Теория большого взрыва. Современный анализ проблемы

Сущность теории Большого взрыва, его первое описание Фредом Хойлом в 1949 г. Значение работы физика А. Эйнштейна "Основы общей теории относительности". Расчет коэффициента пропорциональности между скоростью и расстоянием. 4 эры эволюции вселенной.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 25.03.2015
Размер файла 41,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Ижевский государственный технический университет имени М.Т. Калашникова»

Факультет «Математики и естественных наук»

Кафедра «Физика и оптотехника»

«Теория большого взрыва. Современный анализ проблемы. Модель теории с точки зрения квантовой модели»

Выполнил:

студент гр. Б 03-151-1

Пушина И.А.

Проверил:

доцент Пономарев А.Г

Ижевск, 2014

Введение

Проблемы зарождения и существования Вселенной занимали самого древнего человека. Небо, которое было доступно его обозрению, было для него очень интересно. Недаром астрономия считается одной из самых древних наук о природе. Не потерял интереса к изучению проблем космоса и современный человек, но он смотрит глубже, его уже интересует не просто выяснение вопроса, что есть Вселенная? Современные ученые ищут ответы на следующие вопросы:

а) Что было, когда Вселенная рождалась?

б) Как давно это было и как происходило?

в) Рождалась ли Вселенная вообще или она глобально стационарна?

Для поиска ответов на эти непростые вопросы в астрономии появилась новая отрасль - космология. По определению А.Л. Зельманова (1913-1987) космология - это совокупность накопленных теоретических положений о строении вещества и структуре Вселенной, как цельного объекта, так и отдельные научные знания охваченного астрономическими наблюдениями мира как части Вселенной. Космология стала искать различные варианты ответов на поставленные вопросы, выдвигать различные теории и гипотезы. Так появилась Теория Большого взрыва и гипотезы, описывающие первые мгновения рождения Вселенной, ее структуризацию и развитие.

Космология, как и любая современная наука, сегодня бурно живет и развивается, в большей мере за счет «альтернативных теорий». Все это позволяет человечеству точнее понять сущность физических процессов, дает возможность ученым прогнозировать дальнейшую эволюцию Вселенной.

В предлагаемом Вашему вниманию реферату, я постараюсь осветить проблемы происхождения Вселенной, в частности теорию Большого взрыва, первые этапы жизни Вселенной, перспективы ее развития.

1. Теория большого взрыва

Первоначально теория Большого взрыва называлась "динамической эволюционирующей моделью". Впервые термин "Большой взрыв" применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы "непрерывного рождения" материи при расширении Вселенной). Он сказал:

"Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной".

На русский язык Big Bang можно перевести и как "Большой хлопок", что, вероятно, точнее соответствует уничижительному смыслу, который вложил в него Хойл. Однако после того, как его лекции были опубликованы, термин стал широко употребляться.

1916 -- вышла в свет работа физика Альберта Эйнштейна "Основы общей теории относительности", которой он завершил создание релятивистской теории гравитации.

1917 -- Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Л. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Л-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе "Об эйнштейновской теории гравитации и её астрономических следствиях".

1922 -- советский математик и геофизик Ал. Ал. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение о том, что и в самом начале её развития также лежит взрывной процесс -- Большой взрыв.

1923 -- немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.

1924 -- К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.

1925 -- К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что "не существует зависимости лучевых скоростей от расстояния от Солнца". Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.

1927 -- опубликована статья Леметра "Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей". Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии -- это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.

1929 -- 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся "Связь между расстоянием и лучевой скоростью внегалактических туманностей". Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.

1948 -- выходит работа Г. А. Гамова о "горячей вселенной", построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной -- Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в "горячую" эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется -- только сильно охлаждённым -- и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.

1955 -- Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ излучение с температурой около 3K.

1964 -- американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру: она оказалась равной 3 К! Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.

2003 -- спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE, Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ЛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя -- 4 %, тёмная материя -- 23 %, тёмная энергия -- 73 %).

Первоначально теория Большого взрыва называлась "динамической эволюционирующей моделью". Впервые термин "Большой взрыв" применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы "непрерывного рождения" материи при расширении Вселенной). Он сказал:

"Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной".

На русский язык Big Bang можно перевести и как "Большой хлопок", что, вероятно, точнее соответствует уничижительному смыслу, который вложил в него Хойл. Однако после того, как его лекции были опубликованы, термин стал широко употребляться.

Академик Я.Б. Зельдович писал по этому поводу в 1983 г.: «Теория «Большого взрыва» в настоящий момент не имеет сколько-нибудь заметных недостатков. Я бы даже сказал, что она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные теории не в состоянии препятствовать успеху новых теорий».

На чем основана уверенность академика Я.Б. Зельдовича в справедливости теории «горячей Вселенной»? Имеется ряд данных, которые подтверждают теорию Большого взрыва.

Во-первых, это данные о возрасте небесных тел. Мы знаем, что возраст Солнечной системы близок к 4,6 млрд. лет. Менее точно известен возраст самых старых звезд, скорее всего он близок к возрасту нашей и других галактик (10-15 млрд. лет). Следовательно, данные о возрасте небесных тел сопоставимы с данными о возрасте Метагалактики.

Второе подтверждение состоит в том, что данные радиоастрономии свидетельствуют, что в прошлом далекие внегалактические источники радиоизлучения излучали интенсивней, чем сегодня, следовательно, эти источники эволюционируют. Когда сегодня мы наблюдаем мощный источник радиоизлучения, необходимо помнить о том, что перед нами его далекое прошлое, ведь сегодня радиотелескопы принимают волны, которые были излучены миллиарды лет назад. Факт, что радиогалактики и квазары эволюционируют, причем время их эволюции совпадает со временем существования Метагалактики, говорит в пользу теории Большого взрыва.

