Эволюция Вселенной
Процесс эволюции Вселенной: Адронная эра, Лептонная эра, Фотонная эра или эра излучения, Звездная эра. Теория "Большого взрыва", пути эволюции звезд. Космогоническая гипотеза о происхождении планет в Солнечной системе. Образование и эволюция галактик.
Рубрика | Астрономия и космонавтика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.09.2013 |
Размер файла | 33,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
По мере того как Земля открывала человеку большинство своих белых пятен, астрономы стали выходить в область новых и не исследованных территорий за пределами нашей маленькой планеты. Сегодня исследователи Вселенной, используя современные телескопы и ЭВМ, продвигаются в направлении всё больших расстояний в поисках предела Космоса - последней его границы.
Рождение звезд - процесс таинственный, скрытый от наших глаз, даже вооруженных телескопом. Лишь в середине ХХ в. Астрономы поняли, что не все звезды родились одновременно в далёкую эпоху формирования Галактики, что и в наше время появляются молодые звезды. В 60 - 70-е гг. была создана самая первая, ещё очень грубая теория образования звезд. Позднее новая наблюдательная техника - инфракрасные телескопы и радиотелескопы миллиметрового диапазона - значительно расширила наши знания о зарождении и формировании звёзд. А начиналось изучение этой проблемы ещё во времена Коперника, Галилея и Ньютона.
Столетия мы были узниками Солнечной системы, считая звезды просто украшениями сферы, расположенной за планетами. Потом человек признал в этих крошечных светящихся точках другие солнца, настолько далекие, что их свет идет до Земли многие годы. Казалось, что космос населен редкими одинокими звездами, и ученые спорили о том, простирается ли звездное население в пространстве неограниченно или же за некоторым пределом звезды кончаются, и начинается пустота. Проникая все дальше и дальше, астрономы нашли такой предел, и оказалось, что наше Солнце - одна из огромного числа звезд, образующих систему под названием Галактика. За границей Галактики была тьма.
XX век принес новое открытие: наша Галактика-это еще не вся Вселенная. За самыми далекими звездами Млечного Пути находятся другие галактики, похожие на нашу и простирающиеся в пространстве до пределов видимости наших крупнейших телескопов. Грандиозные звездные системы - одни из самых потрясающих и наиболее изучаемых современной астрономией объектов, и именно о них пойдет речь в этом реферате.
1. Эволюция Вселенной
Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.
Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.
На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс частица + античастица? 2 гамма-фотона при условии соприкосновения вещества с антивеществом. Процесс материализации гамма-фотон? частица + античастица мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась, эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.
1.1 Адронная эра
При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.
Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц kT и фотонов h? составляла около миллиарда эв (103 Мэв), что соответствует энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 1013K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во Вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10-6 до 10-4 секунды.
К моменту, когда возраст Вселенной достиг одной десятитысячной секунды
(10-4с.), температура ее понизилась до 1012K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.
1.2 Лептонная эра
Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.
Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.
1.3 Фотонная эра или эра излучения
На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 1010K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно- позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.
Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 см3, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию h? Всех фотонов, присутствующих в 1 см3, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 см3 является средней энергией вещества Em во Вселенной.
Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно «устают» со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em). Преобладание во Вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие, то есть (Er=Em). Кончается эра излучения и вместе с этим период «Большого взрыва». Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.
1.4 Звездная эра
После «Большого взрыва» наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения «Большого взрыва» (приблизительно 300 000 лет) до наших дней. По сравнению с периодом «Большого взрыва» её развитие представляется как будто замедленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.
2. Теория «Большого взрыва»
«Большой взрыв» продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время «Большого взрыва». Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).
В момент, который был назван «Большим взрывом», плотность Вселенной была равна 1000 000 г/м3, а температура равнялась 1032 степени градусов К. Этот момент был назван точкой сингулярности, то есть была точка, было начало, возникла масса, абсолютное пространство и все законы, которым сейчас подчиняется Вселенная.
Если исходить из фактов, то теория «Большого взрыва» кажется очень убедительной, но так как мы до сих пор не знаем, что же было до него, это напускает немного тумана на эту проблему. Но все-таки наука продвинулась гораздо дальше, чем это было раньше и как любая революционная теория, теория «Большого взрыва» дает хороший толчок развитию научной мысли.
3. Эволюция звезд
Прежде чем переходить к рассмотрению эволюции галактик, рассмотрим подробнее пути эволюции звезд.
В газовой туманности после появления в ней молекул и пылинок происходит резкое падение температуры. Это связано с тем, что и молекулы, и пыль излучают при низкой температуре в инфракрасном диапазоне. В этом диапазоне туманность практически прозрачна и излучение уносит энергию из туманности. Падение температуры приводит к падению давления, и туманность начинает сжиматься. При этом вся выделяющаяся гравитационная энергия уносится излучением, и температура не поднимается. По мере увеличения плотности туманность распадается на отдельные сгустки, которые дадут в дальнейшем начало новому поколению звезд. Так начинается процесс звездообразования в газопылевой туманности.
