Полярные сияния

Характеристика полярных сияний как одного из самых красивых явлений в природе. Основные формы полярных сияний (дуга, лента, луч, диффузные пятна). Особенности искусственных сияний. Причины их возникновения и основные варианты их отображения в небе.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 07.07.2014
Размер файла 18,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

ФГПБОУ ВПО «Ишимский государственный педогогический институт

им.П.П.Ершова»

Кафедра теории и Методике преподования физике технологий и

предпринимательства

Полярные сияния

Выполнил:

студент 1 курса ФТиП(421гр.)

Кадушкин Сергей Александрович

Проверил:

к.п.н., доцент Журавлёва Н.С.

Ишим 2013

Содержание

Введение

Наблюдение полярных сияний

Искусственные полярные сияния

Как возникают полярные сияния

Варианты возникновения полярных сияний

Список литературы

Введение

Полярные сияния - одно из самых красивых световых явлений в природе, поэтому они привлекали внимание человека на протяжении всей его истории. Начало изучению полярных сияний положил великий русский ученый М. В. Ломоносов, высказавший мнение, что причиной этого явления служат электрические разряды в разреженном воздухе.

Уникальное природное явление, зачаровывающее своей красотой, грандиозностью и таинством. С физической точки зрения: северное сияние - свечение верхних слоев атмосферы в результате ионизации солнечным ветром (солнечный ветер - потоки энергии, идущие от солнца). С точки зрения разумности природы и передачи информации вместе с энергией, поражает наглядная демонстрация глобального воздействия на все живое на Земле. Северное сияние - живая энергия, несущая миллиарды гигабайт информации, подтверждением этому служит изменение цвета, интенсивности, формы, скорости процессов и длительности свечения. Фотографии северного сияния красивы, но наблюдение за игрой северного сияния - истинное наслаждение. Мне очень нравится мысль: тронешь цветок - потревожишь звезду. Мы все взаимосвязаны.Различают четыре основные формы полярных сияний:

1)"Дуги" - полярный сияние природа искусственный

2)"Ленты" -

3)"Лучи" -

4)"Диффузные пятна" -

Наблюдение полярных сияний

Наиболее часто полярные сияния имеют вид лент или пятен, напоминающих облака. Более интенсивное сияние приобретает форму лент, которые при уменьшении интенсивности превращаются в пятна. Ленты могут также исчезать, не разбиваясь на пятна. Ленты обычно простираются с востока на запад на тысячи километров, напоминая гигантский занавес. Высота этого занавеса достигает нескольких сот километров, а толщина всего лишь несколько сот метров. Поэтому такой занавес прозрачен, и сквозь него можно различать звезды. Нижний край занавеса обычно резко очерчен и чаще подкрашен в красный или розовый цвет, а верхний, размытый постепенно исчезает с высотой. Иногда возникают интенсивные сияния, которые охватывают большую часть полярного района и характеризуются беловато-зеленоватым свечением. Они называются шквалами и характерны для периодов повышенной солнечной активности.

По яркости сияния разделяются на четыре класса, отличающиеся друг от друга в 10 раз. В первый класс попадают еле заметные сияния, сходные по своей яркости с Млечным Путем. Сияния же четвертого класса по яркости можно сравнить с полной Луной.

Полярные сияния в северном полушарии обычно движутся на запад со скоростью примерно 1 км/с. Верхние слои атмосферы в области сияний заметно нагреваются, что приводит к появлению восходящих потоков газа. В результате на больших высотах увеличивается плотность газовой среды. Последнее вызывает дополнительное торможение искусственных спутников Земли в этой области. Сияния также сопровождаются сильными вихревыми токами в огромных областях пространства. В результате индуцируются сильные магнитные поля и развиваются так называемые магнитные бури. Яркие вспышки сияния могут сопровождаться звуками, похожими на треск. Сильные изменения в ионосфере сказываются на качестве радиосвязи. В большинстве случаев она ухудшается.

