Черные дыры

История возникновения теории черных дыр. Жизненный цикл звезды. Отталкивание, обусловленное принципом Паули. Превышение предела Чандрасекара. Приливные силы тяготения. Сингулярность внутри черной дыры. Изучение действия гравитационного притяжения.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 04.04.2014
Размер файла 43,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

черный дыра звезда сингулярность гравитационный

Люди живут, не зная многого об устройстве мира, не задумываясь о том, какая сила порождает гравитацию, удерживающую нас на Земле. Нас не интересуют атомы, из которых мы состоим и от устойчивости которых мы сами существенным образом зависим. За исключением детей мало кто ломает голову над тем, почему природа такова, какова она есть, откуда появился космос и не существовал ли он всегда? Развитие философии и естественных наук продвигалось вперед в основном благодаря подобным вопросам. Все больше взрослых людей проявляют к ним интерес, и ответы иногда бывают совершенно неожиданными для них. Отличаясь по масштабам как от атомов, так и от звезд, мы раздвигаем горизонты исследований, чтобы охватить как можно больше.

На сегодняшний день многие моменты общего устройства вселенной хорошо известны, но мы знаем, что еще много неизведанного и неясного придется познать человечеству. С каждым новым открытием возникает все большее количество вопросов.

Черные дыры - объект изучения многих ученых. Их существование предсказывает теория относительности. Они не могут быть замечены непосредственно, но астрономы могут видеть доказательство их существования, когда газы извергаются на звезду-спутник. Если взорвать динамит, то крошечные осколки взрывчатого вещества глубоко вонзятся в ближайшие объекты, таким образом, оставляя несмываемый доказательство произошедшего взрыва. Астрономы нашли подобный отпечаток на звезде, которая движется по орбите вокруг чёрной дыры, небезосновательно полагая, чтобы данная чёрная дыра - бывшая звезда, которая разрушилась настолько сильно, что даже свет не может преодолеть её силу гравитации, - возникла в результате взрыва сверхновой звезды. К этому времени, астрономы наблюдали взрывы сверхновых звёзд и обнаружили на их месте пятнистые объекты, которые, по их мнению, и являются чёрными дырами. Новое открытие - первое реальное доказательство связи между одним событием и другим. (Чёрные дыры нельзя непосредственно увидеть, но о их присутствии иногда можно судить по действию их гравитационного поля на ближайшие объекты).

1. История возникновения теории черных дыр

Термин «черная дыра» появился совсем недавно. Его ввел в обиход в 1969 г. американский ученый Джон Уилер 200 лет наза существовали две теории света: в первой, которой придерживался Ньютон, считалось, что свет состоит из частиц; согласно же второй теории, свет - это волны. Сейчас мы знаем, что на самом деле обе они правильны: согласно частично_волновому дуализму квантовой механики свет может рассматриваться и как частицы, и как волны. В теории, в которой свет - волны, было непонятно, как будет действовать на него гравитация. Если же свет - поток частиц, то можно считать, что гравитация действует на них так же, как на пушечные ядра, ракеты и планеты. Сначала ученые думали, что частицы света перемешаются с бесконечной скоростью и поэтому гравитация не может их замедлить, по когда Рёмер установил, что скорость света конечна, стало ясно, что влияние гравитации может оказаться существенным.

Основываясь на вышесказанном, Джон Мичел - преподаватель из Кембриджа, в 1783 г. представил свою работу, в которой он указывал на то, что достаточно массивная и компактная звезда должна иметь столь сильное гравитационное поле, что свет не сможет выйти за его пределы: любой луч света, испущенный поверхностью такой звезды, не успев отойти от нее, будет втянут обратно ее гравитационным притяжением. Мичел считал, что таких звезд может быть очень много. Несмотря на то что их нельзя увидеть, так как их свет не может до нас дойти, мы тем не менее должны ощущать их гравитационное притяжение. Сегодня подобные объекты мы называем черными дырами.