Сжатие фрагмента, который даст начало звезде, с самого начала проходит неравномерно: в центре быстрее, чем на периферии. В результате плотность в центре быстро увеличивается и достигает таких значений, когда вещество перестает быть прозрачным для инфракрасного излучения. Температура в образующемся ядре поднимается, возрастает давление, и сжатие в нем останавливается.
Но внешние слои продолжают падать вниз и сталкиваются с поверхностью ядра. Температура его возрастает, оно начинает излучать, и в ближайших к ядру слоях пыль испаряется. Образуется объект, в центре которого расположена уже сформировавшаяся звезда, а на периферии - почти сферическая оболочка, содержащая пыль и газ и почти непрозрачная для излучения.
Постепенно оболочка прогревается и становится прозрачной для видимого излучения. Это знаменует появление новой звезды. Возможно, что оболочка становится прозрачной потому, что магнитное поле ее «раскручивает» (при этом сама звезда замедляет свое вращение). Во вращающейся оболочке материя концентрируется в экваториальной плоскости и образует газопылевой диск, который даст в дальнейшем начало планетной системе. Такие газопылевые образования (это либо указанные диски, либо остатки газопылевых оболочек) обнаружены у явно молодых звезд по инфракрасному излучению, то есть основное излучение холодной пылевой оболочки. В процессе эволюции положение звезды будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие. Поэтому звезда достаточно быстро перемещается.
Температура поверхности не меняется, а радиус и светимость уменьшаются. Температура в центре звезды повышается, достигая величины, при которой начинаются реакции с легкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек поворачивается параллельно оси ординат, температура на поверхности звезды повышается, светимость остается практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность. Время пребывания звезды на главной последовательности пропорционально массе звезды, так как от этого зависит запас ядерного горючего, и обратно пропорционально светимости, которая определяет темп расхода ядерного горючего. А поскольку светимость звезды пропорционально примерно четвертой степени ее массы, то массивные звезды, масса которых в несколько раз больше массы Солнца, эволюционируют быстрее. Они находятся в стационарной стадии только несколько миллионов лет, а звезды, подобные Солнцу, - миллиарды лет.
Заключительный этап жизни звезды, как и вся ее эволюция, решающим образом зависит от массы звезды. Внешние слои звезд, подобных нашему Солнцу (но с массами, не большими 1,2 массы Солнца), постепенно расширяются и, в конце концов, совсем покидают ядро звезды, На месте гиганта остается маленький остается маленький и горячий белый карлик. Белых карликов в мире звезд много. Это значит, что, по-видимому, многие звезды превращаются в белых карликов, которые за тем постепенно остывают, становясь «потухшими звездами».
Иная судьба у более массивных звезд. Если масса звезды примерно вдвое превышает массу Солнца, то такие звезды на последних этапах своей эволюции теряют устойчивость. В частности они могут взорваться как сверхновые, обогащая межзвездную среду тяжелыми химическим элементами (которые образовались внутри звезды и во время ее взрыва), а затем катастрофически сжаться до размеров шаров радиусом в несколько километров, то есть превратиться в нейтронные звезды.
Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов, а во время взрыва сверхновых - остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Вот почему о возрасте звезд можно судить по их химическому составу, определяемому методом спектрального анализа.
А какова судьба звезды, масса которой более чем вдвое превышает массу Солнца? Такая звезда, потеряв равновесие и начав сжиматься, либо превратится в нейтронную звезду, либо вообще не сможет достигнуть устойчивого состояния. В процессе не ограниченного сжатия (коллапса) она, вероятно, способна превратиться в удивительный объект - черную дыру. Такое странное название связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновские лучи и т.д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн. Но, как показали наши ученые, есть возможность обнаружить черные дыры. Дело в том, что черные дыры должны оказывать гравитационное воздействие на окружающие их тела. Не исключено, например, что черная дыра может быть в составе двойной звезды. Газ с поверхности обычной звезды будет непрерывно падать на черную дыру, образуя вокруг нее диск. Температура газа в этом вращающемся диске может, достичь 107 К. При температуре в миллионы кельвинов газ будет излучать в рентгеновском диапазоне и выражается законом Вина:
?max=0,0029/Т
Поэтому с точки зрения поиска черных дыр интересны компактные источники рентгеновского излучения. Астрономы считают, что несколько черных дыр в тесных двойных системах уже обнаружено, также открыты сверхмассивные черные дыры и в некоторых галактиках, включая нашу Галактику (!).
Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во-первых, подчиняясь законом природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во-вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.
