гипотез гласит, что при вращении Солнца магнитное поле как бы навивается на него, постепенно погружаясь под фотосферу. Со временем, в течение как раз солнечного цикла, магнитный поток, накопленный под поверхностью, становится таким большим, что жгуты силовых линий начинают выталкиваться наружу.
Места выхода силовых линий образуют пятна на фотосфере и магнитные петли в короне, видимые как области повышенного свечения плазмы на рентгеновских изображениях Солнца. Величина поля внутри солнечных пятен достигает 0,01 тесла, в сто раз больше, чем поле спокойного Солнца.
Интуитивно энергию магнитного поля можно связать с длиной и количеством силовых линий: их тем больше, чем выше энергия. При подходе к солнечному максимуму накопленная в поле огромная энергия начинает периодически взрывным образом высвобождаться, расходуясь на ускорение и разогрев частиц солнечной короны.
Резкие интенсивные всплески коротковолнового электромагнитного излучения Солнца, сопровождающие этот процесс, носят название солнечных вспышек. На поверхности Земли вспышки регистрируются в видимом диапазоне как небольшие увеличения яркости отдельных участков солнечной поверхности.
Однако уже первые измерения, выполненные на борту космических аппаратов, показали, что наиболее заметным эффектом вспышек оказывается значительное (до сотен раз) увеличение потока солнечного рентгеновского излучения и энергичных заряженных частиц - солнечных космических лучей.
Во время некоторых вспышек происходят также выбросы значительного количества плазмы и магнитного поля в солнечный ветер - так называемых магнитных облаков, которые начинают быстро расширяться в межпланетное пространство, сохраняя форму магнитной петли с концами, опирающимися на Солнце.
Плотность плазмы и величина магнитного поля внутри облака в десятки раз превосходят типичные для спокойного времени значения этих параметров в солнечном ветре.
Несмотря на то, что во время крупной вспышки может выделиться до 1025 джоулей энергии, общее увеличение потока энергии в солнечный максимум невелико и составляет всего 0,1-0,2%.
1.3 Воздействие солнечного ветра на Землю
Если основной поток солнечного излучения в видимом и инфракрасном диапазоне необходим для существования биосферы, то солнечное рентгеновское и ультрафиолетовое излучение губительно для живой материи. К счастью, практически все оно поглощается еще в атмосфере Земли при ионизации ее верхних слоев. Образующаяся в результате этого на высотах от 80 до нескольких сотен километров оболочка, в которой плазма соседствует с нейтральными атомами и молекулами, называется ионосферой. Ионосфера - ближайший к поверхности Земли слой, проводящий электричество. Она лежит на изоляторе - нейтральной атмосфере. В отличие, например, от солнечного ветра, ионосфера "умеет" проводить ток поперек силовых линий магнитного поля. Эту способность создают частые соударения ионов и электронов с нейтральными атомами, в большом количестве присутствующими на таких высотах. Сталкиваясь, заряженные частицы меняют направление движения и переходят от одной силовой линии к другой, разрушая их изоляцию.
От потока солнечных космических лучей и солнечного ветра Землю защищает магнитный щит. Хотя эту оболочку невозможно увидеть, люди издавна пользовались земным магнитным полем для определения направления при помощи компаса. После догадки жившего в XVI веке английского физика Уильяма Гильберта, что Земля - огромный магнит, стало понятно, что геомагнитное поле существует и в околоземном пространстве. Если на ее поверхности величина магнитного поля составляет 3•?5• тесла, в зависимости от широты места измерения, то с удалением от Земли магнитное поле ослабевает пропорционально третьей степени расстояния и скоро становится достаточно слабым, чтобы ощущать воздействие межпланетной среды.
Солнечный ветер у орбиты Земли сильно разрежен и непостоянен - средняя концентрация частиц в нем составляет около 1-10 скорость - 250-1000 км/с, величина межпланетного магнитного поля - 1•-10• тесла. Так как заряженные частицы неохотно меняют силовые линии магнитного поля, поток солнечного ветра не смешивается с геомагнитным полем и околоземным плазменным населением, а обтекает их, образуя геомагнитную полость - магнитосферу Земли. Граница магнитосферы - магнитопауза - проходит там, где давление солнечного ветра уравнивается давлением геомагнитного поля. В подсолнечной точке она находится в среднем на расстоянии девяти радиусов Земли (55-60 тысяч километров) от ее центра. Полное усилие, которое солнечный ветер оказывает на магнитосферу, ничтожно, но тем не менее внешние области магнитосферы, заполненные слабым геомагнитным полем, сильно искажены относительно начальной дипольной формы. Со стороны Солнца (дневной стороны) магнитосфера сплющивается, а с противоположной - ночной - вытягивается, образуя магнитный хвост, тянущийся на сотни радиусов Земли, более миллиона километров. А поскольку поток солнечного ветра сверхзвуковой, то перед магнитосферой, как перед сверхзвуковым самолетом, образуется ударная волна.