Спустя несколько лет французский ученый Лаплас высказал, аналогичное предположение. Однако стоит отметить, что Лаплас коснулся тамы «черных дыр» лишь в первых двух изданиях своей книги «Система мира», но в дальнейшем он исключил эти главы, видимо полагая что данная теория ошибочна. (К тому же в XIX в. корпускулярная теория света потеряла популярность. Стало казаться, что все явления можно объяснить с помощью волновой теории, а в ней воздействие гравитационных сил на свет вовсе не было очевидным).

На самом деле свет нельзя рассматривать как пушечные ядра в теории тяготения Ньютона, потому что скорость света фиксирована. (Пушечное ядро, вылетевшее вверх с поверхности Земли, из_за гравитации будет замедлять полет и в конце концов остановится, а потом начнет падать. Фотон же должен продолжать движение вверх с постоянной скоростью. Как же тогда ньютоновская гравитация может воздействовать на свет?) Последовательная теория взаимодействия света и гравитации отсутствовала до 1915 г., когда Эйнштейн предложил общую теорию относительности. Но даже после этого прошло немало времени, пока стало, наконец, ясно, какие выводы следуют из теории Эйнштейна относительно массивных звезд.

2. Как возникает черная дыра?

Чтобы понять, как возникает черная дыра, надо вспомнить о том, каков жизненный цикл звезды. Звезда образуется, когда большое количество газа (в основном водорода) начинает сжиматься силами собственного гравитационного притяжения. В процессе сжатия атомы газа все чаще и чаще сталкиваются друг с другом, двигаясь со все большими и большими скоростями. В результате газ разогревается и в конце концов становится таким горячим, что атомы водорода, вместо того чтобы отскакивать друг от друга, будут сливаться, образуя гелий. Тепло, выделяющееся в этой реакции, которая напоминает управляемый взрыв водородной бомбы, и вызывает свечение звезды. Из-за дополнительного тепла давление газа возрастает до тех пор, пока не уравновесит гравитационное притяжение, после чего газ перестает сжиматься.

Большую часть своей жизни, то есть около миллиарда лет, звезда генерирует в своих недрах тепло, преобразуя водород в гелий. Высвобожденная энергия создает достаточное давление, чтобы уравновешивать созданную звездой силу тяжести и поддерживать размеры звезды с радиусом примерно в пять раз больше солнечного. Скорость для отрыва от поверхности такой звезды будет около 1000 км/с. То есть объект, выстреленный с поверхности звезды вертикально вверх со скоростью меньше 1000 км/с, будет притянут гравитационным полем звезды назад и вернется на поверхность, в то время как объект, вылетевший с большей скоростью, улетит в бесконечность.

Когда звезда выработает все свое ядерное топливо, ничто уже не сможет поддерживать внутреннее давление, и под действием собственной силы тяжести она начнет сжиматься. По мере сжатия звезды сила тяжести на ее поверхности становится все больше и необходимая для отрыва скорость возрастает. Когда радиус уменьшится до 30 км, необходимая для отрыва скорость достигнет 300 000 км/с - скорости света. После этого никакой свет, испускаемый звездой, не сможет уйти в бесконечность, а будет притягиваться обратно гравитационным полем. Согласно специальной теории относительности, ничто не может двигаться быстрее света, так что если не может вырваться свет, то не может и ничто другое.

В результате получается черная дыра - область пространства_времени, откуда ничто не может улететь в бесконечность. Границы черной дыры называются горизонтом событий. Он соответствует фронту тех световых волн от звезды, которым не удалось улететь в бесконечность, но которые и не упали обратно, а парят на радиусе Шварцшильда: 2 GM / c, где G - ньютонова гравитационная константа, М - масса звезды, а с - скорость света. Для звезды примерно в десять масс Солнца радиус Шварцшильда составляет около 30 км.

Существуют довольно убедительные наблюдения, позволяющие предположить, что черные дыры примерно такого размера существуют как источник рентгеновского излучения в системе двойной звезды, известной под именем X_I Лебедя. Может быть также огромное множество разбросанных по Вселенной очень маленьких черных дыр, которые образовались в результате коллапса не звезды, а сильно сжатой области в горячей плотной среде, предположительно существовавшей вскоре после Большого Взрыва, из которого произошла Вселенная. Такие «первобытные» черные дыры представляют огромный интерес с точки зрения их квантового эффекта, который я опишу ниже. Черная дыра весом в миллиард тонн (примерно масса горы) имела бы радиус около 10_13 сантиметра (размер нейтрона или протона). Она могла бы двигаться по орбите вокруг Солнца или центра Галактики.