4. Происхождение и эволюция планет
Космогоническая гипотеза о происхождении планет должна объяснить следующие основные закономерности, наблюдаемые в Солнечной системе:
1. углы наклонения плоскостей орбит планет к плоскости эклиптики не превышают нескольких градусов (у Плутона 17о), причем плоскость эклиптики почти совпадает с плоскостью экватора Солнца;
2. эксцентриситеты орбит планет очень малы;
3. средние расстояния планет от Солнца подчиняются определенному закону r=0,3*2n+0,4;
4. Планеты движутся вокруг Солнца в том же направлении, в каком Солнце вращается вокруг своей оси (в том же направлении вокруг планет обращается большинство спутников);
5. у большинства планет (за исключением Венеры и Урана) направление вращения вокруг оси совпадает с направлением обращения вокруг Солнца;
6. на долю планет приходится 98% момента количества движения всей Солнечной системы; Солнце обладает лишь 2% момента количества движения;
7. почти 99,9% массы вещества Солнечной системы приходится на долю Солнца;
8. по своим физическим характеристикам планеты резко делятся на две группы: планеты-гиганты и планеты земной групп.
На первый взгляд может показаться, что по сравнению с грандиозными проблемами космологии и звездной космологии проблема происхождения Солнечной системы не очень трудна. На самом деле это не так. Проблема происхождения планет очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и многих других наук (прежде всего наук о Земле). Ведь пока можно исследовать только единственную планетную систему, окружающую наше Солнце. Мы еще мало знаем о более молодых и более старых планетных системах, недавно открытых у других звезд. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовались Солнце и другие звезды, потому что планетные системы возникают вокруг звезд в результате закономерных процессов развития материи. И все-таки, несмотря на трудности, ученые убеждены в том, что правильное объяснение будет найдено. Знать, как произошла наша планета, очень важно для дальнейшего развития геофизики, геохимии, геологии и других наук о Земле.
Наиболее важные выводы планетной космогонии сводятся к следующему:
А) Планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда-то окружала Солнце. Эту туманность часто называют «допланетным» или «протопланетным» облаком. Считается, что Солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неясно, как произошло отделение части туманности, из которой возникли планеты, от «протосолнца».
Б) Формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие (уплощение) вращающейся туманности, ее удаление от «протосолнца», столкновение частиц, их укрупнение и т.д. Изменялась температура вещества туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с «протосолнцем». Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты). Теория, учитывающая все эти процессы, позволяет объяснить многие закономерности в Солнечной системе.
В) Спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, т.е. в конечном итоге тоже из вещества протопланетной туманности. Главный пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты.
Таким образом, основная идея современной планетной космогонии сводится к тому, что планеты и их спутники образовались из холодных твердых тел и частиц.
Земля как планета в основном сформировалась за время порядка 100 млн. лет и вначале тоже была холодной. Последующий разогрев Земли происходил в результате ударов крупных тел (размером с астероиды), гравитационного сжатия, распада радиоактивных элементов и некоторых других физических процессов. Постепенно в процессе гравитационной дифференциации вещества (т.е. в процессе разделения вещества, состоящего из тяжелых и легких химических элементов) в центре Земли сосредоточивались тяжелые химические элементы (железо, никель и другие), из которых образовалось ядро нашей планеты. Из более легких химических элементов и их соединений возникла мантия Земли.
Кремний и другие химические элементы стали основой формирования континентов, а самые легкие химические соединения образовали океаны и атмосферу Земли. В земной атмосфере первоначально было много водорода, гелия и таких водородсодержащих соединений, как метан, аммиак, водяной пар. Со временем водород и гелий улетучились, а с появлением растений, способных «выдыхать» кислород, земная атмосфера начала обогащаться кислородом, наличие которого представляет одно из необходимых условий существования животного мира.
Уже открытые газопылевые диски, и даже планеты у десятков других звезд. Это поможет развитию планетной космогонии.
5. Образование и эволюция галактик
эволюция вселенная солнечная система
Теперь вернемся к рассмотрению эволюции галактик.
Галактика образуется как огромный газовый шар, диаметр которого лишь незначительно превышает диаметр будущей галактики. Движения газа в нем хаотические, т.е. облака газа заполняют весь объем шара, двигаясь главным образом в радиальных направлениях. Весь шар вращается как целое. Сразу после возникновения протогалактики в ней начинается бурный процесс звездообразования, причем в основном образуются как сверхновые и обогащают межзвездную среду тяжелыми элементами.
На протяжении всего времени эволюции в галактике идет процесс обогащения межзвездного газа элементами тяжелее гелия. Различия химического состава, точнее доля тяжелых элементов, позволяют определить последовательность появления различных групп звезд (населений) в галактике.
