Основные понятия космической геодезии

Определение понятия и происхождение космической геодезии, ее предмет, задачи, методы и функции. Теория движения небесных тел и разработка способов определения их орбит и вычисления эфемерид. Использование разных систем координат и радиуса небесной сферы.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 15.05.2014
Размер файла 132,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЦИОНАЛЬНАЯ АКАДЕМИЯ ПРИРОДООРХАННОГО И КУРОРТНОГО СТОРОИТЕЛЬСТВА

Реферат

На тему: «Основные понятия космической геодезии»

Подготовила

Студентки группы ПГС-103

Платоновы В.Л.

Проверил:

Старший преподаватель

Салтыков В.Н.

Симферополь 2014

Содержание

Введение

1. Небесные координаты

2. Методы космической геодезии

Заключение

Список использованной литературы

Введение

Искусственные спутники открыли новую эру в науке об измерении Земли -- эру космической геодезии.

Они внесли в геодезию новое качество -- глобальность; благодаря большим размерам зоны видимости поверхности Земли со спутника значительно упростилось создание геодезической основы для больших территорий, так как существенно сократилось необходимое количество промежуточных этапов измерений. Так, если в классической геодезии среднее расстояние между определяемыми пунктами составляет 10--30 км, то в космической геодезии эти расстояния могут быть на два порядка больше (1--3 тыс. км). Тем самым упрощается передача геодезических данных через водные пространства. Между материком и островами, рифами, архипелагами геодезическая связь может быть установлена при прямой их видимости со спутника непосредственно через него, без каких-либо промежуточных этапов, что способствует более высокой точности построения геодезической сети. космический геодезия эфемерида

Космическая геодезия - научная дисциплина, в которой для решения научных и практических задач геодезии используются результаты наблюдений искусственных и естественных небесных тел.

В соответствии с этим в предмет изучения в рамках космической геодезии входят:

- Теории движения небесных тел;

- Разработка способов определения орбит небесных тел (прямая задача) и вычисления эфемерид (обратная задача);

- Обоснование требований к геодезическим спутникам в отношении параметров их орбит и состава бортовой аппаратуры;

- Обоснование требований к расположению станций наблюдения и их аппаратурного оснащения;

- изучение методов наблюдений и теории математической обработки наблюдений;

- интерпретация результатов наблюдений и их обработки.

Основными задачами космической геодезии являются:

1) Определение положений и изменений со временем координат наземных пунктов;

2) Изучение внешнего гравитационного поля и его изменений со временем;

3) Уточнение некоторых астрономических постоянных.

При всей глобальности вопросов, охватываемых космической геодезией, автор данной работы поставила перед собой весьма скромную цель:

Рассмотреть основные понятия, без которых дальнейшее углубление в эту науку не представляется возможным.

1. Небесные координаты

При решении задач космической геодезии приходится использовать различные системы координат, отличающиеся между собой:

- расположением начала (например, планетоцентрические, геоцентрические, квазигеоцентрические (референцные) и т.д.;

- ориентированием основной плоскости (например, экваториальные, горизонтальные, орбитальные);

- ориентацией начальной плоскости (например, гринвичские, равноденственные);

- видом координатных систем (прямоугольные, полярные, цилиндрические, и т.д.).

Что же такое небесные координаты и небесная сфера?

Небемсная сфемра -- воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как правило, принимают глаз наблюдателя. Для находящегося на поверхности Земли наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе. Площадь небесной сферы с учетом непостоянства значения размеров дуги равных склонений составляет 41252.96 кв. градусов.

Представление о Небесной сфере возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Таким образом, в их представлении небесная сфера была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на небесную сферу отпал. Однако заложенная в древности геометрия небесной сферы в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.

Радиус небесной сферы может быть принят каким угодно: в целях упрощения геометрических соотношений его полагают равным единице. В зависимости от решаемой задачи центр небесной сферы может быть помещен в место:

· где находится наблюдатель (топоцентрическая небесная сфера),

· в центр Земли (геоцентрическая небесная сфера),

· в центр той или иной планеты (планетоцентрическая небесная сфера),

· в центр Солнца (гелиоцентрическая небесная сфера) или в любую др. точку пространства.