Первый намек, что между черными дырами и термодинамикой может существовать связь, сделало математическое открытие 1970 года, утверждающее, что площадь поверхности горизонта событий, границ черной дыры, обладает свойством всегда возрастать, когда в черную дыру падает дополнительная материя или излучение. Более того, если две черные дыры столкнутся и сольются в одну, площадь горизонта событий вокруг этой новой черной дыры будет больше, чем сумма площадей двух первоначальных. Эти свойства предполагают, что между площадью горизонта событий черной дыры и понятием энтропии в термодинамике существует сходство.

Длительное время звезды будут долго оставаться в стабильном состоянии, в котором выделяющимся в ядерных реакциях теплом уравновешивается гравитационное притяжение. Но, в конце концов, у звезды кончится водород и другие виды ядерного топлива. Чем больше начальный запас топлива у звезды, тем быстрее оно истощается, потому что для компенсации гравитационного притяжения звезде надо тем сильнее разогреться, чем больше ее масса. А чем горячее звезда, тем быстрее расходуется ее топливо. Запаса топлива на Солнце хватит примерно на пять тысяч миллионов лет, но более тяжелые звезды израсходуют свое топливо всего за сто миллионов лет, т. е. за время, гораздо меньшее возраста Вселенной. Израсходовав топливо, звезда начинает охлаждаться и сжиматься, а вот что с ней происходит потом, стало понятно только в конце 20_х годов нашего века.

В 1928 г. Субраманьян Чандрасекар, аспирант из Индии, отправился по морю в Англию, в Кембридж, чтобы пройти там курс обучения у крупнейшего специалиста в области общей теории относительности Артура Эддингтона. (Говорят, в начале 20_х годов один журналист сказал Эддингтону, что он слышал, будто в мире всего три человека понимают общую теорию относительности. Эддингтон, помолчав, сказал: «Я думаю - кто же третий?»). Во время своего путешествия из Индии Чандрасекар вычислил, какой величины должна быть звезда, чтобы, израсходовав целиком свое топливо, она все же могла бы противостоять воздействию собственных гравитационных сил. Когда звезда уменьшается, частицы вещества очень сильно сближаются друг с другом, и в силу принципа запрета Паули их скорости должны все больше различаться. Следовательно, частицы стремятся разойтись и звезда расширяется. Таким образом, радиус звезды может удерживаться постоянным благодаря равновесию между гравитационным притяжением и возникающим в силу принципа Паули отталкиванием, точь_в_точь как на более ранней стадии развития звезды гравитационные силы уравновешивались ее тепловым расширением.

Однако Чандрасекар понимал, что отталкивание, обусловленное принципом Паули, не беспредельно. Согласно теории относительности, максимальная разница скоростей частиц вещества в звезде равна скорости света. Это значит, что, когда звезда становится достаточно плотной, отталкивание, обусловленное принципом Паули, должно стать меньше, чем гравитационное притяжение. Чандрасекар рассчитал, что если масса холодной звезды более чем в полтора раза превышает массу Солнца, то эта звезда не сможет противостоять собственной гравитации. (Данное значение массы сейчас называют пределом Чандрасекара). Приблизительно в то же время аналогичное открытие сделал советский физик Л.Д. Ландау.

Исследования Чандрасекара не нашли поддержку среди ученых, в следствие чего он отказался от дальнейших исследований и переключился на другие задачи астрономии, такие, как движение звездных скоплений. Однако Нобелевская премия 1983 г. была, по крайней мере частично, присуждена Чандрасекару за ранние работы, связанные с предельной массой холодных звезд.