Третьим важным подтверждением рассматриваемой теории, является наблюдаемая распространенность химических элементов с тем соотношением гелия и водорода (1/4 и 3/4 соответственно), которое возникло во время первичного термоядерного синтеза.

Главным же подтверждением теории Большого взрыва («горячей Вселенной») считается открытие реликтового излучения. Для космологии это явление имеет фундаментальное значение, сравнимое по значению с открытием расширения Метагалактики.

В чем суть открытого реликтового излучения? Так называемый «отрыв» излучения от вещества происходил, когда температура в расширяющейся Вселенной была порядка 3000-4000 К. В ходе последующего расширения Вселенной температура снижалась, но характер излучения (его спектр) сохранился до наших дней, напоминая о далекой «молодости» Метагалактики.

Советский астрофизик И.С. Шкловский предложил называть это излучение реликтовым. Теория предсказала существование реликтового излучения. Теоретические оценки температуры реликтового излучения были даны в 40-50 г.г. в работах Г.А. Гамова, а затем его учеников Р. Альфреда и Р. Германа. В 1964 г. советские астрофизики И.Д. Новиков и А.Г. Дорошкевич впервые выполнили конкретные расчеты интенсивности излучения различных объектов: звезд, межзвездной пыли, галактики и т.д.

В конце 60-х годов группа американских ученых во главе с Р. Дикке приступила к попыткам обнаружить реликтовое излучение. Но их опередили А. Пензиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие микроволнового фона (это официальное название реликтового излучения) на волне 7,35 см.

Примечательно, что будущие лауреаты Нобелевской премии не искали реликтовое излучение, а в основном занимались отладкой радиоантенны для работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г. они при различных положениях антенны регистрировали космическое излучение, природа которого первоначально была им не ясна. Этим излучением и оказалось реликтовое излучение.

Нас интересуют события, которые произошли, по разным оценкам, 13 - 20 млрд. лет назад (13 млрд. лет в соответствии с теорией «закрытого мира», а 20 млрд. лет по теории «Открытого мира»). Все это время наша Вселенная, согласно теории Большого взрыва, постоянно расширялась. В пролом же плотность вещества должна было быть огромной. Согласно теории А. Фридмана следует, что плотность могла быть бесконечно большой, хотя некоторые ученые называют некий возможный предел значения плотности вещества, примерно равный 10 97 кг/м 3.

Другим важным параметром является температура. Вопрос о том, холодной» или «горячей» была материя в ту эпоху, долгое время оставался спорным. Решающие доказательства, что Вселенная была горячей, удалось получить в середине 60-х годов. В настоящее время большинство космологов считает, что материя в начале расширения Вселенной была не только сверхплотной, но и очень горячей, а теория рассматривающая физические процессы в начале расширения Вселенной получила название «теории горячей Вселенной».

Согласно этой теории, ранняя Вселенная представляла собой гигантский ускоритель «элементарных» частиц. Началом работы Вселенского ускорителя был Большой взрыв. Этот термин часто применяют современные космологи. Наблюдаемый разлет галактик и их скоплений - следствие Большого взрыва. Академик Я.Б. Зельдович назвал этот взрыв астрономическим, тем самым, подчеркнув его отличие от химического взрыва.

У обоих взрывов есть общие черты, например, в обоих случаях вещество после взрыва охлаждается при расширении, падает и его плотность. Но есть и существенный отличия. Главное состоит в том, что химический взрыв обусловлен разностью давлений во взрывающемся веществе и давлением в окружающей среде (воздухе). Эта разность давлений создает силу, сообщающую скорость частицам заряда взрывчатого вещества. В астрономическом взрыве подобной разности давлений нет. Астрономический взрыв не начался из какого-то определенного центра, распространяясь на все большие области, а произошел сразу во всем существовавшем тогда пространстве. Представить себе это очень трудно, тем более что «все пространство» в начале взрыва могло быть как конечным (теория замкнутого мира), так и бесконечным (теория открытого мира).

В теории космологии принято эволюцию вселенной разделять на 4 эры:

а) адронная эра (начальная фаза, характеризующаяся высокой температурой и плотностью вещества, состоящего из элементарных частиц - «адронов»);

б) лептонная эра (следующая фаза, характеризующаяся снижением энергии частиц и температуры вещества, состоящего из элементарных частиц «лептонов». Адроны распадаются в мюоны и мюонное нейтрино - образуется «нейтринное море»;

в) фотонная эра или эра излучения (характеризуется снижением температуры до 10 К, аннигиляцией электронов и позитронов, давление излучения полностью отделяет вещество от антивещества);

г) звездная эра (продолжительная эра вещества, эпоха преобладания частиц, продолжается со времени завершения Большого взрыва (примерно 300 000 лет назад) до наших дней.

В нулевой момент времени Вселенная возникла из сингулярности, то есть из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Пытаясь объяснить происхождение Вселенной, сторонники Большого взрыва сталкиваются с серьезной проблемой, поскольку исходное состояние Вселенной в разработанной ими модели не поддается математическому описанию. В их описаниях Вселенная в начале представляла собой точку пространства бесконечно малого объема, имевшую бесконечно большую плотность и температуру. Такое состояние вещества в принципе не может быть описано математически. На языке науки это явление получило название «сингулярности».

В течение первой миллионной доли секунды, когда температура значительно превышала 10 12 К (по некоторым оценкам до 10 14 К), а плотность была немыслимо велика, происходили неимоверно быстро сменяющие себя экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять, каковы были эти первые мгновения, например, возможно, что четыре фундаментальные силы природы были слиты воедино. Есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Иными словами материя Вселенной представляла собой электронно-позитронные пары (е- и е+); мюонами и антимюонами (м - и м +); нейтрино и антинейтрино, как электронными (v e, v e), так и мюонными (v m, v m) и тау-нейтрино (v t, v t); нуклонами (протонами и нейтронами) и электромагнитным излучением. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.