Каждому светилу на небесной сфере соответствует точка, в которой её пересекает прямая, соединяющая центр небесной сферы со светилом (с его центром). При изучении взаимного расположения и видимых движений светил на небесной сфере выбирают ту или иную систему координат, определяемую основными точками и линиями. Последние обычно являются большими кругами небесной сферы. Каждый большой круг сферы имеет два полюса, определяющиеся на ней концами диаметра, перпендикулярного к плоскости данного круга.

На рисунке изображена небесная сфера, которая соответствует месту наблюдения, расположенному в некоторой точке земной поверхности с широтой f. Отвесная (вертикальная) линия, проведённая через центр этой сферы, пересекает небесную сферу в точках Z и Z', называемых соответственно зенитом и надиром. Плоскость, проходящая через центр небесной сферы перпендикулярно отвесной линии, пересекает сферу по большому кругу NESW, называемому математическим (или истинным) горизонтом. Математический горизонт делит небесную сферу на видимую и невидимую полусферы; в первой находится зенит, во второй -- надир. Прямая, проходящая через центр небесной сферы параллельно оси вращения Земли, называемой осью мира, а точки пересечения её с небесной сферой -- Северным Р и Южным P' полюсами мира. Плоскость, проходящая через центр небесной сферы перпендикулярно оси мира, пересекает сферу по большому кругу AWA'E, называется небесным экватором. Из построения следует, что угол между осью мира и плоскостью математического горизонта, а также угол между отвесной линией и плоскостью небесного экватора равны географической широте места наблюдений. Большой круг небесной сферы, проходящий через полюсы мира, зенит и надир, называется небесным меридианом.

Из двух точек, в которых небесный меридиан пересекается с математическим горизонтом, ближайшая к Северному полюсу мира N называется точкой севера, а диаметрально противоположная S -- точкой юга. Прямая NS, проходящая через эти точки, есть полуденная линия. Точки горизонта, отстоящие на 90° от точек N и S, называются точками востока Е и запада W. Точки N, Е. S, W называются главными точками горизонта. По диаметру EW пересекаются плоскости математического горизонта и небесного экватора.

Большой круг небесной сферы, по которому происходит видимое годичное движение центра Солнца, называется эклиптикой.

Плоскость эклиптики образует с плоскостью небесного экватора угол e = 23°27'. Эклиптика пересекает экватор в двух точках, одна из которых --точка весеннего равноденствия (в ней Солнце при видимом годичном движении переходит из Южного полушария небесной сферы в Северное), а другая, диаметрально противоположная ей, -- точка осеннего равноденствия.

Точки эклиптики, отстоящие на 90° от точек весеннего и осеннего равноденствия, называется точками летнего и зимнего солнцестояния (первая -- в Северном полушарии небесной сферы, вторая -- в Южном). Большой круг небесной сферы, проходящий через полюсы мира и точки равноденствия, называется колюром равноденствий; большой круг небесной сферы, проходящий через полюсы мира и точки солнцестояния, -- колюром солнцестояний. Прочерченные на звёздной карте, эти круги отсекают хвосты у древних изображений созвездий Большой Медведицы (колюр равноденствий) и Малой Медведицы (колюр солнцестояний), откуда и происходит их название (греч. kуluroi, буквально -- с обрубленным хвостом, от kуlos -- обрубленный, отсеченный и ига -- хвост).

Видимому суточному перемещению звёзд, являющемуся отображением действительного вращения Земли вокруг оси, соответствует вращение небесной сферы вокруг оси мира с периодом, равным одним звёздным суткам. Вследствие вращения небесной сферы все изображения светил описывают в пространстве параллельные экватору окружности, называются суточными параллелями светил. В зависимости от расположения суточных параллелей относительно горизонта светила подразделяются на незаходящие (суточные параллели располагаются целиком над горизонтом), невосходящие (суточные параллели целиком под горизонтом), восходящие и заходящие (суточные параллели пересекаются горизонтом).