Внешняя магнитосфера содержит разреженную (менее 1 ) плазму солнечного и ионосферного происхождения, нагретую до миллионов и сотен миллионов градусов. Но при таких низких плотностях понятие температуры как меры теплоты объекта, находящегося в термодинамическом равновесии, становится бессмысленным и вместо температуры используют величину средней энергии заряженных частиц, выраженную в электрон-вольтах (эВ). Частица с единичным зарядом приобретает (или теряет, в зависимости от знака заряда) один электрон-вольт энергии, пройдя разность потенциалов 1 В. Температура плазмы в этих единицах составляет от 1 до 100 килоэлектронвольт (кэВ).
Несмотря на то, что полная масса горячих частиц внешней магнитосферы составляет всего около тонны, их роль в построении магнитосферы очень важна. Только простейшие конфигурации магнитного поля типа дипольной могут существовать в пространстве сами по себе, в создании же более сложных форм, к которым принадлежит и магнитосфера, согласно уравнениям Максвелла , должны участвовать электрические токи. Такую замкнутую систему токов, текущих по большей части в местах резких изменений направления магнитного поля - вокруг Земли вдоль магнитопаузы (ток Чепмена-Ферраро), поперек магнитного хвоста и некоторых других, и формируют частицы плазмы.
В целом влияние солнечного ветра на магнитосферу достаточно сильно, но ее форма искаженного диполя всегда сохраняется. Так как частицы легко передвигаются вдоль силовых линий магнитного поля, особенности различных областей магнитосферы проецируются вдоль линий и на малые высоты, в ионосферу. Силовые линии из более удаленных областей подходят к Земле в более близких к полюсам районах. Приполярные районы - "полярные шапки" - всегда заполнены так называемыми "открытыми" силовыми линиями, другой конец которых уходит в межпланетное пространство. Все более близкие к экватору силовые линии замкнуты, и оба их конца упираются в Землю. Линии, наиболее удаленные точки которых находятся в окрестностях магнитопаузы и в магнитном хвосте - самых динамичных областях магнитосферы, сильно реагирующих на изменения в солнечном ветре, подходят к Земле в зонах так называемого аврорального овала, расположенных на 65-72 градусах магнитной широты. В экваториальной области к Земле подходят линии из более стабильной внутренней магнитосферы, сохраняющей дипольную конфигурацию поля. Описанная выше схема магнитосферы была впервые предложена американскими физиками Сидни Чeпменом и Винцентом Ферраро в 30-х годах XX века. Она удачно описывала форму магнитосферы, но не могла объяснить внезапных отклонений геомагнитного поля от своего постоянного значения. Такие отклонения исторически называют геомагнитной активностью.
Более близкой к реальности оказалась предложенная в 1961 году британским ученым Джеймсом Данжи модель "открытой" магнитосферы, которая учитывала взаимодействие геомагнитного и межпланетного магнитных полей. Согласно этой модели, когда направление межпланетного магнитного поля становится противоположным направлению геомагнитного поля на дневной стороне, начинается процесс так называемого пересоединения. При сближении противоположно направленных силовых линий магнитное поле обращается в нуль и принцип вмороженности нарушается. Из "замкнутой" геомагнитной линии и "свободной" линии межпланетного поля образуются две "открытые" силовые линии, которые одним концом начинаются на Земле в полярной шапке, а другим - уходят в межпланетное пространство. Пересоединение "выгодно" с энергетической точки зрения, так как суммарная длина силовых линий уменьшается. Поток солнечного ветра сносит "открытые" линии на ночную сторону. Здесь противоположно направленные линии снова сближаются, и процесс ночного пересоединения воссоздает линии солнечного ветра и замкнутые геомагнитные линии, которые постепенно возвращаются на дневную сторону. При этом магнитосфера и ионосфера оказываются вовлеченными в круговорот - глобальную конвекцию.
Интенсивность конвекции зависит от величины и направления межпланетного поля, а также скорости солнечного ветра, определяющей "количество" его силовых линий, падающих на магнитопаузу. Так как геомагнитное поле на экваторе направлено на север, "открывает" магнитосферу "южное" направление межпланетного поля. Когда его направление "северное", процесс пересоединения не идет и магнитосфера "закрыта".
