Масштаби Всесвіту
Середня відстань від Сонця до самої дальньої планети в Сонячній системі, Плутона. Зорі - найпоширеніший тип небесних тіл у Всесвіті, а галактики і їх скупчення – його основні структурні одиниці. Склад і масштаби Сонячної системи. Розмір і форма Землі.
Рубрика | Астрономия и космонавтика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 26.05.2016 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Залікова робота
З теми: "Масштаби Всесвіту"
Виконала Юхта Дарина
Викладач: Кочубей В.М.
м. Київ
Сонячна система
Ще не так давно Земля представлялася людині дуже величезною. Більше трьох років знадобилося сміливим сподвижникам Магеллана, щоб зробити першу кругосвітню подорож. І пройшло не так вже багато років з тих пам'ятних днів, коли перший космонавт Гагарін облетів за 89 хвилин земну кулю на космічному кораблі "Восток". І люди звернулися до великих просторів космосу, в яких як піщинка невелика планета Земля.
Наша планета Земля - одна з планет Сонячної системи. У порівнянні з іншими планетами Сонячної системи вона розташована близько до нашої зірки, хоча і не найближча. Середня відстань від Сонця до самої дальньої планети в Сонячній системі, Плутона - в 40 разів більше середньої відстані від Сонця до Землі. За земними масштабами це досить велика величина, приблизно в 1 мільйон разів перевершує діаметр нашої планети. Можна уявити масштаби Сонячної системи.
Ми можемо більш наочно уявити відносні масштаби Сонячної системи наступним чином. Сонце зобразимо діаметром 7 см (більярдна куля). Тоді перша до Сонця планета - Меркурій буде знаходиться в цьому масштабі від Сонця на відстані 280 сантиметрів. Земля - на відстані 760 сантиметрів, а велика планета Юпітер буде видалена на 40 метрів, а найвідоміша далека планета - Плутон - на відстань близько 300 метрів. Діаметр Землі в такому масштабі дещо більше 0,5 мм, Розміри Місяця - трохи більше 0,1 мм, а діаметр орбіти Місяця близько 3 см.
Природний супутник Землі - Місяць - є найближчим до нас небесним тілом, що наша планета разом з іншими великими і малими планетами входить до складу Сонячної системи, що всі планети обертаються навколо Сонця. У свою чергу Сонце, як і всі видимі на небі зорі, входить до складу нашої зоряної системи - Галактики. Розміри Галактики настільки великі, що навіть світло, поширюючись зі швидкістю 300 000 км/с, проходить відстань від одного її краю до іншого за сто тисяч років. Таких галактик у Всесвіті безліч, але вони дуже далеко, і ми неозброєним оком можемо бачити лише одну з них - туманність Андромеди.
Зорі є найпоширенішим типом небесних тіл у Всесвіті, а галактики і їх скупчення - його основними структурними одиницями. Простір між зорями в галактиках і між галактиками заповнений дуже розрідженою матерією у вигляді газу, пилу, елементарних частинок, електромагнітного випромінювання, гравітаційних та магнітних полів.
Вивчаючи закони руху, будову, походження й розвиток небес них тіл та їх систем, астрономія дає нам уявлення про будову і розвиток Всесвіту в цілому.
Проникнути в глибини Всесвіту, вивчити фізичну природу небесних тіл можна за допомогою телескопів та інших приладів, що їх має у своєму розпорядженні сучасна астрономія завдяки успіхам, досягнутим у різних галузях науки і техніки.
Склад і масштаби сонячної системи.
Сонячну систему становлять Сонце і планети з їхніми супутниками, зорі знаходяться незрівнянно далі від нас, ніж планети. Найвіддаленіша від нас з відомих планет - Плутон знаходиться від Землі майже в 40 раз далі, ніж Сон це. Та навіть найближча до Сонця зоря віддалена від нас ще в 7000 раз більше. Цю величезну різницю відстаней до планет і зірок слід чітко усвідомити.