Границами этих групп светил являются параллели KN и SM', касающиеся горизонта в точках N и S . Так как видимость светил определяется положением горизонта, плоскость которого перпендикулярна отвесной линии, то условия видимости небесных светил различны для мест на поверхности Земли с различной географической широтой j. Это явление, известное уже в древности, служило одним из доказательств шарообразности Земли. На экваторе (j = 0°) ось мира PP' располагается в плоскости горизонта и совпадает с полуденной линией NS. Суточные параллели (KK', MM') всех светил пересекают плоскость горизонта под прямыми углами. Здесь все светила являются восходящими и заходящими.

По мере перемещения наблюдателя по земной поверхности от экватора к полюсу наклон оси мира к горизонту увеличивается. Всё большее число светил становится незаходящими и невосходящими. На полюсе (j = 90°) ось мира совпадает с отвесной линией, а плоскость экватора -- с плоскостью горизонта. Здесь все светила разделяются только на незаходящие и невосходящие, так каких суточные параллели (KK', MM') располагаются в плоскостях, параллельных горизонту

Системы небесных координат используются в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, системы небесных координат являются сферическими системами координат, в которых третья координата -- расстояние -- часто неизвестна и не играет роли. Эти системы отличаются друг от друга выбором основной плоскости и началом отсчёта.

В зависимости от поставленной задачи, может быть более удобным использовать ту или иную систему. Наиболее часто используются горизонтальная и экваториальные системы координат. Реже -- эклиптическая, галактическая и другие.

Горизонтальная система координат

В этой системе основной плоскостью является плоскость математического горизонта. Одной координатой при этом является либо высота светила h, либо его зенитное расстояние z. Другой координатой является азимут A.

Высотой h светила называется дуга вертикального круга от математического горизонта до светила, или угол между плоскостью математического горизонта и направлением на светило. Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до ?90° к надиру.

Зенитным расстоянием z светила называется дуга вертикального круга от зенита до светила, или угол между отвесной линией и направлением на светило. Зенитные расстояния отсчитываются в пределах от 0° до 180° от зенита к надиру.

Азимутом A светила называется дуга математического горизонта от точки юга до вертикального круга светила, или угол между полуденной линией и линией пересечения плоскости математического горизонта с плоскостью вертикального круга светила. Азимуты отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от точки юга, в пределах от 0° до 360°. Иногда азимуты отсчитываются от 0° до +180° к западу и от 0° до ?180° к востоку. (В геодезии азимуты отсчитываются от точки севера.)

Первая экваториальная система координат

В этой системе основной плоскостью является плоскость небесного экватора. Одной координатой при этом является склонение д (реже -- полярное расстояние p). Другой координатой -- часовой угол t.

Склонением д светила называется дуга круга склонения от небесного экватора до светила, или угол между плоскостью небесного экватора и направлением на светило. Склонения отсчитываются в пределах от 0° до +90° к северному полюсу мира и от 0° до ?90° к южному полюсу мира.

Полярным расстоянием p светила называется дуга круга склонения от северного полюса мира до светила, или угол между осью мира и направлением на светило. Полярные расстояния отсчитываются в пределах от 0° до 180° от северного полюса мира к южному.

Часовым углом t светила называется дуга небесного экватора от верхней точки небесного экватора (то есть точки пересечения небесного экватора с небесным меридианом) до круга склонения светила, или двугранный угол между плоскостями небесного меридиана и круга склонения светила. Часовые углы отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от верхней точки небесного экватора, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере). Иногда часовые углы отсчитываются от 0° до +180° (от 0h до +12h) к западу и от 0° до ?180° (от 0h до ?12h) к востоку.

Вторая экваториальная система координат

В этой системе, как и в первой экваториальной, основной плоскостью является плоскость небесного экватора, а одной координатой -- склонение в (реже -- полярное расстояние p). Другой координатой является прямое восхождение б. Прямым восхождением б светила называется дуга небесного экватора от точки весеннего равноденствия до круга склонения светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга склонения светила. Прямые восхождения отсчитываются в сторону, противоположную суточному вращению небесной сферы, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере).

Эклиптическая система координат

В этой системе основной плоскостью является плоскость эклиптики. Одной координатой при этом является эклиптическая широта в, а другой -- эклиптическая долгота л.

Эклиптической широтой в светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило. Эклиптические широты отсчитываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до -90° к южному полюсу эклиптики.

Эклиптической долготой л светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°.