Искусственные полярные сияния

Наиболее убедительным доводом в пользу того, что мы понимаем какое-нибудь физическое явление, является его повторение в лаборатории. Это удалось сделать и для полярного сияния - создать его искусственно в лаборатории с масштабами нашей планеты. Этот эксперимент, получивший название "Аракс", начат в 1985 году совместно российскими и французскими исследователями. В качестве лабораторий были выбраны две магнитосопряженные точки на поверхности Земли (то есть две точки на одной и той же силовой линии магнитного поля). Ими были в южном полушарии французский остров Кергелен в Индийском океане и в северном полушарии поселок Согра в Архангельской области. С острова Кергелен стартовала геофизическая ракета с небольшим ускорителем частиц, который на определенной высоте создал поток электронов. При движении вдоль магнитной силовой линии от Земли, которая над экватором была уже на расстоянии 20 000 км, эти электроны проникли в северное полушарие и вызвали искусственное полярное сияние над Согрой. К сожалению, облака не позволили визуально наблюдать это сияние с поверхности Земли. Однако радарные установки четко зарегистрировали его возникновение. Название "Аракс" составлено из первых букв французских слов Artificiel polaire aurore - Kergelen - Sogra, которые в переводе означают "искусственное полярное сияние-Кергелен-Согра".

Эксперименты описанного типа не просто позволяют понять причины и механизм возникновения полярного сияния. Они дают уникальную возможность изучать структуру магнитного поля Земли, процессы в ее ионосфере и влияние этих процессов на погоду вблизи земной поверхности. Особенно удобно выполнять такие эксперименты не с электронами, а с ионами бария. Оказавшись в ионосфере, эти ионы возбуждаются солнечным светом и начинают испускать излучение малинового цвета.

Полярные сияния сигнализируют о месте и времени воздействия Космоса на земные процессы. Вызывающее их вторжение заряженных частиц влияет на многие стороны нашей жизни. Изменяется содержание озона и электрический потенциал ионосферы, нагрев ионосферной плазмы возбуждает волны в атмосфере. Все это сказывается на погоде. Из-за дополнительной ионизации в ионосфере начинают течь значительные электрические токи, магнитные поля которых искажают магнитное поле Земли, что прямо влияет на здоровье многих людей. Таким образом, через полярные сияния и связанные с ними процессы Космос воздействует на окружающую нас природу и ее обитателей.

Как возникают полярные сияния

Землю можно рассматривать как большой магнит, южный полюс которого располагается вблизи северного географического полюса, а северный - вблизи южного. Силовые линии магнитного полюса Земли (так называемые геомагнитные линии) выходят из области северного магнитного полюса Земли, охватывают нашу планету и входят в нее в области южного магнитного полюса Земли.

Форма магнитных силовых линий не является симметричной относительно Земли. Это связано с так называемым солнечным ветром - потоком высокоэнергичных электронов и протонов, постоянно излучаемых Солнцем, резко увеличивающимся по интенсивности во время вспышек на Солнце. Налетая на магнитную оболочку Земли, потоки заряженных частиц приводят к сжатию магнитных силовых линий со стороны Солнца и их оттягиванию в противоположном направлении, образуя у Земли магнитный хвост.

Чтобы понять, почему сияния наблюдаются чаще всего именно в полярных областях Земли, надо вспомнить, как движутся заряженные частицы в магнитном поле.

Варианты возникновения полярных сияний

1. Заряженная частица движется вдоль магнитного поля. В этом случае поле никак не влияет на ее движение. В высоких широтах Земли силовые линии магнитного поля почти вертикальны, что создает благоприятные условия для проникновения частиц в атмосферу Земли.

2. Заряженная частица движется поперек магнитного поля. При этом на частицу действует сила Лоренца, которая закручивает ее вокруг силовой линии магнитного поля. В результате при отсутствии столкновений с другими частицами рассматриваемые частицы будут просто вращаться вокруг силовых линий. Столкновения могут приводить к перескоку частиц с одних круговых орбит на другие. Но скорость такого движения существенно меньше, чем скорость направленного движения потока частиц при отсутствии магнитного поля. В низких широтах силовые линии почти параллельны поверхности Земли. Поэтому, чтобы частицы, вызывающие полярное сияние, могли здесь проникнуть в атмосферу, они должны прорваться поперек силовых линий Земли, а это для них практически невозможно.