Скорость пересоединения на ночной стороне обычно меньше, чем на дневной, поэтому в хвосте магнитосферы происходит накопление открытых силовых линий и, следовательно, магнитной энергии. Размер полярной шапки растет, и зона аврорального овала сдвигается ближе к экватору на несколько градусов. Через некоторое время (1 - 2 часа) магнитный хвост, "переполненный" магнитным полем, теряет устойчивость, процесс
пересоединения на ночной стороне принимает взрывной характер, и за несколько минут избыточные силовые линии сбрасываются. Этот циклический процесс называется магнитосферной суббурей и сопровождается значительным возмущением всей внешней магнитосферы Земли. Фактически происходит обрыв части магнитного хвоста, а его остаток поджимается к Земле. В этот момент часть плазмы внешней магнитосферы становится "лишней" и сбрасывается по силовым линиям в авроральную зону ионосферы. Здесь энергичные ионы и электроны сталкиваются с нейтральными атомами и заставляют их испускать фотоны. Именно так возникают замечательные по своей красоте полярные сияния давшие свое название авроральной зоне.
Другое важное следствие суббури - изменения в системе магнитосферных токов. При "отрыве" магнитного хвоста электрический ток, в нормальных условиях текущий поперек хвоста, вынужден обойти этот разрыв через ионосферу, используя "резервную цепь": вдоль силовых линий к Земле, затем вдоль авроральной зоны ионосферы и обратно в хвост. Сила возникающего при этом ионосферного тока - электроджета - составляет более миллиона ампер, а магнитное поле, наводимое им на поверхности Земли в авроральной зоне, вносит существенные, до тесла (2% величины стабильного поля), вариации в геомагнитное поле. Наряду с полярными сияниями появление вариаций служит основным признаком начала суббури, а их величина, называемая индексом АЕ, главной характеристикой силы суббури. Направление межпланетного магнитного поля постоянно меняется более или менее случайным образом, поэтому "рядовые" суббури, связанные с "южными" полями, случаются несколько раз за сутки, независимо от текущей солнечной активности. Более известные широкому читателю магнитные бури регистрируются реже. Они непосредственно связаны со вспышками солнечной активности, а точнее, с попаданием Земли в зоны аномально интенсивного солнечного ветра и в межпланетные магнитные облака. Интенсивность магнитного пересоединения на дневной стороне возрастает на порядок, приводя к разрастанию области, занимаемой полярной шапкой. Во время сильной бури мощнейшие магнитные суббури следуют одна за другой, а авроральная зона расширяется вплоть до умеренных широт. Конвекция, прежде незаметная на фоне взрывных процессов в хвосте, начинает доминировать, возмущая внутреннюю магнитосферу и создавая кольцевой ток, опоясывающий Землю на высоте 20-30 тысяч километров. У ее поверхности ток создает магнитное поле, направленное противоположно основному геомагнитному. Амплитуда регистрируемого в результате уменьшения полного поля называется Dst-индексом и служит основной характеристикой силы магнитной бури. Так, во время крупнейшей бури этого солнечного максимума, разыгравшейся 31 марта 2001 года и длившейся более суток, индекс Dst составил _358 нТл, а полярные сияния наблюдались даже в Москве. Энергия, выделившаяся тогда в магнитосфере Земли, составила около 5• Дж, что примерно равно энергии взрыва 100 мегатонн тротила.
Физические характеристики солнечного ветра вблизи орбиты Земли:
Скорость, км/с |
Температура , К |
Магнитная индукция, Тл |
Концентрация, г |
Поток массы, кг/с |
Поток энергии, Вт |
|
400-700 |
1 |
10?19 |
Глава 2. Кометы как структурные образования в межпланетном пространстве
2.1 Гипотезы происхождения комет
За обозримое прошлое человечества было открыто много комет. На первых порах
серьезного изучения комет никому не приходила в голову мысль, что они принадлежат Солнечной системе. Раньше предполагалось, что таинственные небесные странницы приходят к нам из далеких безвестных глубин межзвездного пространства. Они подходят к Солнцу на расстояние в несколько десятков или сотен миллионов километров и затем пускаются в обратный путь. При этом, чем дальше кометы уходили от Солнца, тем сильнее ослабевал их блеск, пока совсем не пропадал. Большинство астрономов предполагали в прошлые времена, что каждая комета приходит к Солнцу лишь один раз и затем навсегда покидает его окрестности. Однако эта мысль утвердилась не сразу.