Галактическая система координат

В этой системе основной плоскостью является плоскость нашей Галактики. Одной координатой при этом является галактическая широта b, а другой -- галактическая долгота l.

Галактической широтой b светила называется дуга круга галактической широты от эклиптики до светила, или угол между плоскостью галактического экватора и направлением на светило. Галактические широты отсчитываются в пределах от 0° до +90° к северному галактическому полюсу и от 0° до -90° к южному галактическому полюсу.

Галактической долготой l светила называется дуга галактического экватора от точки начала отсчёта C до круга галактической широты светила, или угол между направлением на точку начала отсчёта C и плоскостью круга галактической широты светила. Галактические долготы отсчитываются против часовой стрелки, если смотреть с северного галактического полюса, то есть к востоку от точки начала отсчёта C в пределах от 0° до 360°.

Точка начала отсчёта C находится вблизи направления на галактический центр, но не совпадает с ним, поскольку последний, вследствие небольшой приподнятости Солнечной системы над плоскостью галактического диска, лежит примерно на 1° к югу от галактического экватора. Точку начала отсчёта C выбирают таким образом, чтобы точка пересечения галактического и небесного экваторов с прямым восхождением 280° имела галактическую долготу 32,93192° (на эпоху 2000).

Координаты точки начала отсчёта C на эпоху 2000 в экваториальной системе координат составляют:

Изменения координат при вращении небесной сферы

Высота h, зенитное расстояние z, азимут A и часовой угол t светил постоянно изменяются вследствие вращения небесной сферы, так как отсчитываются от точек, не связанных с этим вращением. Склонение д, полярное расстояние p и прямое восхождение б светил при вращении небесной сферы не изменяются, но они могут меняться из-за движений светил, не связанных с суточным вращением.

История и применение

Небесные координаты употреблялись уже в глубокой древности. Описание некоторых систем содержится в трудах древнегреческого геометра Евклида (около 300 до н. э.). Опубликованный в «Альмагесте» Птолемея звёздный каталог Гиппарха содержит положения 1022 звёзд в эклиптической системе небесных координат.

Наблюдения изменений небесных координат привели к величайшим открытиям в астрономии, которые имеют огромное значение для познания Вселенной. К ним относятся явления прецессии, нутации, аберрации, параллакса, собственных движений звёзд и другие. Небесные координаты позволяют решать задачу измерения времени, определять географические координаты различных мест земной поверхности. Широкое применение находят небесные координаты при составлении различных звёздных каталогов, при изучении истинных движений небесных тел -- как естественных, так и искусственных -- в небесной механике и астродинамике и при изучении пространственного распределения звёзд.

2. Методы космической геодезии

Основным методом космической геодезии является одновременное наблюдение спутника с наземных пунктов. При этом измеряются самые разнообразные параметры относительно положения пунктов и спутников. Параметрами могут служить дальность, скорость изменения дальности (или радиальная скорость), угловая ориентация линии визирования пункт--спутник в какой-либо системе координат, скорость изменения углов и т. д. Измерительные средства располагаются на наземных пунктах. На спутнике же размещается аппаратура, обеспечивающая работу этих измерительных средств. Спутник -- это вспомогательный маяк для проведения измерений относительно положения опорных пунктов, причем этот маяк может быть как пассивным, так и активным. В первом случае спутник, освещенный солнцем или имеющий специальную лампу-вспышку, фотографируется с наземных пунктов на фоне звездного неба.