Дев'ять великих планет обертаються навколо Сонця по еліпсах (що мало відрізняються від кіл) майже в одній площині. У порядку віддалення від Сонця - це Меркурій, Венера, Земля, Марс, Юпітер, Сатурн, Уран, Нептун, Плутон. Крім них, у Сонячній системі безліч малих планет (астероїдів), більшість з яких рухається між орбітами Марса і Юпітера. Навколо Сонця обертаються також комети - невеликі тіла, оточені обширною оболонкою з розрідженого газу. Більшість з них мають еліптичні орбіти, що виходять за орбіту Плутона. Крім того, навколо Сонця обертається по еліпсах безліч метеорних тіл розміром від піщинки до дрібного астероїда. Разом з астероїдами і кометами вони належать до малих тіл Сонячної системи. Простір між планетами заповнений дуже розрідженим газом і космічним пилом. Його пронизують електромагнітні випромінювання; він є носієм магнітних і гравітаційних полів. планета плутон сонце
Сонце в 109 раз більше від Землі за діаметром і приблизно в 333 000 раз масивніше від неї. Маса всіх планет становить лише близько 0,1 % маси Сонця, тому воно силою свого тяжіння скеровує рух усіх членів Сонячної системи.
Розмір і форма Землі.
На фотознімках, зроблених з космосу, Земля має вигляд кулі, освітленої Сонцем, і показує такі самі фази, як Місяць.
Точну відповідь про форму й розмір Землі дають градусні вимірювання, тобто вимірювання в кілометрах довжини дуги 1 ° у різних місцях на поверхні Землі. Цей спосіб ще в III ст. до н. е. застосовував грецький учений Ератосфен. Тепер цей спосіб застосовують у геодезії - науці про форму Землі та про вимірювання на Землі з урахуванням її кривизни.
На рівній місцевості вибирають два пункти, що лежать на одному меридіані, І визначають довжину дуги між ними в градусах і кілометрах. Потім обчислюють, скільком кілометрам відповідає довжина дуги 1°. Зрозуміло, що довжина дуги меридіана між обраними точками в градусах дорівнює різниці географічних широт цих точок. Якщо довжина цієї дуги, виміряна в кілометрах, то при кулястості Землі 1° дуги відповідатиме довжина в кілометрах, тоді довжина кола земного меридіана Ј., виражена в кілометрах, дорівнює 360°. Поділивши її на 2л, дістанемо радіус Землі.
Галактика.
XVII століття найважливішою метою астрономів стало вивчення Чумацького Шляху - цього гігантського збору зірок, які Галілей побачив в свій телескоп. Зусилля багатьох поколінь астрономів - спостерігачів були націлені на те, щоб взнати, який повне число зірок Чумацького Шляху, визначити його дійсну форму і межі, оцінити розміри. Лише в XIX столітті вдалося зрозуміти, що це єдина система, що містить в собі всі видимі зірки. На рівних правах зі всіма входить в цю систему і наше Сонце, а з ним Земля і планети. Причому розташовуються вони далеко не в її центрі, а на її околиці.
Було потрібно ще багато десятиріч ретельних спостережень і глибоких роздумів, перш ніж перед астрономами розкрилася у всій повноті будова Галактики. Так стали називати зоряну систему, яку ми бачимо, - звичайно, зсередини - як смугу Чумацького Шляху. (Слово "галактика" утворено від новогрецького "галактикос", що значить "молочний".)
Виявилося, що Галактика має досить правильну будову і форму, не дивлячись на видиму клочковатість Чумацького Шляху, на безладність, з якою, як нам здається, розсіяні зірки по небу. Вона складається з диска, гало і корони. Як видно з схематичного малюнка, диск є як би двома складеними краями тарілками. Він утворений зірками, які усередині цього об'єму рухаються по майже кругових орбітах навкруги центру Галактики.
Діаметр диска зміряний - він складає приблизно 100 тисяч світлових літ. Це означає, що світлу буде потрібно сто тисяч літ, щоб перетнути диск з кінця в кінець по діаметру. Ось наскільки величезна Галактика! А число зірок в диску - приблизно сто мільярдів.
В гало міститься порівнянне з цим число зірок. (Слово "гало" означає "круглий".) Вони заповнюють злегка сплюснутий сферичний об'єм і рухаються не по кругових, а по сильно витягнутих орбітах. Площини цих орбіт проходять через центр Галактики. По різних напрямах вони розподілені більш або менш рівномірно.
Диск і оточуюче його гало занурені в корону. Якщо радіуси диска і гало порівнянні між собою по величині, то радіус корони в п'ять, а може бути, і вдесятеро більше. Чому "може бути"? Так тому що вона невидима - з неї не виходить ніякого світла. Як же дізналися тоді про неї астрономи?
Всі тіла в природі створюють тяжіння і випробовують його дію. Про це говорить Закон всесвітнього тяжіння, відкритий Ньютоном. Ось і про корону взнали не по світлу, а по створюваному нею тяжінню. Воно діє на видимі зірки, на випромінюючі світло хмари газу. Спостерігаючи за рухом цих тіл, астрономи і помітили: на них окрім диска і гало діє щось ще.