Еще Аристотель - могучий авторитет среди научного мира, задумываясь о природе комет, выдвинул гипотезу, что кометы имеют земное происхождение. Они, якобы, порождаются в атмосфере Земли, «висят» на сравнительно небольшой высоте, медленно проплывая по небу. Удивительно, что точка зрения Аристотеля господствовала около двух тысячелетий, и никакие попытки поколебать ее не давали положительного результата - опровергнуть учение Аристотеля попытался римский учёный Сенека, он писал, что «комета имеет собственное место между небесными телами..., она описывает свой путь и не гаснет, а только удаляется». Но его проницательные предположения сочли безрассудными, так как слишком был высок авторитет Аристотеля. И только в конце XVI века идея Аристотеля была опровергнута. В конце XVI века астрономы в т.ч. Т. Браге наблюдали яркую комету с двух наблюдательных пунктов, очень удаленных друг от друга. Если бы комета находилась в атмосфере, т.е. недалеко от наблюдателей, то должен был бы наблюдаться параллакс: с одного пункта комета должна быть видна на фоне одних звезд, а с другого - на фоне других. Однако наблюдения показали, что никакого параллакса не было, и, значит, комета находилась гораздо дальше, чем Луна. Земная природа комет была опровергнута, что сделало их еще более таинственными. Одна тайна сменилась другой, еще более заманчивой и недоступной. У многих астрономов сложилось мнение, что кометы приходят к нам из межзвездных глубин, т.е. не являются членами Солнечной системы. В какой-то момент даже предполагалось, что кометы приходят к Солнцу по прямолинейным траекториям и по таким же прямолинейным траекториям уходят от него.
Трудно сказать, сколько времени продолжалось бы такое положение, если бы не одно важнейшее событие в истории человечества. Гениальный естествоиспытатель, великий физик и математик Исаак Ньютон завершил выдающийся научный труд, связанный с анализом движения планет вокруг Солнца, и сформулировал закон всемирного тяготения: сила взаимного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояний между ними. Согласно этому закону природы все планеты движутся вокруг Солнца не произвольным образом, а строго по определенным орбитам. Орбиты эти представляют собой замкнутые линии. Есть предположение, что кометные ядра образовались в одно время со всей Солнечной системой и поэтому могут являть собой образцы того первичного вещества, из которого впоследствии образовались планеты и их спутники. Свои первозданные свойства ядра могли сохранить благодаря своему «постоянному месту» вдали от Солнца и больших планет, оказывающих огромное влияние на ближайшее окружение. Существуют гипотезы захвата комет из межзвездного пространства и их вулканического происхождения. Однако в 1950 году они были сильно потеснены одной старой идеей в новом оформлении. Еще в 1932 году один из выдающихся астрономов, Эрнст Эпик, высказал идею о возможной концентрации большого количества облаков кометных и метеоритных тел, «подчиняющихся» Солнцу, несмотря на то, что размещались они на расстоянии четырех световых дней от него. В 1950 году голландский астроном Ян Оорт, исследуя ряд долгопериодических комет, обнаружил, что их афелии (наиболее удаленные от Солнца точки орбит) концентрируются вблизи границы Солнечной системы. Можно было бы посчитать этот результат мало примечательным, тем более, что количество комет было совсем небольшим - 19. Однако Оорт увидел за этим явление большого масштаба. Он возродил к жизни идею Эпика о хранилище кометных ядер на «задворках» Солнечной системы. Из его исследований вытекало, что зона, оккупированная кометами, простирается в поясе от 30 до 100 тыс. а.е. от Солнца. Как полагают многие ученые, ядра комет, имеющих параболическую или гиперболическую орбиту, удаляясь от Солнца с все уменьшающейся скоростью, на расстоянии порядка 150 тысяч астрономических единиц от него почти останавливаются. Постепенно там образовался огромный рой, миллиарды кометных ядер - так называемое облако Эпика - Оорта. Поскольку тяготение Солнца на столь больших расстояниях ничтожно, ядра могут оставаться там почти без движения бесконечно долго. Лишь изредка, испытав гравитационное возмущение, к примеру, от проходящей недалеко звезды, часть ядер в облаке начинает перемещаться, некоторые из них, возможно, в сторону Солнца. Сам Оорт полагал на первых порах, что кометы образовались в процессе взрыва Фаэтона. Взрыв, по его мнению, был настолько силен, что большая часть мелких осколков была заброшена так далеко, что попала под косвенное влияние соседних звезд, да так и осталась на окраинах Солнечной системы.