Итак, на первой стадии существования галактики в ней образуются первые звезда и газовые облака. Дальнейшая «судьба» галактики зависит от ее массы и вращения. Галактика малой массы, как правило, не формирует ясно видимой структуры. Процесс звездообразования в ней сильно затянут, о чем свидетельствует большое количество молодых голубых звезд. Образовавшиеся в галактике звезды сохраняют движение тех газовых облаков, в которых они образовались, так как столкновения и близкие сближения звезд очень редки. Поэтому если галактика изначально вращалась медленно, то звезды сохраняют хаотические движения главным образом в радиальных направлениях. Газовые же облака часто сталкиваются между собой. Их хаотические скорости гасятся, и газ смещается к центру галактики.
Вид галактики, определяемый звездами, будет, мало отличатся от шара с сильной концентрацией звезд к центру, т.е. формируется эллиптическая галактика. Концентрирующийся к центру газ не только увеличивает концентрацию звезд к центру (процесс звездообразования не прекращается), но, по-видимому, приводит к образованию сверхмассивной черной дыры в ее центре. Взаимодействие черной дыры и газа, падающего к центру, определяет активность галактики.
В быстровращающейся галактике звезды первого поколения образуют сферическую составляющую. Хотя в такой галактике столкновения газовых облаков происходит не менее часто, чем в медленно вращающейся, газ не может сконцентрироваться к центру, ибо этому мешают центробежные силы. В результате газ будет концентрироваться в галактической плоскости.
Внешние возмущения приведут к тому, что в галактической плоскости возникнут волны плотности. Именно в них идет процесс звездообразования. Возникающие молодые массивные звезды и светящиеся под действием их излучения облака водорода образуют известный рисунок спиральной галактики.
Структура галактик.
Галактики являются одними из самых красивых по форме объектов в природе. Даже при наблюдении в небольшой телескоп, позволяющий увидеть лишь намек на структуру спиральной галактики, таинственные тусклые изображения галактик способны захватывать дух.
Галактики во Вселенной не похожи друг на друга. Некоторые из них ровные и круглые, другие имеют форму уплощенных разметавшихся спиралей, а у некоторых не наблюдается почти никакой структуры.
Благодаря достижениям астрономии в ХХ веке доступным для наблюдения стал не только звездный состав нашей Галактики, но и многочисленный мир других галактик, каждая из которых представляет собой гравитационно-обособленную систему из нескольких десятков (а порой превосходящих и сотню) миллиардов разнообразных звезд. В свою очередь, количество наблюдаемых современными средствами галактик тоже превышает десяток миллиардов единиц, а среднее расстояние между двумя соседними галактиками составляет порядка миллиона световых лет. Межзвездное пространство ряда галактик заполнено многочисленными газовыми и пылевыми облаками. Размеры же большинства галактик столь велики, что свет пересекает их из конца в конец за время порядка 100 тысяч лет. Вот такой необъятный по своей масштабности и многообразию мир предстал современным астрономам.
Наиболее распространенным типом галактик во Вселенной являются спиральные галактики, на долю которых приходится около 70% всех наблюдаемых галактик, в том числе и наш Млечный путь. Главной особенностью строения спиральных галактик является то, что они имеют две основные составляющие: плоскую - вращающийся звездный диск со спиральными ветвями и сферическую, охватывающую всю плоскую составляющую. При этом спиральные ветви характеризуются различной степенью закрученности - от близких к круговым до практически прямых ветвей. В центре спиральной галактики выделяется своей яркостью эллиптической формы ядро, из которого как бы и выходят тоже яркие спиральные рукава. В отличие от них сферическая составляющая светится весьма слабо.
Совсем по-другому выглядят эллиптические галактики, на долю которых приходится 26% наблюдаемых галактик. Все они издалека имеют вид светлых пятен, напоминающих удивительно правильные эллипсы, которые отличаются лишь степенью сплюснутости, что считается показателем скорости их вращения. Действительно, в соответствии с законами механики, чем медленнее вращается гравитационно-обособленная звездная система, тем более у нее шансов сохранить свой первоначальный, протогалактический, близкий к сферическому вид. И наоборот, быстро вращающаяся галактика вполне естественным образом растягивается по большой оси и принимает дискообразную форму.
По размерам и массам эллиптические галактики, хотя в среднем и считаются меньшими, чем спиральные, но в целом эти их характеристики некоторым образом пересекаются и не могут служить для них надежным отличительным признаком. Что же касается действительно существенного отличия, то им, безусловно, является гораздо более высокая светимость спиральных галактик по сравнению с эллиптическими, что является следствием коренного различия в составе населяющих эти галактики звезд. Эллиптические галактики почти сплошь населены старыми дряхлеющими звездами, просуществовавшими уже более десятка миллиардов лет и потому изрядно потускневшими и потерявшими свой первоначальный блеск. Напротив, широко раскинувшиеся ветви спиральных галактик буквально усеяны находящимися в расцвете сил яркими молодыми звездами, состав которых непрестанно пополняется рождающимися в спиралях новыми звездами, благо материала для такого производства в виде громадных облаков газа и пыли в рукавах спиралей предостаточно.