В те первые мгновения все имевшиеся частицы должны были непрерывно возникать (парами - частица и античастица) и аннигилировать. Это взаимное превращение частиц в излучение и обратно продолжалось до тез пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц. Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 10 11 К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, некоторые из этих частиц избежали аннигиляции - иначе в современной нам Вселенной не было бы вещества. Через 1 секунду после Большого взрыва температура понизилась до 10 10 К, и нейтрино перестали взаимодействовать с веществом. Вселенная стала практически «прозрачной» для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10 секунд уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение катастрофического процесса взаимной аннигиляции. По окончанию этого процесса, однако, осталось определенное количество электронов, достаточное, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.

Существует два основных взгляда на процесс формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества. В этих сгустках начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших (по галактическим размерам) сгустках под действием сил тяготения в случайных неоднородностях плотности началось формирование звезд. Другая точка зрения дает другой сценарий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, в более крупные иерархические структуры.

Главным в споре этих двух взглядов является ответ на вопрос, имел ли процесс Большого взрыва вихревой (турбулентный) характер или протекал более гладко. Признаков турбулентности в крупномасштабной структуре сегодняшней Вселенной не наблюдается. Вселенная выглядит удивительно сглаженной в крупных масштабах, несмотря на некоторые отклонения, в целом далекие галактики и их скопления галактики распределены по всему небу равномерно, а степень изотропности фонового излучения также довольно высока. Все это заставляет признать, что Большой взрыв был безвихревым, упорядоченным процессом расширения.

В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (10 8 : 1) М. Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет, многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.

Эта точка зрения не получила широкого признания, но в 1979 г. Д.П. Вуди и П.Л. Ричардс из Калифорнийского университета опубликовали результаты наблюдений, указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела. В том же году М. Роуэн-Робинсон, Дж. Негропонте и Дж. Силк (Колледж королевы Марии, Лондон) указали, что отклонения обнаруженные Вуди и Ричардсом, может быть объяснено излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует теории М. Риса. Если эта новая теория соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звезд первичного, догалактического, поколения и в настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.

вселенная хойл скорость

2. Современный анализ проблемы

Теория Большого взрыва захватывает воображение и мало кого оставляет равнодушным. Создается впечатление, что она основана на фактическом материале и подкреплена математическими выкладками и поэтому большинству людей она кажется более приемлемой, чем религиозное объяснение возникновения Вселенной. Однако, по мнению ряда ученых-космологов рассматриваемая теория является лишь последней из целого ряда попыток объяснить зарождение Вселенной с позиций физического мировоззрения, согласно которому мир представляет собой порождение материи, функционирующей в строгом соответствии с законами физики.

Иерархичность устройства Природы заключается в том, что каждая ступень этой иерархической лестницы связана с другой - более высокой или более низкой - определенным, закономерным образом. Разрыва в действии законов природы не может и не должно быть. И если есть законы физики, которые действуют на уровне микромира, то такие же законы должны действовать и на уровне космическом. И наоборот.

Современная теоретическая физика совершенно опровергает это утверждение. С точки зрения современной науки на космическом уровне, казалось бы, выявляются эффекты, которые никак не соотносятся с уровнем микромира. И к подобным эффектам, в первую очередь, следует отнести вопрос, почему ночное небо темное. Вопрос этот принципиальный. Тот или иной вариант ответа на него уводит нас в диаметрально противоположные стороны понимания физики как таковой.

Возникновение самого вопроса связано с принятым космологическим принципом, зафиксированным экспериментально в ходе астрономических наблюдений и который гласит следующее.

В наблюдаемой Вселенной вещество и излучение распределены удивительно равномерно. Их распределение не зависит ни от направления наблюдения (изотропность), ни от расстояния от Земли (однородность).

В свете вопроса о причинах темноты нашего ночного неба космологический принцип в свое время был поставлен под сомнение. Дело в том, что однородность и изотропность распределения вещества и излучения в Космосе неизбежно приводят к мысли, что на каждом квадратном миллиметре (и вообще - на любой малой площади) небосвода при удалении от Земли по прямой линии нам будет попадаться бесчисленное количество звезд, которые мы почему-то не наблюдаем. Свет от этих далеких звезд должен заставлять светиться наше ночное небо. Однако свет этих звезд по каким-то причинам до нас не доходит, и ночное небо остается темным.

Этот парадокс в 1744 году описал швейцарский астроном де Шизо, а затем - независимо от него - в 1826 году немецкий астроном Г. Ольберс. Обнаружение этого парадокса поставило под сомнение вечность и бесконечность Вселенной.

Чтобы избавиться от своего парадокса эти астрономы предположили наличие в космическом пространстве непрозрачных туманностей, заслоняющих наиболее удаленные звезды и поглощающих от них свет. Но это было заблуждение, которое вскоре опровергли другие астрономы. Туманности от поглощенного свете разогрелись бы настолько, что сами стали бы источником света. Следовательно, либо свет от дальних звезд не приходит, так как этих звезд там нет, либо ученые недостаточно четко понимают природу света (фотона).

В определенном смысле - это точка бифуркации для космологии. Бифуркация означает буквально разветвление. Дальнейшее рассуждение о структуре и развитии Вселенной может вестись по-разному, в разных направлениях, принципиально отличающихся друг от друга. Все зависит от того, какие причины “исчезновения” света далеких звезд мы примем в качестве рабочих.