И хотя красивая гипотеза о Фаэтоне оказалась несостоятельной, идея забрасывания вещества из внутренних областей Солнечной системы во внешние, в дальнейшем получила подтверждение. Сегодня механизм образования облака Эпика - Оорта выглядит приблизительно так. В эпоху гравитационного «склеивания» планет из газопылевого облака формировалось большое количество сгустков вещества или так называемых зародышей. Все, что эти планеты не в силах были поглотить, они выталкивали своим гравитационным полем далеко от своих «участков». Главной помехой в этой выталкивающей деятельности было Солнце, старавшееся удержать даже любую мелочь на ее орбитах. Но чем дальше от Солнца формировалась планета-гигант, тем легче ей было проявлять самостоятельность и по-своему вершить судьбы более мелких тел. Поэтому основным «поставщиком» кометных ядер в облако Эпика - Оорта был Нептун.
2.2 Анатомия кометы
В отличие от мерцающих звезд и четко очерченных планет комета выглядит как туманное светящееся пятнышко. Это пятнышко называют головой кометы. Есть кометы очень яркие и их без труда можно наблюдать невооруженным глазом, они всегда имеют светящиеся длинные хвосты. Именно поэтому их назвали «кометы», что в переводе с греческого языка означает «хвостатые звезды».
При первом знакомстве с яркой кометой может показаться, что хвост - самая главная часть кометы. Но если в этимологии слова "комета" хвост явился главной причиной для подобного наименования, то с физической точки зрения хвост является вторичным образованием, развившимся из весьма небольшого ядра, самой главной части кометы как физического объекта. Ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро - первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д. О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.
Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы - газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы. Плотность и комы, и особенно хвоста, чрезвычайно мала. Хвост у кометы бывает прямой или изогнутый и направлен от ядра в сторону, противоположную Солнцу. Поэтому когда комета из межпланетного пространства приближается к нашему светилу, то движется она головой вперед. А вот когда, обогнув Солнце, комета удаляется от него, то хвост движется впереди головы.
Итак, ядро - самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы - твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженных летучих компонентов (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению. Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, - так называемых «молодых» комет - поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых». Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. «Старые» кометы - это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света.
Модель Уипла объясняет также причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к ускорениям или замедлениям в движении короткопериодических комет.
Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая - как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла. Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн. Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами:
- наиболее близкая, прилегающая к ядру область - внутренняя, молекулярная, химическая и фотохимическая кома,
- видимая кома, или кома радикалов,
- ультрафиолетовая, или атомная кома.
На расстоянии в 1 а. е. от Солнца средний диаметр внутренней комы D1= 10 км, видимой D2= 105 - 106км и ультрафиолетовой D3= 107км.
Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул.
В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH2 и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме.
По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км.
Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, что объясняется слабым воздействием солнечных излучений на частицы головы, и её очертания определяются изотропным расширением кометного газа в межпланетное пространство но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.
С. В. Орлов предложил следующую классификацию кометных голов, учитывающую их форму и внутреннюю структуру:
- Тип E; - наблюдается у комет с яркими комами, обрамлёнными со стороны Солнца светящимися параболическими оболочками, фокус которых лежит в ядре кометы.
- Тип C; - наблюдается у комет, головы которых в четыре раза слабее голов типа E и по внешнему виду напоминают луковицу.
- Тип N; - наблюдается у комет, у которых отсутствует и кома и оболочки.
- Тип Q; - наблюдается у комет, имеющих слабый выступ в сторону Солнца, то есть аномальный хвост.
- Тип H; - наблюдается у комет, в голове которых генерируются равномерно расширяющиеся кольца - галосы с центром в ядре.
Головы комет при движении комет по орбите принимают разнообразные формы.
Вдали от Солнца головы комет круглые. Это бесхвостые кометы, по внешнему виду напоминающие шаровые звездные скопления. Приближаясь к Солнцу, голова кометы принимает форму параболы или цепной линии. Параболическая форма головы объясняется "фонтанным" механизмом. Образование голов в форме цепной линии связано с плазменной природой кометной атмосферы и воздействием на неё ветра и с переносимым им магнитным полем. Иногда голова кометы столь мала, что хвост кометы кажется выходящим непосредственно из ядра. Кроме изменения очертаний в головах комет то появляются, то исчезают различные структурные образования: галосы, оболочки, лучи, излияния из ядра и т.п.
Галосы: Галосообразование в кометах заключается в появлении на фоне диффузного свечения комы системы расширяющихся концентрических светящихся колец. Расширяясь со скоростью 1-2 км/сек., галосы постепенно сливаются с фоном неба и становятся невидимыми. Наиболее рельефно галосы наблюдались в головах ярких комет.