Он показал, что если масса звезды превышает предел Чандрасекара, то принцип запрета не может остановить ее коллапс, а задачу о том, что должно произойти с такой звездой согласно общей теории относительности, первым решил в 1939 г. молодой американский физик Роберт Оппенгеймер. Но из результатов Оппенгеймера следовало, что с помощью существовавших тогда телескопов нельзя наблюдать ни один из предсказанных эффектов. Потом началась Вторая мировая война, и сам Оппенгеймер вплотную занялся разработкой атомной бомбы. После войны о гравитационном коллапсе совершенно забыли, потому что большинство ученых было увлечено изучением явлений атомных и ядерных масштабов. Но в шестидесятых годах, благодаря новейшей технике, число астрономических наблюдений сильно возросло, а их область значительно расширилась, что вызвало возрождение интереса к астрономии и космологии. Результаты Оппенгеймера были заново открыты и развиты далее многими физиками.

В итоге, благодаря Оппенгеймеру, мы имеем сейчас следующую картину. Из_за гравитационного поля звезды лучи света в пространстве_времени отклоняются от тех траекторий, по которым они перемещались бы в отсутствие звезды. Световые конусы, вдоль поверхности которых распространяются испущенные из их вершин световые лучи, около поверхности звезды немного наклоняются внутрь. Это проявляется в наблюдаемом во время солнечного затмения искривлении световых лучей, идущих от удаленных звезд. По мере сжатия звезды увеличивается гравитационное поле на ее поверхности и световые конусы наклоняются еще сильнее. Поэтому световым лучам, испущенным звездой, становится все труднее выйти за пределы гравитационного поля звезды, и удаленному наблюдателю ее свечение будет казаться тусклым и более красным. В конце концов, когда в ходе сжатия радиус звезды достигнет некоторого критического значения, гравитационное поле у ее поверхности станет очень сильным, и тогда световые конусы настолько повернутся внутрь, что свет не сможет больше выйти наружу. По теории относительности ничто не может двигаться быстрее света; а раз свет не может выйти наружу, то и никакой другой объект не сможет выйти, т. е. все будет втягиваться назад гравитационным полем. Это значит, что существует некое множество событий, т. е. некая область пространства_времени, из которой невозможно выйти наружу и достичь удаленного наблюдателя. Такая область называется сейчас черной дырой. Границу черной дыры называют горизонтом событий. Она совпадает с путями тех световых лучей, которые первыми из всех теряют возможность выйти за пределы черной дыры.

В теории относительности отсутствует абсолютное время и у каждого наблюдателя своя мера времени. Из_за того что звезда имеет гравитационное поле, для наблюдателя на звезде время будет не таким, как для удаленного наблюдателя.

3. Течение времени

Чем ближе к горизонту событий, тем медленнее течет время с точки зрения внешнего наблюдателя. На границе черной дыры его бег и вовсе замирает. Такую ситуацию можно сравнить с течением воды у берега реки, где ток воды замирает. Это образное сравнение принадлежит немецкому профессору Д. Либшеру.

Иную картины наблюдает тот, кто в космическом корабле отправляется в черную дыру. Огромное поле тяготения на ее границе разгоняет падающий корабль до скорости, равной скорости света. И тем не менее далекому наблюдателю кажется, что падение корабля затормаживается и полностью замирает на границе черной дыры. Ведь здесь, с его точки зрения, замирает само время.

С приближением скорости падения к скорости света время на корабле также замедляет свой бег, как и на любом быстро летящем теле. И вот это замедление побуждает замирание падения корабля. Растягивающаяся до бесконечности картина приближения корабля к границе черной дыры из-за все большего и большего растягивания секунд на падающем корабле измеряется конечным числом этих все удлиняющихся (с точки зрения внешнего наблюдателя) секунд. По часам падающего наблюдателя или по его пульсу до пересечения границы черной дыры протекло вполне конечное число секунд. Бесконечно долгое падение корабля по часам далекого наблюдателя уместилось в очень короткое время падающего наблюдателя. Бесконечное для одного стало конечным для другого.

То, что мы говорили о наблюдателе на космическом корабле, относится и к воображаемому наблюдателю на поверхности сжимающего шара, когда образуется черная дыра.