Итак, если “парадокс Ольберса” (такое название получила эта загадочная ситуация) справедлив, то тогда космологический принцип не является всеобщим, а Вселенная - имеет конечные размеры. Это одна точка зрения. Данная точка зрения, к сожалению, совпала с выводами общей теории относительности об искривлении пространства гравитацией и замкнутости пространства Вселенной в виде сферы. Далее мы проследим, как и в какой мере будет нарушаться космологический принцип, если возобладает эта точка зрения.

Следует заметить, что астрономические наблюдения до сих пор не дали оснований считать возможность нарушения космологического принципа. И мне представляется принципиально важным сохранение космологического принципа при любых вариантах рассуждений.

Если же принять возможным конечность времени существования фотона, тогда темнота ночного неба будет легко объяснена, а принцип однородности и изотропности космического пространства будет полностью сохранен для любой точки пространства Вселенной, а сама Вселенная при этом может быть неограниченно большой (бесконечной) в линейном смысле.

Именно по этим причинам я считаю “парадокс Ольберса” точкой бифуркации вообще для всей физической науки, а не только для решения космологических проблем: вопрос о природе фотона становится ключевым для понимания одновременно свойств вещества и космологических законов. От выбора варианта гипотезы для его разрешения дальнейшие рассуждения идут различными путями, никак не соприкасающимися друг с другом и дающими принципиально отличающиеся результаты.

В первом варианте гипотезы имеется существенный изъян, заключающийся как раз в нарушении космологического принципа. Если принять такую точку зрения (о конечности Вселенной), то тогда следовало бы положить, что по мере удаления от Земли расстояние между звездами неизбежно увеличивается, т.е. нарушается принцип однородности и изотропности одновременно. В этом случае, находясь в удаленных от Земли областях и всматриваясь в сторону Земли, мы обнаружили бы возрастание плотности и нарушение однородности Вселенной в этом направлении.

Поскольку космологический принцип желательно сохранить, следует положить, что первое предположение является ошибочным. Но в этом случае размеры Вселенной оказываются ограниченными. В этом случае космологический принцип будет нарушен в случае нашего нахождения на некоторой границе Вселенной, в которой начинается ограничение количества звездных систем вследствие ограниченности пространства Вселенной. Тогда всматриваясь в разные стороны того пространства, где мы будем находиться, мы обнаружим неоднородность и анизотропность Вселенной в разных направлениях ее обозрения. В этом случае мы обязаны будем положить, что космологический принцип - это частный случай, справедливый лишь для нашей планеты.

Таким образом, принятие первого варианта гипотезы о механизме разрешения “парадокса Ольберса” приводит к тому, что космологический принцип неизбежно нарушается. Однако оснований для этого у ученых совершенно нет при любых видах астрономических наблюдений. И это ставит под большое сомнение целесообразность принятия этого варианта.

Второй вариант, несомненно, даст ответы на все вопросы, но тогда следует пересмотреть многие основания современной физики. Ученые к этому совершенно не готовы. Чтобы принять такой вариант разрешения “парадокса Ольберса” необходимо понять, куда и как может “исчезнуть” фотон при своем движении в бескрайних просторах Космоса. Для этого, как мне представляется, совершенно неприемлема современная модель фотона. Во всяком случае, принятая модель фотона оказывается совершенно неполной, или неполноценной. Новая модель фотона, представленная в цикле статей “Атом и вещество” однозначно разрешает парадокс Ольберса. Кроме того, новая модель фотона позволила нам рассмотреть сквозную модель строения вещества. Теперь эту модель фотона мы будем рассматривать с космологических позиций.

Для начала мы можем положить, что фотон может “раствориться” в “недрах” эфира (физического вакуума). Более того, необходимо признать, что если бы фотон не имел конечного времени существования, то наше небо (и не только ночное, но и дневное) не просто светилось бы, но светилось настолько ослепительно, что всякая жизнь на планете погибла бы в пламени этого свечения. Но чтобы представить себе ограниченность существования фотона, необходимо принять новые правила существования фотона, обусловленные его взаимодействием с физическим вакуумом. Однако тогда вся теория относительности (специальная и общая) становятся бесполезным итогом столетних усилий ученых, поскольку в основу этих учений было положено отсутствие эфира (физического вакуума) как такового.

Следовательно, безусловное соблюдение космологического принципа вынуждает нас более пристально всмотреться в основания современной физики. Более того, мы, видимо, должны принять, что ключ к пониманию всего сущего во Вселенной лежит в “секрете” “устройства” фотона. Только это может быть функциональной основой безусловности выполнения космологического принципа.

Теперь, когда функциональная основа признания безусловности и незыблемости космологического принципа в общих чертах найдена, можно перейти к анализу теории Большого взрыва.

Итак, сегодня наиболее принятой является космологическая модель эволюции Вселенной, основанная на концепции ее расширения из сингулярного состояния. Должен признать, что сам термин “сингулярность” в приложении к Вселенной предложен для того, чтобы как-то обойтись без модели физического вакуума. В применении к Вселенной он в данном случае означает такое исходное состояние Вселенной, когда среда, из которой затем (по мнению ученых) произошла Вселенная, была совершенно неопределенной. Для нее в таком состоянии не только невозможно дать хоть какое-то описание, но и привычные для нас законы природы в этой среде не действовали.

Если бы под сингулярным состоянием предполагалось “внутреннее” устройство физического вакуума (что было бы, наверное, естественно), то спорить с этим не имело бы смысла. Но смысл в этом термине ученые заложили иной.

Вся материя будущей Вселенной, по их мнению, находилась в “проявленном” состоянии, реально существовала “здесь”, в “этом” мире, но была по функциям совершенно не определена. Сама будущая Вселенная при этом была относительно (или сравнительно, или абсолютно) мала настолько, что говорить о ее размерах практически невозможно.