А вот в эллиптических галактиках процесс звездообразования, по-видимому, давно завершился. Эволюционные процессы протекают в них очень медленно, почти замерли, и только в самых центральных областях этих галактик еще «продолжается жизнь», но зато в этих областях порой пробуждается такая активность, до которой очень далеко спиральным галактикам. Принципиально важно также подчеркнуть, что звездный состав спиральных и эллиптических галактик отличается не только возрастом и яркостью звезд, но и их элементным содержанием. Слабо светящиеся звезды эллиптических галактик и сферические подсистемы спиральных главным образом легкоэлементные, состоящие в основном из водорода и гелия, а яркие звезды спиральных рукавов включают в свой состав практически всю периодическую систему Менделеева. Образно говоря, если из спиральной галактики изъять плоскую составляющую, то получится обычная эллиптическая галактика.
Бросается в глаза еще одно важное различие между этими типами галактик, связанное с особенностями движения в них звезд. Если для спиральных галактик, характерно вполне определенное и довольно стремительное обращение составляющих их звезд вокруг центра галактики, то в эллиптических туманностях, а также в сферических подсистемах спиральных, движение звезд носит, во-первых, преимущественно хаотический характер, а во-вторых, в своем общем обращении вокруг центра звезды эллиптической галактики гораздо более медлительны. Возьмем, к примеру, находящееся в диске нашей Галактики Солнце (оно удалено от галактического ядра примерно на две трети радиуса Млечного пути). Так вот, линейная скорость его полета по галактической орбите лежит в пределах от 220 до 250 км/сек, а период его обращения вокруг центра Галактики составляет где-то 250-280 млн. лет. Для звезд же сферической подсистемы этот период достигает полутора миллиардов лет, что связано примерно в пять раз меньшей скоростью их общегалактического обращения. Что же касается упомянутой хаотичности движения звезд в эллиптических галактиках, то она объясняется тем, что многие звезды в них объединены в огромные шаровые скопления, насчитывающие в своем составе сотни тысяч, а порой и миллионы звезд, которые под влиянием многостороннего гравитационного взаимодействия ведут себя с динамической точки зрения совершенно непредсказуемо, двигаясь со случайными скоростями в десятки километров в секунду.
Третьим по распространенности (около 4%) типом галактик являются неправильные галактики, названные так за бесформенность своего внешнего вида - клочковатого, угловатого, не имеющего ни ярко выраженного центра, ни отчетливо очерченных границ. Да и по своим массово-габаритным характеристикам они на два, а то и на три порядка меньше, чем спиральные галактики, хотя составляющие их звезды так же ярки, как и в ветвях последних, а межзвездные пространства тоже достаточно плотно заполнены газопылевыми облаками, последовательно преобразующимися в молодые звезды. Весьма характерной особенность неправильных галактик является то, что они, как правило, близко соседствуют со спиральными. Так, у нашей Галактики есть два таких неправильных спутника - Большое и Малое Магеллановы Облака (расстояния, отделяющие их от Галактики, составляют соответственно 200 и 220 тыс. световых лет). Населяющие их звезды по своей физической природе и элементному составу очень схожи со звездами спиральных рукавов Млечного Пути. Вот только количественно они заметно разнятся: В Малом Магеллановом Облаке звезд в 100 раз меньше, а в Большом - в 30 раз меньше, чем в наших спиралях. Кроме этих трех основных типов изредка встречаются еще и так называемые радиогалактики и сейфертовские галактики.
Первые характерны, прежде всего, тем, что обнаруживают себя не только оптическим излучением входящих в них звезд, но и испусканием радиоволн. Причем речь здесь идет не об источниках обычного хаотического излучения вследствие беспорядочного теплового движения заряженных частиц, что частенько в тех или иных масштабах наблюдается и в галактиках других типов, а совершенно иного рода излучения - синхротронного, характеризующегося сильной поляризацией. А это верный признак того, что в радиогалактиках должно существовать некоторое преимущественное направление достаточно сильного магнитного поля, способного разогнать электроны до скоростей, близких к скорости света. Именно релятивистские электроны, находясь в магнитном поле, способны излучать радиоволны, поляризованные только в одной плоскости, перпендикулярной к силовым линиям магнитного поля.
Когда подобных сильно радиоизлучающих галактик было обнаружено достаточно много, чтобы можно было сделать некоторые обобщения, оказалось, что среди них нет ни спиральных, ни неправильных форм, а только эллиптические. Их оптическое изображение имеет вид очень ярких пятен, иногда окруженных обычным ореолом. В других же случаях такой ореол не виден, и тогда радиогалактики по своему внешнему виду очень напоминают квазар. Самой характерной чертой радиогалактик, присущей, по крайней мере, 60% из них, следует назвать то, что они являются тройными системами: состоят из двух сильно вытянутых на миллионы световых лет радиоисточников и оптически видимого объекта, который находится примерно посередине прямой, соединяющей эти источники.