3. Частица движется под определенным углом к направлению магнитного поля. Такое движение можно разложить на две составляющие: поперек магнитного поля и одновременно вдоль него. Оба эти случая рассмотрены выше. Из сказанного следует, что траектория частицы в этом случае будет спиралью, накручивающейся на силовую линию магнитного поля. Шаг спирали зависит от величины продольной скорости, а радиус - от поперечной скорости. Таким образом, заряженная частица, попадая в магнитное поле Земли, может достигнуть ее атмосферы только в полярных областях независимо от того, где она оказалась вначале.

4. Частица движется в неоднородном магнитном поле, то есть магнитное поле изменяется в пространстве. Если частица движется по спирали вокруг силовой линии магнитного поля, которое увеличивается по мере продвижения частицы вперед (то есть силовые линии сгущаются), то с ростом напряженности поля частица замедляет свое движение вдоль силовой линии и, в конце концов, отразится и будет двигаться в обратном направлении. Силовые линии магнитного поля Земли сходятся около ее поверхности в высоких широтах. Поэтому заряженные частицы, вращаясь вокруг этих линий и подходя к местам их сгущений, отражаются и движутся в другое полушарие (рис. 2). Там повторяется аналогичное отражение, и частицы оказываются в первом полушарии. Это повторяется до тех пор, пока частица не потеряет энергию при соударении с нейтральными частицами в плотной атмосфере вблизи поверхности Земли.

Силовые линии магнитного поля Земли меняются не только в радиальном направлении, но они к тому же и изогнуты. Это также влияет на движение заряженных частиц. В результате электроны и протоны начинают дрейфовать в противоположных направлениях (на восток или запад).

Электроны и протоны, попавшие из солнечного ветра в магнитное поле Земли, стекают в область полюсов, где достигают плотных слоев атмосферы и производят ионизацию и возбуждение атомов и молекул газов. Для этого они имеют достаточно энергии. Действительно, в солнечном ветре протоны обладают энергией 100-200 эВ (1 эВ=1,6*10-19 Дж), а электроны - энергией 10-20 кэВ. Пороги ионизации составляют 13,6 эВ для атомов водорода и кислорода и 14,5 эВ для атома азота. Пороги возбуждения этих частиц еще меньше. Возбужденные атомы испускают энергию в виде света. Нечто подобное наблюдается в газовом разряде при пропускании через газ электрического тока.

Ионизация заряженными частицами происходит наиболее эффективно в конце пути заряженной частицы, когда ее энергия уже невелика. Нейтральные частицы распределены в атмосфере по барометрическому закону (естественно, частиц больше на низких высотах), что также увеличивает скорость ионизации вблизи поверхности Земли. С этим и связаны резкая нижняя и размытая верхняя границы полярных сияний.

Особого внимания заслуживает вопрос об аналогии между полярными сияниями и газовым разрядом, с многочисленными проявлениями которого мы встречаемся на каждом шагу (молния, лампы дневного света, неоновые огни реклам, яркая вспышка света при дуговой сварке и т.д.). Традиционно считалось, что такая аналогия ограничивается только элементарными актами ионизации и возбуждения атомов энергичными частицами, которые происходят и в газовом разряде, и в полярных сияниях. Хорошо известно, что в газовом разряде ионизующие электроны нагреваются во внешнем электрическом поле. В случае с полярными сияниями раньше считалось, что ионизующие заряженные частицы - это сверхгорячие электроны и протоны солнечного ветра, которые охлаждаются в столкновениях с атомами и молекулами атмосферы. Однако современные исследования показали, что в последнем случае ситуация более сложная. Заряженные частицы солнечного ветра (по крайней мере электроны) могут осуществлять ионизацию другим образом.

Дело в том, что ионосферная плазма, в которую вторгается высокоэнергичный пучок заряженных частиц, неустойчива. В такой системе за счет энергии пучка раскачиваются колебания, сопровождаемые переменным электрическим полем. Электроны ионосферы по прямой аналогии с лабораторным газовым разрядом нагреваются в этом электрическом поле до энергий, при которых начинается ионизация в столкновениях с атомами и молекулами. Получающийся таким образом разряд носит название пучково-плазменного разряда и не только известен специалистам по газовому разряду, но и используется в некоторых технических приложениях. Таким образом, аналогия между полярными сияниями и газовым разрядом оказалась более глубокой, чем предполагалось вначале.