Наблюдатель, упавший в черную дыру, никогда не сможет оттуда выбраться, как бы ни были мощны двигатели его корабля. Он не сможет послать оттуда и никаких сигналов, никаких сообщений. Ведь даже свет оттуда не выходит. Для внешнего наблюдателя само падение корабля растягивается по его часам до бесконечности. Значит, то, что будет происходить с падающим наблюдателем и его кораблем внутри черной дыры, протекает уже вне времени внешнего наблюдателя (после его бесконечности по времени). В этом смысле черные дыры представляют собой "дыры во времени Вселенной".

Следует оговориться, что внутри черной дыры время течет, но только иначе.

С наблюдателем, отправившимся внутрь черной дыры будут происходить некие события. Силы тяготения будут увлекать его в область, где эти силы все сильнее и сильнее. Если в начале падения в корабле наблюдатель находился в невесомости и ничего неприятного не испытывал, то в ходе падения ситуация изменится. Стоит вспомнить про приливные силы тяготения. Их действие связано с тем, что точки тела, находящиеся ближе к центру тяготения, притягиваются сильнее, чем расположенные дальше. В результате притягиваемое тело растягивается.

В начале падения наблюдателя в черную дыру приливное растяжение может быть ничтожным. Но оно неизбежно нарастает в ходе падения. Как показывает теория, любое падающее в черную дыру тело попадает в область, где приливные силы становятся бесконечными. Это так называемая сингулярность внутри черной дыры. Здесь любое тело или частица будут разорваны приливными силами и перестанут существовать. Пройти сквозь сингулярность и не разрушиться не может ничто.

Но если такой исход совершенно неизбежен для любых тел внутри черной дыры, то это означает, что в сингулярности перестает существовать и время. Свойства времени зависят от протекающих процессов. Теория утверждает, что в сингулярности свойства времени изменяются настолько сильно, что его непрерывный поток обрывается, оно распадается на кванты. Здесь надо еще раз вспомнить, что теория относительности показала необходимость рассматривать время и пространство совместно, как единое многообразие. Поэтому правильнее говорить о распаде в сингулярности на кванты единого пространства-времени.

4. Доводы в пользу существования черных дыр

Черные дыры - один из очень немногочисленных примеров в истории науки, когда теория развивалась во всех деталях как математическая модель, не имея никаких экспериментальных подтверждений своей справедливости. И это, конечно, было главным возражением противников черных дыр: как можно верить в реальность объектов, существование которых следует лишь из вычислений, основанных на такой сомнительной теории, как общая теория относительности. Но в 1963 г. Маартен Шмидт, астроном из Паламарской обсерватории в Калифорнии, измерил красное смещение тусклого, похожего на звезду объекта в направлении источника радиоволн ЗС273 (источник под номером 273 в третьем Кембриджском каталоге радиоисточников). Обнаруженное Шмидтом красное смещение оказалось слишком велико, чтобы его можно было объяснить действием гравитационного поля: если бы оно было гравитационного происхождения, то связанный с ним объект должен был иметь такую большую массу и располагаться так близко к нам, что его присутствие изменило бы орбиты всех планет Солнечной системы. Но, может быть, тогда красное смещение возникло из_за расширения Вселенной, и из этого следует, что рассматриваемый объект находится, наоборот, очень далеко? Видимый на таком большом расстоянии объект должен быть очень ярким, т. е. должен излучать огромную энергию. Единственный механизм, с помощью которого могло бы излучаться такое большое количество энергии, - это гравитационный коллапс, но не какой_нибудь одной звезды, а коллапс всей центральной области Галактики. С тех пор были открыты и другие аналогичные квазизвездные объекты, или квазары, обладающие красным смещением. Но их большая удаленность сильно затрудняет наблюдение и не дает возможности сделать окончательные выводы относительно черных дыр.