Что это может означать, попробуем в дальнейшем разобраться. Бросается в глаза то, что ученые очень осторожно все-таки высказываются об относительных размерах этой, еще “неродившейся” Вселенной. По мнению некоторых это могли бы быть размеры булавочной головки. Другие считают, что это был размер некоторой сферы диаметром в несколько десятков или сотен миллионов световых лет.

Таким образом, исходным положением в теории Большого взрыва является в некотором смысле учение о том, что все вещество Вселенной в какой-то момент времени “родилось” из некоторого неопределенного его состояния. При этом материя в привычном для нас смысле вовсе не существовала, что и обуславливало отсутствие действия законов Природы. Механизм рождения сопровождался быстрым расширением пространства (и вещества) Вселенной равномерно во все стороны. Именно по этой причине этот процесс был назван Большим взрывом.

Эта теория порождена общей теорией относительности, связывающей в единую систему массу, создающую гравитацию, искривленное этой массой пространство и зависящее от гравитации время. Именно теория относительности привела ученых к необходимости признания существования неопределенного состояния материи, получившего название “сингулярного”.

В итоге, согласно общей теории относительности, Вселенная сегодня представляет собой замкнутое в виде сферы пространство, непрерывно расширяющееся наружу от некоторого центра, положение которого определить невозможно. Эта теория полагает, что за пределы этой сферы не может выйти ни один фотон.

Представление о невозможности выхода за пределы этой расширяющейся сферы ни одного фотона скрывается в убеждении, что существует фоновое (реликтовое) излучение, являющееся термодинамическим “отпечатком” последствий взрыва. Это “фоновое” излучение на основе замкнутости пространства Вселенной было сначала предсказано, а затем и обнаружено. Таким образом, считается, что свет, излученный когда-то первоначальным раскаленным газовым облаком, до сих пор “бродит” в пространстве Вселенной. Он претерпел почему-то сильные изменения (как считают, за счет расширения Вселенной, что совершенно непонятно). И сейчас он заметен лишь в виде микроволнового фона, получившего название “реликтовое излучение”.

Реликтовое излучение было обнаружено астрофизиками фирмы “Белл телефон” Пензасом и Уилсоном, удостоенным за это “открытие” Нобелевской премии в 1978 году.

В поддержку теории Большого взрыва “работали” также и такие явления,:

- смещение перигелия эллиптической орбиты Меркурия;

- отклонение лучей света в гравитационном поле Солнца;

- отклонение и запаздывание электромагнитных волн в гравитационном поле.

Удачное совпадение объективных фактов с выводами общей теории относительности получило самую сильную поддержку в 1929 году, когда американский астроном Э. Хаббл открыл красное смещение в спектрах удаленных галактик. Особенностью этого смещения является то, что оно равномерно распределено во всей Вселенной. Тем самым, казалось бы, подтверждался космологический принцип. Однако это было большим заблуждением - реальное существование красного смещения якобы за счет расширения Вселенной как раз должно было говорить о нарушении космологического принципа.

Появление красного смещения в спектрах удаленных галактик связали с их движением. Основанием для такого толкования послужило использование объяснения факта смещения за счет действия эффекта Доплера. Данный эффект проявляется в изменении частоты сигналов (электромагнитных и звуковых) при движении источника относительно приемника сигналов. При действии эффекта Доплера частота сигналов изменяется в сторону снижения пропорционально скорости движения при удалении приемника от источника сигнала. Для электромагнитных волн это соответствует понижению частоты. Это по аналогии с обычными радиосигналами связали с “покраснением” фотона. Однако для фотона, как понятно из новой модели (см. статью “Атом и вещество. Часть 8. Торсионная модель фотона”), эффект Доплера не может быть применен, поскольку характер электромагнитных колебаний, формирующих его структуру существенно отличается от привычных для нас электромагнитных колебаний (радиоволн).

Поскольку “красное” смещение было предсказано Эйнштейном, то открытие Э. Хаббла послужило основанием считать, что галактики именно “разбегаются”. Дальнейшие математические построения привели к рождению теории Большого взрыва.

Суть рассуждений при этом был таков.

Поскольку по спектру “разбегающихся” галактик можно рассчитать скорость “разбегания”, то обратный перерасчет показывает, что некоторое, вполне конкретное время тому назад все вещество этих галактик было сосредоточено в некоторой малой локальной области. Модель “разбегания” была принята потому, что красное смещение в спектрах галактик соответствует расстоянию до конкретной галактики и увеличивается в строгой пропорции с расстоянием.

Должен заметить, что ученых само существование этой точки начальной сингулярности на гипотетическом графике, по-видимому, сильно смущает. Они все до единого уходят от конкретного ответа на вопрос о возможной величине зоны сингулярности. Мне попадались оценки сингулярной зоны от размеров булавочной головки до размеров сферы диаметром несколько миллионов световых лет. Но чудо не перестает быть чудом, если мы соотносим эту зону с современными размерами Вселенной.

Замечу между тем, что при принятии в качестве исходного положения модели физического вакуума, из которого реально рождается (в том числе и в наши дни) реальное вещество эта тайна перестала бы быть загадкой. Из микроскопической точки при определенных условиях может родиться вещество всей Вселенной и сверх того. Почему этого в таких масштабах не происходит, и никогда не происходило, мы увидим в дальнейшем.

Однако возвратимся к принятой на основе общей теории относительности модели эволюции Вселенной.

Согласно модели Большого взрыва пространство Вселенной непрерывно увеличивает свой объем, что приводит к снижению плотности вещества во Вселенной вследствие “разбегания” галактик. Это означает, что новое вещество при образовании Вселенной все-таки не возникло, но произошло лишь преобразование “сингулярного” состояния материи.