Во всех подобных случаях похоже на то, что в центральной части галактики происходил какой-то мощный взрыв, приводивший к выбросу вещества в двух противоположных направлениях примерно с одинаковой мощностью.
Сейфертовские галактики, названные так по имени американского астронома К. Сейферта, открывшего их в 1943 году, тоже относятся к галактикам с активными ядрами, но в отличие от радиогалактик почти все они имеют в той или иной степени спиральную, а не эллиптическую форму. Их наиболее характерной чертой является наличие в спектрах исходящего из их центральных областей излучения светлых эмиссионных линий, говорящих о том, что эти области содержат не только звезды, но и большие количества разреженного газа. Характерно также, что среди известных спиральных галактик на долю галактик Сейферта приходится не более 2-3%. Интересно еще и то, что целому ряду сейфертовских галактик присущи, как и радиогалактикам, сильно вытянутые радиоисточники, только уже не такие отчетливые на всем своем протяжении, а местами и просто-напросто рваные: радиоизлучающие ветви уже не составляют собой единое целое, а представлены последовательностью радиоисточников, разделенных «немыми» промежутками. Еще одной отличительной особенностью сейфертовских галактик является очень сильный блеск их ядер, вследствие чего эти ядра выглядят своего рода ярчайшими звездами, внедренными в центр спиральных галактик. Наблюдателям также удалось обнаружить, что блеск этот подвержен нерегулярным колебаниям, в общих чертах подобным изменению блеска квазаров.
Надо сказать, что все эти отличительные черты проявляются в сейфертовских галактиках с различной степенью. По этой причине ученые были вынуждены подразделить их на два типа: галактики, в спектрах которых есть лишь узкие эмиссионные линии, были отнесены к типу Сейферт 2, а другие, где в дополнение к узким видны и широкие, - к типу Сейферт 1. Наличие широких линий говорит о том, что световому потоку от ядра приходится продираться через облака плотного газа, а если их нет, значит, в галактике имеется только разреженный газ. По своим спектрам галактики Сейферт 2 близки к квазарам, с той лишь разницей, что последние выглядят гораздо более яркими. Если судить по возрастающей интенсивности оптического излучения, то эти объекты следует расположить в последовательности Сейферт 2 - Сейферт 1 - квазары, то есть по яркости сейфертовские галактики второго типа являются из них самыми слабыми. Но с другой стороны, галактики Сейферт 2 более мощны по радиоизлучению, чем Сейферт 1, что заставляет астрофизиков усомниться в справедливости утверждения о родственности этих Сейфертов между собой, а заодно и с квазарами. Действительно, если галактика активней оптически, то в силу своей более высокой энергетичности она должна превосходить свою соперницу и по радиоизлучению. А тут получается все наоборот. Это как раз и приводит ученых к разногласиям во мнениях о морфологическом единстве сейфертовских галактик различных типов.
Уже не раз упоминавшиеся нами в связи с рассмотрением галактик квазары считаются в астрономии наиболее таинственными космическими объектами. Дело в том, что они очень сложны для наблюдения. Их угловые размеры чрезвычайно малы и измеряются всего лишь десятыми долями светового года (для сравнения, радиус Галактики - 100 тысяч световых лет). Зато по мощности излучения они в десятки раз превосходят самые мощные галактики. Для квазаров характерны также самые значительные красные смещения линий в спектрах, из чего в соответствии с законом Хаббла современная наука и делает выводы об их наибольшей удаленности от Солнечной системы. И хотя некоторые из астрономов относят их к ядрам галактик, находящимся в исключительно высокой степени активности, другие ученые более склонны считать их самостоятельными, не относящимися к галактикам, объектами неизвестной энергетической природы.
Млечный Путь - весьма характерный представитель своего типа галактик столь огромен, что свету требуется более 100 тысяч лет, чтобы со скоростью 300 000 километров в секунду пересечь Галактику от края до края. Земля и Солнце находятся на расстоянии около 30 тысяч световых лет от центра Млечного Пути. И если бы мы попытались послать сообщение гипотетическому существу, проживающему вблизи центра нашей Галактики, то ответ получили бы не раньше, чем через 60 тысяч лет.
Хотя космос населяют миллиарды галактик, им совсем не тесно: Вселенная достаточно огромна, чтобы галактики могли удобно в ней разместиться, и при этом еще остается много свободного пространства. Типичное расстояние между яркими галактиками составляет около 5-10 миллионов световых лет; оставшийся объем занимают карликовые галактики. Однако если принять во внимание их размеры, то оказывается, что галактики относительно гораздо ближе друг к другу, чем, например, звезды в окрестности Солнца.