Впервые галосы были обнаружены Шмидтом в голове яркой кометы Донаты (1858). После этого галосы были обнаружены в кометах Поиса-Брукса (1884), Галлея (1910), Олкола (1963) и Хонда (1955). Галосообразование, как показывают наблюдения, обычно происходят в период сильных изменений яркости кометы - вспышек блеска. Особенно наглядно эта связь проявилась в комете 1892, открытой Холмсом в Лондоне 6 ноября 1892 г. во время сильной вспышки блеска, так как комета уже прошла перигелий (на 4,5 месяца раньше, чем она была открыта). При этом наблюдалось постепенное расширение головы и падение поверхностной яркости. Спектральные наблюдения галосов комет Галлея (1910) и Олкока (1963) указывали на присутствие в галосах излучений СN и С2 Однако, в отличие от молекул СN и С2, наблюдавшихся в других структурных образованиях комет, например, оболочках, которые заметным образом подвергаются отталкивательным силам, на те же молекулы в галосах лучевое давление не действует. С.В.Орлов предложил считать галосы аномальным образованием в кометах. Так как галосы всегда обладают сферической симметрией, их формирование должно происходить без участия магнитных сил. Л.М.Лульман предложил механизм образования галоса при условии сверхзвукового истечения вещества из ядра. В таком потоке по законам гидродинамически образуется скачок плотности (аналогичный наблюдавшимся скачкам плотности при сверхзвуковом истечении газа из сопла Лаваля). Этот скачок плотности и будет наблюдаться как галос. Такой механизм позволяет объяснить, почему галосы не подвергаются действию лучевого давления (эффект Орлова). Если галос представляет собой скачок плотности в сверхзвуковом потоке кометного газа, то он будет являться волновым образованием, на которое лучевое давление не действует.
Лучи: Довольно часто в хвостах I типа наблюдаются тонкие прямолинейные лучи, выходящие под углами из ядра и составляющие в совокупности хвост. В спектре лучистых хвостов в основном наблюдаются линии ионов СО, N и др., непрерывный спектр отсутствует. Таким образом, лучи - это плазменные образования. Поэтому наиболее вероятно, что лучи представляют собой кометную плазму, сжатую в волокна под действием внешних магнитных и электрических полей. Волокнистая структура космической плазмы - чрезвычайно распространенное явление в природе: волокнистая структура межзвездной среды и туманностей, лучи и тонкие волокна солнечной короны, лучевые формы полярных сияний и, наконец, лучевые системы кометных хвостов. Большой интерес вызывает образование лучевой системы с чрезвычайно интенсивными волнистыми струями, наблюдавшиеся у кометы Беннета (1970) 2 апреля 1970 года. В ночь с 3 на 4 апреля структура хвоста стала ещё сложнее и запутаннее; в конце концов весьма активный процесс, происходивший в указанное время в атмосфере кометы Беннета, увенчался образованием красивого пламенного облачка, обладавшего сложной волокнистой структурой. Иногда наблюдаются лучевые системы, связанные с облачными образованиями, движущимися с большими ускорениями в хвосте кометы. Вместе с облачными образованиями двигались и их лучевые системы.
Например, у кометы Морхауза (1908) 15-17 октября 1908 года наблюдались одновременно лучевые системы, выходящие из головы кометы и из нескольких облачных образований, напоминающих собой как бы отдельные кометные головы. Альвен предложил следующий механизм образования лучевых систем в хвостах комет. Солнечный ветер с "вмороженными" в него магнитными силовыми линиями, сталкиваясь с нейтральной головой кометы, ионизует часть газа. На ионизованной коме происходит торможение солнечного ветра, и силовые линии начинают изгибаться, повторяя контуры головы. При этом некоторые силовые линии загибаются почти на 90° к начальному направлению поля. Так как кометные ионы могут распространяться только вдоль силовых линий, последние постепенно материализуются и становятся видимыми как лучи. Движение кометных ионов вдоль силовых линий объясняет также появление спиралеобразных, винтовых лучей. Лучевые структуры в хвосте I типа могут представлять собой токовую систему, генерируемую вихревыми магнитными полями, переносимыми солнечным ветром. Вследствие гигантских размеров ионизованных хвостов электрические токи в них будут определяться самоиндукцией. Возникновение лучей (токов) может быть связано с "падающей" характеристикой, т.е. электрическое поле, необходимое для поддержания тока, будет убывающей функцией. При постоянстве полной плотности тока локализация токов в лучах требует более слабого поля, чем тогда, когда ток равномерно заполняет весь объём хвоста кометы. Таким образом, развитие лучей, по которым распространяются токи, делает электрическое поле в хвосте минимальным.