Синхронные наблюдения искусственных спутников Земли, наблюдения искусственных космических объектов, выполняемые одновременно из двух или более точек земной поверхности ведутся методами, позволяющими определять либо направление на спутник (позиционные наблюдения), либо расстояние до него (дальномерные наблюдения), либо обе эти величины одновременно. Результаты таких наблюдений используются для решения астрономических, геофизических и особенно геодезических задач. Направления на ИСЗ, определённые одновременно с двух станций наблюдений, положения которых известны в той или иной системе координат, позволяют вычислить координаты спутника в той же системе и положение плоскости, проходящей через обе станции и спутник (т. н. плоскость синхронизации). Если известны координаты только одной станции, то такие наблюдения позволяют определить положение плоскости синхронизации. Пересечение двух таких плоскостей (вычисленных по результатам двух наблюдений одного и того же или разных ИСЗ) определяет направление земной хорды, соединяющей обе станции. Если одновременно с позиционными (хотя бы с одной станции) производятся дальномерные наблюдения, появляется возможность вычислить все элементы треугольника с вершинами в двух станциях наблюдений и ИСЗ (т. н. космического треугольника), в том числе и расстояние между станциями. Наблюдения последнего типа позволяют по известным координатам одной, опорной, станции определить координаты второй станции, удалённой от первой на тысячи км; описанный метод спутниковой геодезии называют способом геодезических векторных ходов. Поскольку осуществление наблюдений строго в одни и те же моменты времени на станциях, удалённых на большие расстояния друг от друга, крайне сложно, наблюдения проводят в одни и те же интервалы времени (с точностью до десятых и сотых долей секунды), а затем результаты приводят к одним и тем же моментам математическим путём. Одновременность наблюдений спутника с нескольких пунктов обеспечивается специальным синхронизирующим устройством, которое по сигналам единого времени производит одновременное открывание и закрывание затворов фотокамер. Наличие на фотографии изображений звезд (в виде точек) и следа спутника в виде пунктирной линии позволяет путем графических измерений определить взаимное положение штрихов пунктирной линии, соответствующих положениям спутника, и ближайших к ним точек, соответствующих звездам. Это дает возможность, зная положение звезд по звездному каталогу, определить координаты штрихов спутника или, точнее, угловую ориентацию линий визирования наблюдательный пункт--спутник. Совокупность угловых координат линии визирования пункт--спутник позволяет определить взаимную угловую ориентацию геодезических пунктов. Ориентация всей сети на поверхности Земли требует знания координат хотя бы одного пункта, определяемых классическими методами, и дальности до другого или координат двух пунктов, называемых базисными. - Для преодоления неблагоприятных метеорологических условий при оптических наблюдениях спутника используются радиотехнические средства. В этом случае спутник является как бы активным маяком. Применяются различные принципы измерений: эффект Доплера, смещение фаз радиосигналов спутника, принимаемых в различных точках пункта, время распространения сигнала пункт--спутник--пункт и т. д.

Большие перспективы в измерительной технике космической геодезии имеют оптические квантовые генераторы (лазеры). Они позволяют измерять дальность и радиальную скорость со значительно более высокой точностью, чем с помощью радиотехнических средств. Таким образом, космическая геодезия позволит уточнить форму Земли -- геоид, точно определить координаты любых пунктов на поверхности нашей планеты, создать топографические карты на любые районы земной поверхности и определить параметры поля тяготения Земли. Все это даст возможность морскому флоту определять очертания материков и получать точные координаты островов, рифов, маяков и других морских объектов, авиации -- определять координаты аэропортов, наземных ориентиров и станций наведения. Эти данные позволят выбирать наилучшие маршруты движения и обеспечат надежность и безопасность работы морского и воздушного транспорта. Как известно, для прокладки курса корабля или самолета в каждый момент времени необходимо точно знать их местоположение. Для этих целей служат различные навигационные системы, которые обеспечивают вождение по заданным маршрутам. С давних времен в навигации использовались естественные ориентиры или поля: небесные светила, магнитное поле Земли и др. В последнее время большое распространение получили радионавигационные системы, среди которых наиболее современными являются системы, использующие искусственные спутники Земли. Спутники обеспечивают навигационной системе глобальность. Всепогодность навигации в этом случае достигается благодаря использованию радиосредств сверхвысокочастотного диапазона. Навигация с использованием спутников основана на измерении параметров относительного положения и движения навигируемого объекта и спутника. Такими параметрами могут служить: расстояние (дальность), скорость изменения этого расстояния (радиальная скорость), угловая ориентация линии объект-спутник (линии визирования) в какой-либо системе координат, скорость изменения этих углов и др. Координаты спутника в моменты навигационных определений могут сообщаться кораблям (или самолетам) при каждой навигации. Кроме того, на спутнике может устанавливаться запоминающее устройство, в которое закладываются данные о его прогнозируемом движении. Эта информация “сбрасывается” со спутника в процессе полета (периодически или по запросу с навигируемого объекта). Для упрощения процесса определения координат объекта может быть составлен каталог эфемерид (параметров орбит) навигационных спутников на несколько месяцев или лет вперед. Большое влияние на прогнозирование движения спутника оказывают ошибки определения элементов орбиты, которые зависят прежде всего от точности работы наземных измерительных средств. Эти средства должны быть хорошо “привязаны” к геодезической системе координат. Если этого не будет, то может произойти “сдвиг” координатной системы навигационного спутника относительно геодезической. А это приведет к сдвигу в определении положения навигируемого объекта относительно геодезической системы, а следовательно, и к сдвигу относительно земных ориентиров, что может вызвать катастрофические последствия. Геодезические спутники позволяют с высокой точностью осуществить привязку координат измерительных пунктов к геодезической системе. Для успешной работы навигационных спутников имеет значение правильный выбор параметров их орбит. Необходимо обеспечить достаточную частоту видимости спутника с навигируемых объектов. С этой точки зрения различные орбиты сильно отличаются друг от друга. Так, спутник, летящий по низкой полярной орбите “осматривает” всю Землю дважды в сутки, один раз на прямых, другой--на обратных витках. Точнее говоря, Земля относительно движущегося по орбите спутника перемещается так, что с любой ее точки он может быть виден 2 раза в сутки. Чтобы обеспечить непрерывный обзор поверхности Земли со спутников, запускаемых на полярные орбиты, т. е. для обеспечения видимости одного или более спутников с корабля или самолета, находящегося в любой точке нашей планеты, необходимо на орбитах высотой 200 км иметь 160 спутников, а высотой 1 тыс. км -- 36 спутников. Создание систем космической навигации позволяет значительно улучшить безопасность движения транспорта. Подобные системы прочно входят в практику корабле и самолетовождения, так как позволяют с высокой точностью определять местоположение кораблей и самолетов в любое время суток, при любом состоянии погоды.