Для того чтобы представить огромные расстояния между галактиками, мысленно уменьшим их размеры до роста среднего человека. Тогда в типичной области Вселенной «взрослые» (яркие) галактики будут находиться в среднем на расстоянии 100 метров друг от друга, а между ними расположится небольшое число детей. Вселенная напоминала бы обширное поле для игры в бейсбол с большим свободным пространством между игроками. Лишь в некоторых местах, где галактики собираются в тесные скопления, наша масштабная модель Вселенной похожа на городской тротуар, и уж нигде не было бы ничего общего с вечеринкой или вагоном метро в час пик.
Из этих примеров должно стать ясно, что галактики довольно редко разбросаны во Вселенной и состоят, в основном, из пустого пространства. Даже если учесть разреженный газ, заполняющий пространство между звездами, то все равно средняя плотность вещества оказывается чрезвычайно малой. Мир галактик огромен и почти пуст.
Заключение
Такова естественно-физическая природа происхождения всех тех многочисленных звездных миров, которые наблюдаются нами с земли современными астрономическими приборами. Думается, что если бы такой уровень знаний об устройстве разнообразных галактик, а также о роли радиоактивной энергии в их происхождении имел место во времена Гегеля, то и эта тема нашла бы в его гениальной научной логике достойное отражение.
Астрономическая картина мира - это картина эволюционирующей Вселенной. Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила явления (расширение Метагалактики, космическая распространенность химических элементов, реликтовое излучение), свидетельствующие о том, что Вселенная непрерывно эволюционирует. Эволюция Вселенной включает в себя эволюцию вещества и эволюцию структуры. С эволюцией структуры связано возникновение сверхскоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников.
С течением времени менялась и роль физических взаимодействий в процессе эволюции Вселенной. В мире планет, звезд и галактик основную роль играет гравитационное взаимодействие: им обусловлено движение и в значительной степени эволюция небесных тел и их систем. Но, кроме гравитационного, существуют еще три других вида взаимодействий - слабое, с которым связан, например, радиоактивный распад, сильное, с которым связан, например, синтез ядер атомов, и электромагнитное, с которым связано, например, взаимодействие квантов электромагнитного излучения с электронами и другими заряженными частицами.
Таким образом, Вселенная предстает перед нами как бесконечно развертывающийся во времени и пространстве процесс эволюции материи. В этом процессе взаимосвязанными оказываются самые разнообразные объекты и явления микромира и мегамира.
Принципиально важной особенностью новой энергетической сущности является ее способность пополнять ресурсы кинетической энергии вещества, так же как в свое время Большой взрыв ядра Вселенной привел в противодействующее гравитационному уплотнению центробежное движение практически всю вселенную материю, так же и теперь, хотя и в гораздо меньших масштабах, локальные взрывы галактических ядер приводили в движение, казалось бы, навсегда укрощенные гравитационным давлением эфира огромные массы вещества. Тем самым галактические миры перевоплощались в совершенно новые по своей эволюционной сути звездные системы, несущие во чревах составляющих их тяжело элементных звезд созидательнейшую из всех возможных животворящую силу.
Список использованной литературы:
1. Герасютин С.А., Левитан Е.П. России звездные сыны: Малая энциклопедия космонавтики. - М.: Гелиос, 2001.
2. Куликовский П.Г. Справочник Любителя астрономии. - М.: УРСС, 2002.
Левитан Е.П. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / Е.П. Левитан.-10-е изд.-М.: Просвещение, 2005.-224с..
3. Леви Д., «Звезды и планеты: энциклопедия окружающего», М.: Издательство «Белый город», 1998. - 288с.
Порфирьев В.В. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / 4. В.В. Порфирьев.-2-е изд., перераб. и доп.-М.: Просвещение, 2003.-174 с..
Хабер Х., «Звезды», М.: «Слово», 1998. - 127с
5. Энциклопедия для детей. Т.8. Астрономия.-2-е изд./Глав. Ред. М.Д. Аксёнова. - М.: Аванта+, 2000.-688 с..
Размещено на Allbest.ru
...Подобные документы
История эволюции вселенной и первые мгновения ее жизни. Теория "Большого взрыва", анализ попыток создания математической модели Вселенной. Что такое звезды, галактики и млечный путь. Строение солнечной системы, характеристика ее планет и их спутников.
реферат [1,3 M], добавлен 09.11.2010О развитии Вселенной, её возрасте и "большом взрыве". Гипотезы автора о научной картине Мира, строении и происхождении Вселенной. История жизни галактик, образование звезд и ядерных реакций в их недрах. Авторская теория об "Эволюции молока Вселенной".
статья [29,4 K], добавлен 20.09.2010Происхождение Вселенной - гипотезы и модели; космологические теории Большого взрыва и горячей Вселенной. Образование Солнечной системы. Биологическая, экологическая, социально-экономическая и культурно-историческая эволюции; возникновение жизни на Земле.