Оболочки: Явление сжимающихся оболочек было обнаружено в комете Морхауза (1908). Как показали наблюдения А.Эддингтона, оболочки возникали приблизительно на одном и том же расстоянии от ядра, причём сначала появлялись вершины оболочек с интервалами порядка нескольких десятков минут, так что можно было одновременно наблюдать в голове кометы сразу несколько оболочек. Как только появлялся сгусток свечения (вершина), он сразу же начинал двигаться к ядру, становясь по мере приближения все резче и протяжённее. При этом у оболочек начинали развиваться боковые ветви (одна или две). Вблизи ядра оболочка становилась размытой. Полное формирование дуги из оболочки происходило в интервале десятков минут или часа. Форма оболочки в течение всего времени развития оставалась сферической. Боковые ветви оболочки (лучи) уходили в хвост к оси хвоста, сливаясь затем с главным хвостом 1 типа, расположенным вдоль радиуса-вектора.
Оболочки целиком состояли из ионов СО. В других кометах столь явно, как в комете Морхауза, явление сжимающихся оболочек не наблюдалось, однако, об их образовании в таких кометах, как комета Даниэля (1907), Финслера (1937), Маркоса (1957) Тато-Сато-Косака (1969), Беннета (1970) и др., можно судить по наличию остатков таких оболочек в виде лучей, формирующих характерную "луковичную" структуру. Сжимающиеся плазменные оболочки формируются под воздействием солнечного ветра, однако, физический механизм их образования до конца не ясен. Происхождением и формой кометных хвостов учёные заинтересовались давно.
Например, И. Ньютон, наблюдая за яркой кометой 1680 г. пришёл к выводу, что хвост должен развиваться следующим образом: "Приближаясь к Солнцу, вещество головы кометы постепенно нагревается и начинает испаряться в эфирную среду, заполняющую межпланетное пространство, которая таким образом и сама нагревается. От нагревания межпланетный эфир становится разрежённым и движется по направлению от Солнца, увлекая за собой кометные испарения, подобно тому, как горячий воздух, поднимаясь из печных труб, увлекает за собой частицы топлива и пара. С механической точки зрения кометные испарения отталкиваются от Солнца и движутся, сохраняя орбитальную скорость кометы". Исходя из такой мысли, И. Ньютон рассчитал, что хвост кометы 1680 г., который он наблюдал 25 января, мог сформироваться за 45 суток.
Не оставил без внимания кометы и М.В. Ломоносов. Наблюдая большую комету 1744 г., он писал: "На теневой стороне ядра холод, на солнечной - жар. Около тени сильное движение атмосферы и трение...", а это является той причиной, по которой "возбуждается и рождается великая электрическая сила. Хвосты комет здесь почитаются за одно с северным сиянием".
Ф. Бессель, исследуя форму хвоста кометы Галлея в её появлении в 1835 г., впервые объяснил её действие отталкивательных сил, исходящих из Солнца и изменяющихся обратно пропорционально квадрату гелиоцентрического расстояния.
...Подобные документы
Определение и типы астероидов, история их открытия. Главный пояс астероидов. Свойства и орбиты комет, исследование их структуры. Взаимодействие с солнечным ветром. Группы метеоров и метеоритов, их падение, звездные дожди. Гипотезы Тунгусской катастрофы.
реферат [49,5 K], добавлен 11.11.2010Солнце как звезда, небесное светило, снабжающее Землю энергией и являющееся центром Солнечной системы, ее центральное тело, типичная звезда. Происхождение и основные периоды развития Солнца. Обоснование и главные причины явления солнечного затмения.
презентация [6,0 M], добавлен 03.05.2012Строение комет. Классификация кометных хвостов по предложению Бредихина. Облако Оорта как источник всех долгопериодических комет. Пояс Койпера и внешние планеты Солнечной системы. Классификация и типы астероидов. Пояс астероидов и протопланетарный диск.
презентация [1,4 M], добавлен 27.02.2012Состав Солнечной системы: Солнце, окруженное девятью планетами (одна из которых Земля), спутники планет, множество малых планет (или астероидов), метеоритов и комет, чьи появления непредсказуемы. Вращение вокруг Солнца планет, их спутников и астероидов.