Детальне вивчення цього "щось" і дозволило врешті-решт знайти корону, яка створює додаткове тяжіння. Вона виявилася дуже масивною - у декілька разів більше маси всіх зірок, що входять в диск і гало.
Такі відомості, отримані радянським астрономом Я. Ейнасто і його співробітниками в Тартуській обсерваторії.
Звичайно, вивчати невидиму корону дуже важко. Через це і не дуже точні поки оцінки її розмірів і маси. Але її головна загадка в іншому: ми не знаємо, з чого вона полягає. Ми не знаємо, чи є в ній зірки, хай навіть і якісь незвичайні, зовсім не випромінюючі світло.
Зараз багато хто припускає, що її маса складається зовсім не із зірок, а з найдрібніших елементарних частинок - нейтрино. Ці частинки відомі фізикам вже давно, але і самі по собі вони теж в значній мірі залишаються загадковими. Невідомо про них, можна сказати, найголовніше: чи є у них маса спокою, тобто така маса, якої частинка володіє в стані, коли вона не рухається, а стоїть на місці. Більшість елементарних частинок таку масу має.
Це, наприклад, електрон, протон, нейтрон, з яких складаються всі атоми. А ось у фотона, кванта світла, її ні. Фотони існують лише в русі. Нейтрино могли б служити матеріалом для корони, але лише в тому випадку, якщо у них є маса спокою.
Легко уявити собі, з яким нетерпінням чекають астрономи звісток з фізичних лабораторій, де ставляться зараз спеціальні експерименти, щоб з'ясувати, чи є у нейтрино маса спокою чи ні. Можливо, саме фізики і вирішать загадку невидимої корони.
Зоряні світи.
До початку нашого століття межі розвіданого Всесвіту розсувалися настільки, що включили Галактику. Багато хто, якщо не всі, думали тоді, що ця величезна зоряна система і є весь Всесвіт в цілому.
Але в 20-і роки були побудовані нові великі телескопи, і перед астрономами відкрилися абсолютно несподівані горизонти. Виявилося, що за межами Галактики мир не закінчується. Мільярди зоряних систем, галактик, схожих на нашу і відмінних від неї, розсіяні тут і там по просторах Всесвіту.
Фотографії галактик, зроблені за допомогою найбільших телескопів, вражають красою і різноманітністю форм: це і могутні вихори зоряних хмар, і правильні кулі, а інші зоряні системи взагалі не знаходять ніяких певних форм.
Туманність Котяче око.
Всі ці типи галактик - спіральні, еліптичні, неправильні, - назви, що отримали, по своєму вигляду на фотографіях, відкриті американським астрономом Е. Хабблом в 20-30-і роки нашого століття.
Якби ми могли побачити нашу Галактику здалеку, то вона з'явилася б перед нами зовсім не такій, як на схематичному малюнку, по якому ми знайомилися з її будовою. Ми не побачили б ні диска, ні гало, ні, природно, корони, яка і взагалі-то невидима. З великих відстаней би були видні лише найяскравіші зірки. А всі вони, як з'ясувалося, зібрані в широкі смуги, які дугами виходять з центральної області Галактики. Найяскравіші зірки утворюють її спіральний узор. Тільки цей узор і б був помітний здалеку. Наша Галактика на знімку, зробленому астрономом з якогось зоряного світу, виглядала б дуже схожою на туманність Андромеди.
Дослідження останніх років показали, що багато великих спіральних галактик володіють - як і наша Галактика - протяжними і масивними невидимими коронами. Це дуже важливо: адже якщо так, то, значить, і взагалі мало не вся маса Всесвіту (або, в усякому разі, основна її частина) - це загадкова, невидима, але тяжіюча "прихована маса".
Спіральна галактика.
Багато хто, а може бути, і майже всі галактики зібрані в різні колективи, які називають групами, скупченнями і над скупченнями, дивлячись по тому, скільки їх там. До групи може входити всього три або чотири галактики, а в над скупчення - до тисячі або навіть декілька десятків тисяч. Наша Галактика, туманність Андромеди і ще більше тисячі таких же об'єктів входять в так зване місцеве над скупчення. Воно не має чітко обкресленої форми.
Приблизно так само влаштовані і інші над скупчення, які лежать далеко від нас, але досить виразно помітні в сучасні крупні телескопи.
Зоряне скупчення R136.