Анализ спектров излучения в полярных сияниях показывает, что зеленое и красное свечение испускается возбужденными атомами кислорода, а инфракрасное и фиолетовое - ионизованными молекулами азота. Часть линий испускания кислорода и азота образуется на высоте 110 км, а красное свечение кислорода - на высоте 200-400 км. Слабое излучение испускается также атомами водорода, которые образуются в верхних слоях атмосферы из протонов солнечного ветра при захвате электронов от нейтральных частиц атмосферы. Захватив электрон, такой протон превращается в возбужденный атом водорода, который и излучает красный свет.

Интересно, что энергичные протоны, вторгаясь в верхнюю атмосферу и вызывая протонные сияния, часть своего пути движутся как нейтральные атомы водорода. В этом случае они свободны от действия магнитного поля Земли и, имея большие (протонные) скорости, могут проникать в области, недоступные заряженным частицам. Вследствие этого области, где наблюдаются протонные полярные сияния, отличаются большой протяженностью.

Вспышки северного сияния обычно наблюдаются через день-два после вспышек на Солнце. Это служит непосредственным доказательством взаимосвязи между упомянутыми явлениями.

Поверхность Земли не самое лучшее место для наблюдения за полярными сияниями: во-первых, почти всегда их надо наблюдать ночью, когда не мешает солнце; во-вторых, наблюдениям могут помешать облака. Этих трудностей можно избежать, если следить за полярными сияниями из Космоса, где к тому же нет искажающего влияния нижних плотных слоев атмосферы.

Наблюдения с пилотируемых космических кораблей и орбитальных станций дали богатый материал о пространственном расположении сияний, их изменении во времени и о многих особенностях этого явления. Более того, космические аппараты позволили выполнять измерения внутри полярного сияния. При этом одинаково удобно исследовать сияния и в северном и в южном полушариях. Таким способом можно наблюдать сияния и на дневной стороне Земли.

Список литературы

1.Большая энциклопедия природных явлений под ред. Павлова М.И.(854с.)

Размещено на Allbest.ru

...

Подобные документы

  • Описания жидких гейзеров, расположенных на поверхности спутника Энцелада. Изучение особенностей уникального объекта стены Япета. Действующие вулканы спутника Юпитера Ио. Кольца Сатурна - одно из самых красивых явлений в Солнечной системе. Пояс астероидов.

    презентация [894,3 K], добавлен 24.02.2014

  • Плазма в Солнечной системе. Солнечный протуберанец. Пример траектории спутников при многоспутниковых измерениях. Полярные сияния. Система заряженных частиц с самосогласованными электрическими и магнитными полями. Число частиц в дебаевской сфере.

    презентация [5,4 M], добавлен 22.04.2014

  • Параметры планеты. Внутреннее строение. Атмосфера. Гигантский гексагон. Космические характеристики. Магнитосфера. Полярные сияния. Инфракрасное свечение Сатурна. Кольцевая система и открытие тонкой структуры колец. Спутники Сатурна. История открытий.

    реферат [2,4 M], добавлен 03.11.2008

  • История образования атмосферы планеты. Баланс кислорода, состав атмосферы Земли. Слои атмосферы, тропосфера, облака, стратосфера, средняя атмосфера. Метеоры, метеориты и болиды. Термосфера, полярные сияния, озоносфера. Интересные факты об атмосфере.

    презентация [399,0 K], добавлен 23.07.2016

  • Параметры планеты. Внутреннее строение. Атмосфера. Большое рентгеновское пятно на Юпитере. Большое красное пятно. Космические характеристики. Магнитосфера. Полярные сияния. Молнии на Юпитере. Комета Шумейкер-Леви 9. Кольца, спутники и история открытий.

    реферат [1,4 M], добавлен 03.11.2008

  • Полные солнечные затмения относятся к числу наиболее величественных и красивых явлений природы. Причина происхождения солнечного затмения. Полные, кольцеобразные и частные затмения Солнца. Значение теории полного затмения Солнца для современной науки.