презентация [901,6 K], добавлен 11.10.2011Понятие астероида как небесного тела Солнечной системы. Общая классификация астероидов в зависимости от орбит и видимого спектра солнечного света. Сосредоточенность в поясе, расположенном между Марсом и Юпитером. Вычисление степени угрозы человечеству.
презентация [307,1 K], добавлен 03.12.2013Строение Солнца. Самый простой способ рассматривать Солнце - это спроецировать его изображение на белый экран. При помощи даже маленького любительского телескопа можно получить увеличенное изображение солнечного диска.
реферат [7,7 K], добавлен 05.02.2006Общая характеристика и особенности структуры Солнца, его значение в солнечной системе. Атмосфера Солнца, причины появления и характер пятен на его поверхности. Условия возникновения солнечных затмений. Циклы солнечной активности и их влияние на Землю.
презентация [676,9 K], добавлен 29.06.2010Наука астрономия. Открытие кометы Галлея. Параболические кометы. Периодические кометы. Подразделение комет по периодам обращения. Возмущения со стороны планет. Структура комет. Формы кометных хвостов. Обнаружение комет, их названия. Происхождение комет.
реферат [46,2 K], добавлен 21.09.2008Внешние тепловые потоки, действующие на космический аппарат. Общие сведения и устройство оптических систем вакуумных установок. Спектры солнечного излучения. Классификация имитаторов солнечного излучения. Физические принципы использования имитаторов.
курсовая работа [747,5 K], добавлен 13.09.2012Полярное сияние — свечение верхних разреженных слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра. Происхождение люминисценций над поверхностью Земли и других планет Солнечной системы.
презентация [772,7 K], добавлен 02.06.2011Расположение и место во Вселенной планеты Солнца, ее происхождение и основные этапы развития. Природа солнечного света и его влияние на другие планеты и звезды Солнечной системы. Природа солнечных пятен. Особенности протекания и причины затмений Солнца.
реферат [18,7 K], добавлен 16.01.2010Характер и обоснование движения тел солнечной системы. Элементы эллиптической орбиты и их назначение. Особенности движения Земли и Луны. Феномен солнечного затмения, причины и условия его наступления. Специфика лунных затмений и их влияние на Землю.
курсовая работа [4,0 M], добавлен 27.06.2010Общие сведения о Солнце: характеристики, вращение, вид в телескоп, химический состав, внутренне строение, положение в Галактике. Эволюция Солнца и Солнечной системы. Фотосфера. Хромосфера. Корона. Циклы солнечной активности. Солнце и жизнь на Земле.
реферат [57,9 K], добавлен 23.02.2009Характеристика комет: история развития, происхождение, структура и основные элементы, причина свечения и химический состав. Точность определения кометных орбит, методы оценки их блеска, современные методы исследования. Защита Земли от кометной опасности.
контрольная работа [54,9 K], добавлен 30.10.2013Полные солнечные затмения относятся к числу наиболее величественных и красивых явлений природы. Причина происхождения солнечного затмения. Полные, кольцеобразные и частные затмения Солнца. Значение теории полного затмения Солнца для современной науки.
реферат [725,8 K], добавлен 23.06.2010Схематичное изображение Солнечной системы в пределах орбиты Юпитера. Первая катастрофа – пробой Земли насквозь астероидом Африканом. Атака группой астероидов Скошей. Структура кратера Батракова. Вылет Карибской группы астероидов, глобальные последствия.
статья [6,1 M], добавлен 08.11.2013Открытие астероидов вблизи Земли, их прямое движение вокруг Солнца. Орбиты астероидов, их формы и вращение, насквозь холодные и безжизненные тела. Состав астероидного вещества. Формирование астероидов в протопланетном облаке как рыхлых агрегатов.
реферат [32,3 K], добавлен 11.01.2013Классификация астероидов, сосредоточение большинства из них в пределах пояса астероидов, расположенного между орбитами Марса и Юпитера. Основные известные астероиды. Состав комет (ядро и светлая туманная оболочка), их различия в длине и форме хвоста.
презентация [6,5 M], добавлен 13.10.2014Межпланетная система, состоящая из Солнца и естественных космических объектов, вращающихся вокруг него. Характеристика поверхности Меркурия, Венеры и Марса. Место расположения Земли, Юпитера, Сатурна и Урана в системе. Особенности пояса астероидов.
презентация [1,3 M], добавлен 08.06.2011Солнце, его физические и химические свойства, внутреннее строение, история открытия и ранние наблюдения. Исследования космическими аппаратами. Процессы преобразования солнечной энергии и её влияние на экологию. Развитие современного научного понимания.
курсовая работа [509,9 K], добавлен 18.07.2014