контрольная работа [35,7 K], добавлен 24.09.2011Происхождение и эволюция Вселенной, ее дальнейшие перспективы. Креативная роль физического вакуума. Парадоксы стационарной Вселенной. Основные положения теории относительности Эйнштейна. Этапы эволюции горячей Вселенной, неоднозначность данного сценария.
курсовая работа [62,6 K], добавлен 06.12.2010Образование Вселенной. Строение Галактики. Виды Галактик. Земля - планета Солнечной системы. Строение Земли. Расширение Метагалактики. Космическая распространенность химических элементов. Зволюция Вселенной. Формирование звезд и галактик.
реферат [26,4 K], добавлен 02.12.2006Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.
контрольная работа [19,8 K], добавлен 20.03.2011Главное звено в эволюции Вселенной - жизнь, разум. Самоорганизация пространства-времени в процессе эволюции Вселенной. Случайность в научной картине Вселенной. Философско-мирровоззренческие проблемы космологической эволюции.
реферат [61,9 K], добавлен 24.04.2007Модель Фридмана, два варианта развития Вселенной. Строение и современные космологические модели Вселенной. Сущность физических процессов, источники, создающие современные физические законы. Обоснование расширения Вселенной, этапы космической эволюции.
контрольная работа [43,4 K], добавлен 09.04.2010Теория образования Вселенной, гипотеза о цикличности ее состояния. Первые модели мира, описание процессов на разных этапах космологического расширения. Пересмотр теории ранней Вселенной. Строение Галактик и их виды. Движение звезд и туманностей.
реферат [31,3 K], добавлен 01.12.2010Современная картина Вселенной. Межзвездный газ и пыль. Фундаментальная простота эллиптических галактик. Закон всеобщего "разбегания" галактик. Гипотеза Фридмана. Космические монстры. Спектр квазаров. Понятие "чёрные дыры". Что ждёт Вселенную в будущем.
курсовая работа [82,8 K], добавлен 23.01.2009Предположение об однородности и изотропии свойств Вселенной на протяжении всех этапов ее эволюции. Вопрос о происхождении химических элементов. Большие проблемы Большого взрыва. Попытки решения проблемы сингулярности. Квантовая физика и реальность.
реферат [42,3 K], добавлен 11.01.2013Механизм образования и эволюции основных объектов Вселенной. Типы звезд; процессы протекающие при образования сверхновой: нейтронные звёзды, пульсары, черные дыры. Эволюция звезд. Происхождение химических элементов в недрах звезды; термоядерный синтез.
реферат [54,6 K], добавлен 05.03.2013Источники энергии звезд. Гравитационное сжатие и термоядерный синтез. Ранние и поздние стадии эволюции звезд. Выход звезд из главной последовательности. Гравитационный коллапс и поздние стадии эволюции звезд. Особенности эволюции тесных двойных систем.
курсовая работа [62,2 K], добавлен 24.06.2008Понятие эволюции звезд. Изменение характеристик, внутреннего строения и химического состава звезд со временем. Выделение гравитационной энергии. Образование звезд, стадия гравитационного сжатия. Эволюция на основе ядерных реакций. Взрывы сверхновых.
контрольная работа [156,0 K], добавлен 09.02.2009Космология как наука о Вселенной, методика и закономерности изучения. Структура и составные части Вселенной, законы взаимодействия, существующие модели. Теории эволюции Вселенной, их отличительные особенности и доказательства, современные исследования.
контрольная работа [28,5 K], добавлен 25.11.2010Понятие и своеобразие глобального эволюционизма, его сущность и содержание. Основы современной космологии, ее структура и элементы. Крупномасштабная структура Вселенной. Эволюция галактик и их классификация, типы. Место Солнечной системы в Галактике.
контрольная работа [17,9 K], добавлен 11.11.2011Образование первичного Солнца. Теории Ньютона и Канта о строении Вселенной. Происхождение и строение планет Солнечной системы, ее закономерности и тайны. Открытие лептонной структуры вещества высоких энергий внутри элементных частиц и атомных ядер.
реферат [25,0 K], добавлен 12.04.2009Характеристика наиболее известных моделей Вселенной: модель де-Ситтера, Леметра, Милна, Фридмана, Эйнштейна-де Ситтера. Космологическая модель Канта. Теория Большого взрыва. Календарь Вселенной: основные эры в развитии Вселенной и их характеристика.
презентация [96,5 K], добавлен 17.11.2011История развития представлений о Вселенной. Космологические модели происхождения Вселенной. Гелиоцентрическая система Николая Коперника. Рождение современной космологии. Модели Большого взрыва и "горячей Вселенной". Принцип неопределенности Гейзенберга.
реферат [359,2 K], добавлен 23.12.2014Понятие Вселенной как космического пространства с небесными телами. Представления о появлении и формировании планет и звезд. Классификация небесных тел. Устройство Солнечной системы. Строение Земли. Формирование гидро- и биосферы. Расположение материков.
презентация [8,2 M], добавлен 15.03.2017