На основе модели “расширения” современная скорость “разбегания” Н определяется как a??a, где а - радиус кривизны некоторого типичного сферического пространства. Эта скорость дается наклоном касательной, проведенной в точке кривой, отмеченной как “современная эпоха”. Пересечение касательной с осью t определяет характерное время H-1, называемое “временем Хаббла”. Это время примерно в полтора раза больше времени, прошедшего с момента гипотетического начала расширения Вселенной.

Вот, собственно, и вся модель расширения Вселенной, построенная на основе открытия Хаббла и общей теории относительности Эйнштейна. Из точки, отмеченной как “современная эпоха” дальнейший анализ можно вести в обе стороны шкалы времени.

Сначала рассмотрим возможное развитие событий в сторону возрастания отсчетов шкалы времени.

Экспериментально установлено, что красное смещение в спектре света, приходящего от удаленных галактик, тем больше, чем дальше удалена от нас, наблюдателей, данная галактика.

Нарастание смещения в спектре удаленных галактик, с точки зрения общей теории относительности, говорит не только и не столько о том, что “разбегание” галактик происходит, сколько о том, что “разбегание” происходит с тем большей скоростью, чем дальше удалена от нас конкретная галактика. Такое нарастание красного смещения должно говорить, главным образом, о наличии ускорения этого “разбегания” (если использовать прежнее толкование эффекта “покраснения” фотонов на основе эффекта Доплера).

Отсюда проистекает первый парадокс красного смещения, если его толковать с позиций общей теории относительности. И парадокс этот заключается в том, что на “разбегающиеся” с ускорением галактики действовала и по-прежнему действует не просто некоторая сила, вызывающая это “разбегание”, но сила, постоянно возрастающая и поддерживающая указанное ускоренное разбегание. Это следует принять, поскольку общая и/или специальная теория относительности не отменяет и не видоизменяет первый закон Ньютона. Следовательно, мы должны как-то объяснить неиссякаемый источник этой силы галактического, вселенского масштаба. Это является важным и принципиальным обстоятельством.

Поскольку уже обнаружены квазизвездные системы (квазары), скорость которых, согласно расчетам на основе модели Хаббла (по красному смещению), составляет 285 000 км/сек (т.е. порядка 95% от скорости света), нельзя не учитывать релятивистские эффекты - сокращение линейных размеров, возрастание массы, изменение масштаба времени и так далее.

Но ни об этих возрастающих силах, ни об изменении массы удаленных галактик, ни об изменении их линейных размеров никто не поднимает вопроса. Создается впечатление, что об этих релятивистских эффектах в данном случае целесообразно не просто умолчать, но и вообще - забыть.

Если бы эти силы существовали, то следовало бы предположить, что это действуют непрерывно возрастающие силы давно прошедшего Большого взрыва. Поэтому следовало бы предположить, что Большой взрыв, когда-то начавшись, продолжает не просто существовать, но и развиваться с возрастающий силой. Это более чем фантастично. По-видимому, в этих удаленных галактиках ничего подобного не происходит. И нет таких сил, которые вызывали бы подобное движение галактик с указанным ускорением. Именно поэтому ученые используют практику умолчания.

Однако это еще не все парадоксы, вызванные объяснением красного смещения от действия механизма “разбегания” галактик.

Еще один парадокс обусловлен тем, что в процессе наблюдений за “разбегающимися” галактиками ни разу не было зафиксировано угасание (причем быстрое, мгновенное) галактик в ходе наблюдений за этими галактиками. Такое должно было бы происходить хотя бы с некоторыми из этих галактик вследствие того, что “убегающие” галактики должны были бы “уходить” за световой “горизонт”. Это соответствует условию, когда свет уже не доходит до нас, наблюдателей, вследствие наличия некоторого порога возможного наблюдения, за которым скорость убегания галактик уже больше (или, по крайней мере, равна) скорости света. Ничего подобного никогда не наблюдалось и не могло быть зафиксировано по причине отсутствия факта “разбегания” галактик. Красное смещение должно быть объяснено действием иного механизма.

Еще одно соображение, вынуждающее нас отказаться от модели Большого взрыва, связано с нарушением космологического принципа. Это нарушение неизбежно проявилось бы хотя бы в краевых областях расширяющейся Вселенной, так как именно эти области расширяются не только с гораздо большими скоростями, чем те, в которых находится наша Галактика, но и расширяются с нарастающим ускорением. Это означает, что движение галактик в этом случае совершенно неоднородно, зависит от места наблюдения. Следовательно, космологический принцип не может сохраняться в таких условиях. Но у нас нет никаких оснований, ставить под сомнение сам космологический принцип. Таким образом, и с этой точки зрения модель Большого взрыва не отвечает условиям корректности научной модели.

3. Модель теории с точки зрения квантовой модели

Все современные космологические теории также опираются на квантовую механику, которая описывает поведение атомных и субатомных частиц. Квантовая физика принципиально отличается от классической, ньютоновой физики. Классическая физика занимается описанием поведения материальных объектов, в то время как квантовая физика сосредоточена только на математическом описании процессов наблюдения и измерения. Вещественная материальная реальность исчезает из поля ее зрения. Нобелевский лауреат В. Гейзенберг говорит: «Оказалось, что мы больше не способны отделить поведение частицы от процесса наблюдения. В результате нам приходится мириться с тем, что законы природы, которые квантовая механика формулирует в математическом виде, имеют отношение не к поведению элементарных частиц как таковых, а только к нашему знанию об этих частицах». В квантовой механике наряду с объектом исследования и инструментами исследования элементом анализируемой картины становится наблюдатель.