Заключение

В данной работе была сделана попытка вкратце свести воедино основные понятия, необходимые для успешного изучения космической геодезии, а также общие сведения о задачах науки и способах их решения.

Список использованной литературы

1. Закатов П.С., Курс высшей геодезии, М., 1964;

2. Меллер И., Введение в спутниковую геодезию, пер. с англ., М., 1967;

3. Левантовский В.И., Механика космического полета в элементарном изложении, М., 1970;

4. Пуанкаре А., Лекции по небесной механике, пер. с франц., М., 1965;

5. Справочное руководство по небесной механике и астродинамике, М., 1971.

6. Изотов А.А., Новые исходные геодезические даты СССР, в кн.: Сборник научно-технических и производственных статей по геодезии, картографии, топографии, аэросъёмке и гравиметрии, в. 17, М., 1948;

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия, необходимые для успешного изучения космической геодезии. Описание систем координат, наиболее часто используемых в астрономии для описания положения светил на небе. Общие сведения о задачах космической геодезии как науки, их решение.

    контрольная работа [1,2 M], добавлен 11.01.2010

  • Горизонтальная система небесных координат. Экваториальная система небесных координат. Эклиптическая система небесных координат. Галактическая система небесных координат. Изменение координат при вращении небесной сферы. Использование различных систем коорд

    реферат [46,9 K], добавлен 25.03.2005

  • История звездной карты. Созвездия каталога Птолемея. Новая Уранометрия Аргеландера. Современные границы созвездий. Горизонтальная, экваториальная, эклиптическая и галактическая системы небесных координат. Изменения координат при вращении небесной сферы.

    реферат [3,4 M], добавлен 01.10.2009

  • Ограниченная круговая задача трех тел и уравнения движения. Типы ограниченных орбит в окрестности точек либрации и гравитационная задача. Затенённость орбит и моделирование движения космического аппарата. Проекция долгопериодической орбиты на плоскость.

    курсовая работа [3,6 M], добавлен 01.07.2017

  • Программа NASA демонстрации лазерной связи со спутником на Лунной орбите LLCD. Космический аппарат LADEE, его научное оборудование. Основные компоненты линии лазерной космической связи для проведения эксперимента. Установление лазерной космической связи.