В 1967 г. появился новый довод в пользу существования черных дыр. Кембриджский аспирант Джослин Белл обнаружил на небе объекты, излучающие регулярные импульсы радиоволн. Сначала Белл и его руководитель Энтони Хьюиш решили, что они установили контакт с внеземными цивилизациями нашей Галактики! Я помню, что, докладывая о своем открытии на семинаре, четыре источника они действительно назвали сокращенно LGM 1_4, где LGM означает «зеленые человечки» (Little Green Men). Но потом и авторы, и все остальные пришли к менее романтичному заключению, что обнаруженные объекты, которые были названы пульсарами, представляют собой вращающиеся нейтронные звезды, которые излучают импульсы радиоволн из_за сложного характера взаимодействия их магнитного поля с окружающим веществом. Эта новость огорчила авторов боевиков о космических пришельцах, но очень воодушевила наш немногочисленный отряд сторонников черных дыр, так как мы впервые получили подтверждение того, что нейтронные звезды существуют. Радиус нейтронной звезды равен примерно пятнадцати километрам, т. е. всего в несколько раз больше критического радиуса, по достижении которого звезда превращается в черную дыру. Если звезда может сколлапсировать до таких небольших размеров, то вполне допустимо предположить, что другие звезды в результате коллапса станут еще меньше и образуют черные дыры.

Джон Митчелл указывал, что черные дыры все же оказывают гравитационное воздействие на близкие к ним объекты. Астрономы наблюдали много систем, в которых две звезды обращаются одна вокруг другой под действием гравитационного притяжения. Наблюдаются и такие системы, в которых видима лишь одна звезда, обращающаяся вокруг своего невидимого партнера. Разумеется, мы не можем сразу заключить, что партнер и есть черная дыра, потому что это может быть просто чересчур тусклая звезда. Однако некоторые из таких систем, являются еще и мощными источниками рентгеновского излучения. Это явление лучше всего объясняется предположением, что с поверхности видимой звезды «сдувается» вещество, которое падает на вторую, невидимую звезду, вращаясь по спирали (как вытекающая из ванны вода), и, сильно разогреваясь, испускает рентгеновское излучение. Для существования такого механизма невидимый объект должен быть очень малым - белым карликом, нейтронной звездой или черной дырой. Результаты наблюдения орбиты видимой звезды позволяют вычислить, какую наименьшую массу может иметь невидимый объект. И данная масса может быть очень велика. А так как эта масса велика и для нейтронной звезды, объект, по_видимому, должен быть черной дырой.

Ученые располагают данными о нескольких черных дырах в системах: Лебедь Х_1 в нашей Галактике и двух соседних галактиках, которые называются Большим и Малым Магеллановыми Облаками. Но черных дыр почти наверняка гораздо больше: на протяжении долгой истории Вселенной многие звезды должны были израсходовать до конца свое ядерное топливо и сколлапсировать. Число черных дыр вполне может даже превышать число видимых звезд, которое только в нашей Галактике составляет около ста тысяч миллионов. Дополнительное гравитационное притяжение столь большого количества черных дыр могло бы быть причиной того, почему наша Галактика вращается именно с такой скоростью, а не с какой_нибудь другой: массы видимых звезд для объяснения этой скорости недостаточно. Существуют и некоторые данные в пользу того, что в центре нашей Галактики есть черная дыра гораздо большего размера с массой примерно в сто тысяч масс Солнца. Звезды, оказавшиеся в Галактике слишком близко к этой черной дыре, разлетаются на части из_за разницы гравитационных сил на ближней и дальней сторонах звезды. Остатки разлетающихся звезд и газ, выброшенный другими звездами, будут падать по направлению к черной дыре. Разогрев будет недостаточным для испускания рентгеновского излучения, но им можно объяснить тот крошечный источник радиоволн и инфракрасных лучей, который наблюдается в центре Галактики.