Однако применение квантовой механики для описания Вселенной сопряжено с серьезными трудностями. По определению, все наблюдатели являются частью Вселенной. В случае Вселенной мы лишены возможности представить себе постороннего наблюдателя. В попытке сформулировать версию квантовой механики, которая не нуждается в постороннем наблюдателе, известный физик Дж. Уилер предложил модель, в соответствии с которой Вселенная постоянно расщепляется на бесконечное количество копий. Каждая параллельная Вселенная имеет своих наблюдателей, которые видят данный конкретный набор квантовых альтернатив, и все эти Вселенные реальны.

В. Вит пишет о своей реакции на эту теорию в журнале «Физикс тудэй»: «Я до сих пор помню потрясение, которое испытал, впервые ознакомившись с теорией множественности миров. Идея о том, что каждое мгновение из меня появляется 10 в 100-ой степени слегка отличающихся друг от друга двойников, и каждый из них продолжает беспрестанно делиться, пока не изменится до неузнаваемости, не укладывается в рамки здравого смысла. Вот уж поистине картина бесконечно прогрессирующей шизофрении». Это всего лишь один пример фантастических гипотез, которые приходится выдвигать ученым, чтобы согласовать теорию большого взрыва с квантовой механикой.

Однако на этом беды ученых, избравших путь материалистического редукционизма, не кончаются. Мало того, что теория относительности и квантовая механика сами по себе в применении к космологии приводят к нелепым и фантастическим моделям. Чтобы по-настоящему оценить всю шаткость надежд ученых когда-либо найти разгадку происхождения Вселенной, нужно знать, что они возлагают их главным образом на еще не созданную теорию единого поля (ТЕП), которая должна будет объединить в себе теорию относительности и квантовую механику. Они надеются, что эта теория опишет все силы, действующие во Вселенной, с помощью одного компактного математического выражения. При этом теория относительности необходима для описания общей структуры пространства-времени, а квантовая механика - для объяснения поведения субатомных частиц. К сожалению, обе теории явно противоречат друг другу.

Первым шагом на пути к математической интеграции обеих теорий является теория квантового поля. Эта теория пытается описать поведение электронов, объединяя квантовую механику и частную теорию относительности Эйнштейна. Такое объединение идей оказалось довольно успешным, но в то же время английский физик, лауреат Нобелевской премии П. Дирак, автор теории квантового поля, признался: «Похоже, что поставить эту теорию на солидную математическую основу практически невозможно». Вторым и гораздо более сложным шагом должна быть интеграция общей теории относительности и квантовой механики, но пока никто не имеет ни малейшего представления о том, как это сделать. Даже такие признанные авторитеты, как Нобелевский лауреат С. Вайнберг, признают, что только для создания математического аппарата новой теории понадобится столетие или два.

Со времен Ньютона и Галилея физики ставят перед собой задачу дать математическое описание исследуемого явления. Это математическое описание должно быть подтверждено наблюдениями и затем проверено экспериментально. Мы уже убедились, что теории большого взрыва не отвечают этим требованиям. Одним из основных требований, предъявляемых к физическим теориям, являлась простота, но, как мы видим, теории большого взрыва не отвечают и этому критерию. С каждой новой формулировкой они принимают все более и более причудливые формы. Эти теории представляют собой как раз то, что так претило Ньютону и Галилею - досужие вымыслы, призванные заполнить зияющий пробел в наших знаниях.

Таким образом, теории большого взрыва не могут претендовать на роль научного объяснения происхождения Вселенной. Однако в научно-популярных журналах, телевизионных передачах и в учебниках ученые сознательно пытаются создать впечатление, что им удалось объяснить происхождение Вселенной. Как говорится, не обманешь - не продашь. Трудно представить себе что-либо более далекое от истины.

Заключение

Некоторые ученые скептически относятся к теории большого взрыва, хотя в ее пользу говорит целый ряд научных фактов, расчетов и гипотез. В основе их аргументации лежат факты и вопросы, не нашедшие своего освещения в теории Большого взрыва:

Во-первых, теория Большого взрыва не дает ответов на следующие вопросы: Что заставило вещество Вселенной расширяться? Что происходило до начала расширения, до момента сингулярности? Конечны ли пространство и масса? Откуда они берутся?

Во-вторых, несмотря на то, что теория Большого взрыва основывается на общей теории относительности, она допускает разбегание некоторых частиц со скоростями, превышающими скорости света. Кроме этого, указывая на ограничения возможной плотности вещества (не более 10 97), выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно, все-таки, о бесконечной плотности вещества (т.к. масса бесконечна).

В-третьих, довольно абстрактно и вольно рассматриваются такие сложные вопросы, как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной.

В- четвертых, не находят веского фактического подтверждения существование таких частиц как гипероны и мезоны, которые по теоретическим выкладкам «удобно» вписываются в существующую теорию.

В-пятых, …

Перечень претензий неисчерпаем. Основное же замечание состоит в том, что все методы анализа, исследования, выдвижение теорий и гипотез осуществляется при высокой степени допущений. Такая степень допущений не позволительна для такой глобальной теории, как теория Большого взрыва.

В целом же знаний имеющихся в распоряжении человечества недостаточно для окончательного рассмотрения эволюции Вселенной, данный вопрос требует дальнейших серьезных исследований и научных открытий.

Список литературы

1. Демин В.Н. Тайны Вселенной. М., 1998.

2. Марочник Л.С., Насельский П.Д. Вселенная: вчера, сегодня, завтра («Космонавтика, астрономия», вып. № 3,1983).

...

Подобные документы

  • Модель Большого Взрыва как модель эволюционной истории Вселенной, согласно которой она возникла в бесконечно плотном состоянии и с тех пор расширяется, ее преимущества и недостатки. Расширяющаяся Вселенная, теории рождения и гибели, их сторонники.