    реферат [9,0 M], добавлен 15.05.2014

  • Изучение жизненного пути и научной деятельности С.П. Королева - выдающегося конструктора и ученого, работавшего в области ракетной и ракетно-космической техники. Открытия ученого, обеспечившие стратегический паритет России в ракетно-космической отрасли.

    реферат [57,5 K], добавлен 30.03.2011

  • Характеристика комет: история развития, происхождение, структура и основные элементы, причина свечения и химический состав. Точность определения кометных орбит, методы оценки их блеска, современные методы исследования. Защита Земли от кометной опасности.

    контрольная работа [54,9 K], добавлен 30.10.2013

  • Воздействие солнечной активности на процессы, происходящие на нашей планете. Влияние космической радиации на жизнь на Земле. Ионосфера как самая плотная плазменная оболочка Земли. Влияние ионосферы на состояние радиоэфира. Связь эпидемий с космосом.

    реферат [301,1 K], добавлен 19.05.2011

  • Географическая система координат. Горизонтальная система координат. Экваториальные системы координат. Эклиптическая система координат. Галактическая система координат. Системы счёта времени. Звёздное время. Переход от одной системы координат к другой.

    реферат [254,4 K], добавлен 09.03.2007

  • Основы государственной космической программы Российской Федерации в области космической деятельности. Направления работ в данной области исследований. Содержание космических программ Китая, Индии и Бразилии, оценка научных достижений и финансирование.

    презентация [1,5 M], добавлен 06.04.2016

  • Принципы получения информации, необходимой для вычисления координат. Алгоритмы определения курса по информации о высотах звезд. Анализ погрешностей астроориентатора. Определение горизонтальных координат светил. Размещение астросекстантов на платформе.

    контрольная работа [161,9 K], добавлен 25.03.2016

  • Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени.

    учебное пособие [528,1 K], добавлен 10.04.2007

  • Преодоление земного притяжения. Истечение газов из сопла реактивного двигателя. Использование космической ракеты. Труды Константина Эдуардовича Циолковского по аэродинамике и воздухоплаванию. Использование крылатых ракет в России и других странах.

    презентация [3,5 M], добавлен 06.03.2011

  • Классификация различных систем координат. Особенности и характеристика горизонтальной топоцентрической, экваториальной, эклиптической, галактической систем координат. История и практические особенности применения различных систем координат в астрономии.

    статья [22,6 K], добавлен 15.12.2010

  • Небесная сфера и система координат на ней. Анализ положения небесных светил в пространстве. Геоцентрические координаты светил. Изменение координат во времени. Характеристика связи между координатами точки места наблюдения и координатами светил на сфере.

    контрольная работа [1,0 M], добавлен 25.03.2016

  • Космос как огромное пространство. Анализ первых советских искусственных спутников Земли. Рассмотрение особенностей ракетно-космической системы "Энергия-Буран". Основные этапы развития космонавтики. Характеристика космических систем-мусоросборщиков.

    реферат [26,1 K], добавлен 26.01.2013

  • Порядок построения вспомогательной небесной сферы и нанесения светил на ней. Системы сферических координат светил. Высотная линия положения и её элементы. Местное, декретное, летнее и судовое время, их связь с Гринвичским временем. Навигационный секстан.

    шпаргалка [2,0 M], добавлен 27.03.2011

  • Анализ орбит и движения искусственных спутников Земли (ИСЗ). Принципы работы и формирования излучаемых сигналов аппаратуры ИСЗ, применительно среднеорбитальной системы типа: ГЛОНАС, NAV-STAR. Основные понятия пространственной угловой ориентации судна.

    курсовая работа [305,3 K], добавлен 23.11.2010

  • Звёздное скопление — связанная группа звёзд, имеющая общее происхождение и движущаяся в гравитационном поле Галактики как единое целое. Рождение и свойства звезд: теории Кеплера, Галилея, Ньютона. Созвездия небесной сферы, названия, мифы, знаки Зодиака.

    презентация [3,0 M], добавлен 28.05.2012

  • Космогония как наука, изучающая происхождение и развитие небесных тел. Сущность гипотезы Джинса. Туманность, рождение Солнца. Основные этапы процесса превращения частиц туманности в планеты: слипание частиц; разогревание; вулканическая деятельность.

    реферат [12,5 K], добавлен 20.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.