Можно рассмотреть и возможность существования черных дыр с массами, меньшими массы Солнца. Такие черные дыры не могли бы образоваться в результате гравитационного коллапса, потому что их массы лежат ниже предела Чандрасекара: звезды с небольшой массой могут противостоять гравитации даже в том случае, если все их ядерное топливо уже израсходовано. Черные дыры малой массы могут образоваться лишь при условии, что вещество сжато до огромных плотностей чрезвычайно высокими внешними давлениями. Такие условия могут выполняться в очень большой водородной бомбе: физик Джон Уилер как_то вычислил, что если взять всю тяжелую воду из всех океанов мира, то можно сделать водородную бомбу, в которой вещество так сильно сожмется, что в ее центре возникнет черная дыра. (Разумеется, вокруг не останется никого, кто мог бы это увидеть!) Более реальная возможность - это образование не очень массивных черных дыр с небольшой массой при высоких значениях температуры и давления на весьма ранней стадии развития Вселенной. Черные дыры могли образоваться лишь в том случае, если ранняя Вселенная не была идеально гладкой и однородной, потому что лишь какую_нибудь небольшую область с плотностью, превышающей среднюю плотность, можно так сжать, чтобы она превратилась в черную дыру. Но мы знаем, что во Вселенной должны были присутствовать неоднородности, иначе все вещество не сбилось бы в комки, образуя звезды и галактики, а равномерно распределилось бы по всей Вселенной.

Следовательно, определив, какое количество первичных черных дыр сейчас существует, мы смогли бы многое узнать о самых ранних стадиях развития Вселенной. Первичные черные дыры, масса которых превышает тысячу миллионов тонн (масса большой горы), можно было бы зарегистрировать только по влиянию их гравитационного поля на видимую материю или же на процесс расширения Вселенной.

Заключение

Занимаясь изучением черных дыр вплотную можно узнать много интересного о них. Во вселенной так много всего того, что человеческий мозг способен вообразить. А воображение дает толчок к изучению , анализу, поиску истины и доказательств.

С развитием различных областей науки мы сможем когда-нибудь узнать если не все, то многое. Но возможно, что вселенная останется для нас загадкой навсегда.

Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Прошло всего 40 лет со дня введения термина «черная дыра», и ученые уже продвинулись на один шаг в изучении данного вопроса. А возможно, что спустя десятилетия, мы сможем сказать, что знаем о черных дырах все.

Размещено на Allbest.ru

...

Подобные документы

  • Образование черных дыр. Расчет идеализированного сферического коллапса. Современная теория звездной эволюции. Пространство и время. Свойства черной дыры. Общая теория относительности Эйнштейна. Поиск черных дыр. Горизонт событий и сингулярность.

    презентация [4,4 M], добавлен 12.05.2016

  • Анализ основных представлений о черных дырах. Заряженные и нейтральные черные дыры. Математическое описание модели черной дыры Райсснера-Нордстрема. Черные дыры с электрическим зарядом Райсснера-Нордстрема. Решения уравнений Эйнштейна для чёрных дыр.

    курсовая работа [4,4 M], добавлен 28.09.2015

  • Черные дыры как области пространства, настолько плотные, что даже свет не может преодолеть их гравитационного притяжения, основное назначение. Общая характеристика теоремы Биркгофа. Сущность понятия "кротовая нора", знакомство с ключевыми особенностями.

    презентация [2,0 M], добавлен 08.01.2014

  • Черная дыра - порождение тяготения. История предсказаний поразительных свойств черных дыр. Важнейшие выводы теории Эйнштейна. Процесс релятивистского гравитационного коллапса. Небесная механика черных дыр. Поиски и наблюдения. Рентгеновское излучение.

    реферат [29,3 K], добавлен 05.10.2011

  • Черные дыры - самый таинственный объект во всей науке. Формирование и особенности черных дыр. Загадки и расширение Вселенной. Демография Черных дыр. Теория Стивена Хоккинга, который объединил теорию относительности и квантовую механику в единую теорию.

    презентация [771,6 K], добавлен 20.10.2016

  • Определение и теоретическая концепция "черных дыр": условия их появления, свойства, действие гравитационного поля на близкие к ним объекты, способы поиска в галактиках. Теория струн как гипотетическая возможность рождения микроскопических "черных дыр".

    творческая работа [1018,6 K], добавлен 26.04.2009

  • Зарождение и эволюция звезды. Голубые сверхгиганты - мегазвезды массой между 140 и 280 массами Солнца. Красные и коричневые карлики. Черные дыры, причины их возникновения. Жизненный цикл Солнца. Влияние размера и массы звезд на длительность ее жизни.