    реферат [725,8 K], добавлен 23.06.2010

  • Основные понятия, необходимые для успешного изучения космической геодезии. Описание систем координат, наиболее часто используемых в астрономии для описания положения светил на небе. Общие сведения о задачах космической геодезии как науки, их решение.

    контрольная работа [1,2 M], добавлен 11.01.2010

  • Шаг вперёд в развитии метеорологической науки. Оснащение метеорологических искусственных спутников Земли. Орбиты метеорологических искусственных спутников. Использование искусственных спутников Земли в метеорологии и других сферах науки и жизни.

    реферат [9,1 K], добавлен 26.07.2003

  • Основные этапы возникновения и развития звезд, их структура и элементы. Причины и гипотезы насчет взрывов звезд и образования сверхновых. Степень зависимости финальной стадии эволюции звезды от ее массы, предпосылки возникновения явления "черной дыры".

    реферат [17,2 K], добавлен 21.12.2009

  • Астрономические наблюдения как основной способ исследования небесных объектов и явлений. Изучение особенностей наблюдения солнечной активности, Юпитера и его спутников, комет, метеоров, солнечных и лунных затмений, а также искусственных спутников Земли.

    реферат [31,9 K], добавлен 17.04.2012

  • Космос как огромное пространство. Анализ первых советских искусственных спутников Земли. Рассмотрение особенностей ракетно-космической системы "Энергия-Буран". Основные этапы развития космонавтики. Характеристика космических систем-мусоросборщиков.

    реферат [26,1 K], добавлен 26.01.2013

  • Рассуждения о пространствах: одномерном, двухмерном и трехмерном. Отображения пространства в декартовой системе координат. Выбор способа отображения сферы на плоскость, способы счёта идеально-определённого пространства; представление идеальной сферы.

    статья [19,4 K], добавлен 22.12.2009

  • Фотографии Марса в небе Земли. Снимок, полученный орбитальным телескопом имени Хаббла, и старинные зарисовки. Схема орбиты и противостояний данной планеты. Особенности природы и спутники Марса. Исследования планеты при помощи космических аппаратов.

    презентация [2,0 M], добавлен 16.05.2011

  • Понятие и основные причины возникновения черных дыр как областей в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света. Структура данной области, поиск и свойства.

    презентация [588,9 K], добавлен 19.02.2014

  • Месторасположение планет на небе, отдаленность от Солнца. Размер Нептуна, история открытия, характеристика его спутников. Самая маленькая среди планет Солнечной системы - планета Плутон, ее размеры, единственный спутник Харон, особенность цвета.

    презентация [747,8 K], добавлен 30.09.2011

  • Особенности наблюдения моментов контактов, фотографирования серпов, определения границ полос полной тени на местности как способы предвычисления видимого положения Луны на небе. Ознакомление с законом потемнения солнечного диска от середины к краю.

    реферат [161,3 K], добавлен 27.07.2010

  • Описание созвездия Ориона, его расположение на небе, характеристика входящих в него звезд – Ригель, Бетельгейзе, Беллатрикса, Альнилама, Сайфа, Хатисы. Понятие, расположение и размеры облака Ориона. Греческие и австралийские мифы и легенды об Орионе.

    реферат [25,2 K], добавлен 10.01.2010

  • Общая характеристика и особенности структуры Солнца, его значение в солнечной системе. Атмосфера Солнца, причины появления и характер пятен на его поверхности. Условия возникновения солнечных затмений. Циклы солнечной активности и их влияние на Землю.

    презентация [676,9 K], добавлен 29.06.2010

  • Анализ орбит и движения искусственных спутников Земли (ИСЗ). Принципы работы и формирования излучаемых сигналов аппаратуры ИСЗ, применительно среднеорбитальной системы типа: ГЛОНАС, NAV-STAR. Основные понятия пространственной угловой ориентации судна.

    курсовая работа [305,3 K], добавлен 23.11.2010

  • Этапы развития астрономии как науки. Строение и размеры объектов Вселенной. Карта звездного неба. Факторы, искажающие видимое положение светил на небе. Характеристики эллиптической орбиты небесного тела относительно Солнца, сущность законов Кеплера.

    презентация [8,8 M], добавлен 16.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.