    курсовая работа [182,1 K], добавлен 27.11.2010

  • Происхождение Вселенной - гипотезы и модели; космологические теории Большого взрыва и горячей Вселенной. Образование Солнечной системы. Биологическая, экологическая, социально-экономическая и культурно-историческая эволюции; возникновение жизни на Земле.

    контрольная работа [35,7 K], добавлен 24.09.2011

  • Предположение об однородности и изотропии свойств Вселенной на протяжении всех этапов ее эволюции. Вопрос о происхождении химических элементов. Большие проблемы Большого взрыва. Попытки решения проблемы сингулярности. Квантовая физика и реальность.

    реферат [42,3 K], добавлен 11.01.2013

  • Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.

    контрольная работа [19,8 K], добавлен 20.03.2011

  • История эволюции вселенной и первые мгновения ее жизни. Теория "Большого взрыва", анализ попыток создания математической модели Вселенной. Что такое звезды, галактики и млечный путь. Строение солнечной системы, характеристика ее планет и их спутников.

    реферат [1,3 M], добавлен 09.11.2010

  • Характеристика наиболее известных моделей Вселенной: модель де-Ситтера, Леметра, Милна, Фридмана, Эйнштейна-де Ситтера. Космологическая модель Канта. Теория Большого взрыва. Календарь Вселенной: основные эры в развитии Вселенной и их характеристика.

    презентация [96,5 K], добавлен 17.11.2011

  • Был ли большой взрыв, красное смещение, фоновое излучение, скрытая холодная темная материя, рождение и смерть звезд, размер и возраст Вселенной.

    реферат [23,8 K], добавлен 02.12.2003

  • Происхождение и эволюция Вселенной, ее дальнейшие перспективы. Креативная роль физического вакуума. Парадоксы стационарной Вселенной. Основные положения теории относительности Эйнштейна. Этапы эволюции горячей Вселенной, неоднозначность данного сценария.

    курсовая работа [62,6 K], добавлен 06.12.2010

  • История развития представлений о Вселенной. Космологические модели происхождения Вселенной. Гелиоцентрическая система Николая Коперника. Рождение современной космологии. Модели Большого взрыва и "горячей Вселенной". Принцип неопределенности Гейзенберга.

    реферат [359,2 K], добавлен 23.12.2014

  • Возникновение, развитие и гибель Вселенной. Создание модели Вселенной. Идея "большого взрыва". Открытие момента, когда Вселенная стала создавать свои первые атомы. Притяжение черной дыры и скорость убегания. Принципы и основы формирования черных дыр.

    презентация [30,3 M], добавлен 16.02.2012

  • Идеи современной физики. Основные этапы развития представлений о Вселенной. Модель Птолемея, Коперника. Эпоха Великих географических открытий. Релятивистская космология (А. Эйнштейн, А. А. Фридман). Концепция расширяющейся Вселенной, "Большого Взрыва".

    реферат [42,4 K], добавлен 07.10.2008

  • Вселенная как понятие, не имеющее строгого определения в астрономии и философии. Периодизация основных, протекавших во Вселенной процессов. Реликтовое излучение: общее понятие и свойства. Теория Большого взрыва, бесконечный цикл расширения и сжатия.

    презентация [15,7 M], добавлен 11.05.2014

  • Происхождение Земли. Модель расширяющейся Вселенной. Модель Большого Взрыва. Космическая пыль. Развитие Земли. Основные положения глобальной тектоники. Концепции современного естествознания. Динамика звездных систем.

    реферат [14,3 K], добавлен 19.02.2003

  • Главное звено в эволюции Вселенной - жизнь, разум. Самоорганизация пространства-времени в процессе эволюции Вселенной. Случайность в научной картине Вселенной. Философско-мирровоззренческие проблемы космологической эволюции.

    реферат [61,9 K], добавлен 24.04.2007

  • Описание жизненного пути и научной деятельности К.Э. Циолковского - основоположника теории ракетостроения и межпланетных сообщений, автора многочисленных работ по аэродинамике и воздухоплаванию. Циолковский, как противник теории относительности Эйнштейна.

    реферат [49,7 K], добавлен 20.03.2011

  • Теория образования Вселенной, гипотеза о цикличности ее состояния. Первые модели мира, описание процессов на разных этапах космологического расширения. Пересмотр теории ранней Вселенной. Строение Галактик и их виды. Движение звезд и туманностей.

    реферат [31,3 K], добавлен 01.12.2010

  • Образование черных дыр. Расчет идеализированного сферического коллапса. Современная теория звездной эволюции. Пространство и время. Свойства черной дыры. Общая теория относительности Эйнштейна. Поиск черных дыр. Горизонт событий и сингулярность.

    презентация [4,4 M], добавлен 12.05.2016

  • Сущность гравитации и история развития теории, ее обосновывающей. Законы движения планет (в том числе Земли) вокруг Солнца. Природа гравитационных сил, значение в развитии знаний о них теории относительности. Особенности гравитационного взаимодействия.

    реферат [21,4 K], добавлен 07.10.2009

  • Космология как наука о Вселенной, методика и закономерности изучения. Структура и составные части Вселенной, законы взаимодействия, существующие модели. Теории эволюции Вселенной, их отличительные особенности и доказательства, современные исследования.

    контрольная работа [28,5 K], добавлен 25.11.2010

  • Формирование идей о гравитационном взаимодействии во Вселенной: закон гравитации Ньютона; движение планет; теория относительности Эйнштейна, гравитационная линза. Приборы для измерения гравитации; спутниковый метод изучения гравитационного поля Земли.

    курсовая работа [3,6 M], добавлен 23.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.