    презентация [562,6 K], добавлен 18.04.2014

  • Ознакомление с историей открытия, особенностями формирования, свойствами (массивность, компактность, невидимость), видами (сверхмассивные, первичные, квантовые), эффектом испарения, процессом гравитационного коллапса и направлениями поиска черных дыр.

    реферат [57,3 K], добавлен 08.05.2010

  • Температура поверхности нашего желтого Солнца. Спектральные классы звезд. Процесс зарождения звезды. Уплотнение до начала Главной последовательности. Превращение ядра водорода в ядро гелия. Образование сверхновой и нейтронной звезды. Граница черной дыры.

    реферат [142,8 K], добавлен 02.09.2013

  • Свойства "черной дыры" - пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Косвенные признаки нахождения "черной дыры", искажение нормальных характеристик ближайших объектов.

    статья [21,8 K], добавлен 08.02.2010

  • Основные этапы возникновения и развития звезд, их структура и элементы. Причины и гипотезы насчет взрывов звезд и образования сверхновых. Степень зависимости финальной стадии эволюции звезды от ее массы, предпосылки возникновения явления "черной дыры".

    реферат [17,2 K], добавлен 21.12.2009

  • Различные состояния вещества. Гравитация. Понятие "Гравитационный коллапс". Открытие гравитационного коллапса. Космический корабль попавший в зону гравитационного притяжения "Чёрной дыры". Сжатие вещества в одну точку.

    реферат [69,7 K], добавлен 06.12.2006

  • Звёздная эволюция — изменения звезды в течение её жизни. Термоядерный синтез и рождение звезд; планетарная туманность, протозвезды. Характеристика молодых звезд, их зрелость, поздние годы, гибель. Нейтронные звезды (пульсары), белые карлики, черные дыры.

    презентация [3,5 M], добавлен 10.05.2012

  • Изучение сущности черных дыр, о существовании которых впервые предположил английский астроном Джон Мичелл, посчитавший, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Свойства чёрных дыр.

    реферат [33,6 K], добавлен 23.07.2010

  • Черные дыры как уникальные по своим свойствам продукты эволюции звезд, анализ сценариев их образования. Знакомство с особенностями нейтронных звезд. Характеристика методов радиоинтерферометрии со сверхдлинной базой. Рассмотрение квантовых черных дыр.

    реферат [42,1 K], добавлен 06.05.2014

  • Жизненный цикл звезды, этапы ее эволюции – рождение, рост, период относительно спокойной активности, агония, смерть. Диаграмма Герцшпрунга-Рассела, график эволюции типичной звезды. Процесс гравитационного сжатия. Гиганты и сверхгиганты, взрыв сверхновой.

    презентация [2,3 M], добавлен 25.11.2014

  • Возникновение, развитие и гибель Вселенной. Создание модели Вселенной. Идея "большого взрыва". Открытие момента, когда Вселенная стала создавать свои первые атомы. Притяжение черной дыры и скорость убегания. Принципы и основы формирования черных дыр.

    презентация [30,3 M], добавлен 16.02.2012

  • Состав межзвёздного пространства Вселенной. Жизненный путь звезды: возникновение в космическом пространстве, типы звёзд по цвету и температуре. Белые карлики и чёрные дыры, сверхновые образования как эволюционные формы существования звёзд в галактике.

    презентация [8,9 M], добавлен 25.05.2015

  • Механизм образования и эволюции основных объектов Вселенной. Типы звезд; процессы протекающие при образования сверхновой: нейтронные звёзды, пульсары, черные дыры. Эволюция звезд. Происхождение химических элементов в недрах звезды; термоядерный синтез.

    реферат [54,6 K], добавлен 05.03.2013

  • Формирование звезд внутри туманностей - огромных облаков газа и пыли, их свойства и представители. Образование черных дыр и искривление пространства вокруг них. Туманности "Конская голова", "Замочная скважина", "Улитка". Создание нейтронной звезды.

    практическая работа [2,4 M], добавлен 12.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.