До недавнього часу астрономи вважали, що ці об'єкти - найкрупніші утворення у Всесвіті і що які-небудь ще більші системи відсутні. Але з'ясувалося, що це не так. Кілька років тому астрономи склали дивну карту Всесвіту. На ній кожна галактика представлена всього лише крапкою. На перший погляд вони розсіяні на карті хаотично. Якщо ж придивитися уважно, то можна знайти групи, скупчення і над скупчення, які виглядають тут ланцюжками крапок. Але що примітніше всього, карта дозволяє знайти, що деякі такі ланцюжки з'єднуються і перетинаються, утворюючи якийсь сітчастий або комірчастий узор, що нагадує мережива або, можливо, бджолині стільники з розмірами осередків в 100-300 мільйонів світлових літ.
Чи покривають такі "сітки" весь Всесвіт, ще належить з'ясувати. Але декілька окремих осередків, обкреслених над скупченнями, вдалося детально вивчити. Усередині них галактик майже немає, всі вони зібрані в "стінки".
Осередок - ця попередня, робоча назва для найкрупнішої освіти у Всесвіті. Більш крупних систем в природі немає. Це показує карта Всесвіту. Астрономія досягла нарешті завершення однієї з най найвеличніших своїх задач: вся послідовність, або, як ще говорять, ієрархія, астрономічних систем тепер цілком відома. Та все ж...
Всесвіт.
Більше всього на світі - сам Всесвіт, що охоплює і включає всі планети, зірки, галактики, скупчення, над скупчення і осередки. Дальність дії сучасних телескопів досягає декількох мільярдів світлових років.
Планети, зірки, галактики вражають нас дивною різноманітністю своїх властивостей, складністю будови. А як влаштований весь Всесвіт в цілому?
Його головна властивість - однорідність. Про це можна сказати і точніше. Уявимо собі, що ми в думках виділили у Всесвіті дуже великий кубічний об'єм, з ребром в 500 мільйонів світлових літ. Підрахуємо, скільки в ньому галактик. Зробимо такі ж підрахунки для інших, але таких же гігантських об'ємів, розташованих в різних частинах Всесвіту. Якщо все це виконати і порівняти результати, то виявиться, що в кожному з них, де б їх ні брати, міститься однакове число галактик. Те ж саме буде і при підрахунку скупчень або навіть осередків.
Всесвіт представ перед нами усюди однаковий - "суцільний" і однорідний. Простішого устрою і не придумати. Потрібно сказати, що про це люди вже давно підозрювали. Указуючи з міркувань максимальної простоти пристрою на загальну однорідність світу, чудовий мислитель Паскаль (1623-1662 рр.) говорив, що мир - це круг, центр якого скрізь, а коло ніде. Так за допомогою наочного геометричного образу він затверджував однорідність світу.
В однорідному світі всі "місця" рівноправні і будь-яке з них може претендувати на те, що воно - центр світу. А якщо так, то, значить, ніякого центру світу зовсім не існує.
У Всесвіту є і ще одна найважливіша властивість, але про нього ніколи навіть і не здогадувалися. Всесвіт знаходитися в русі - він розширяється. Відстань між скупченнями і над скупченнями постійно зростає. Вони як би розбігаються один від одного. А мережа комірчастої структури розтягується.
У всі часи люди вважали за краще рахувати Всесвіт вічної і незмінної. Ця точка зору панувала аж до 20-х років нашого століття. У той час вважалося, що вона обмежена розмірами нашої Галактики. Шляхи можуть народжуватися і вмирати, Галактика все одно залишається все тієї ж, як незмінним залишається ліс, в якому покоління за поколінням зміняються дерева.
Справжній переворот в науці про Всесвіт призвели в 1922 - 1924 роках роботи ленінградського математика і фізика А. Фрідмана. Спираючись на тільки що створену тоді А. Ейнштейном загальну теорію відносності, він математично довів, що мир - це не щось застигле і незмінне. Як єдине ціле він живе своїм динамічним життям, змінюється в часі, розширяючись або стискаючись по строго певних законах.
Фрідман відкрив рухливість зоряного Всесвіту. Це був теоретичний прогноз, а вибір між розширенням і стисненням потрібно зробити на підставі астрономічних спостережень. Такі спостереження в 1928 - 1929 роках вдалося виконати Хабблу, відомому вже нам досліднику галактик.
Він знайшов, що далекі галактики і цілі їх колективи рухаються, віддаляючись від нас у всі сторони. Але так і повинне виглядати, відповідно до прогнозів Фрідмана, загальне розширення Всесвіту.
Звичайно, це не означає, що галактики розбігаються саме від нас. Інакше ми повернулися б до старих переконань, до коперникової картини світу із Землею в центрі. Насправді загальне розширення Всесвіту відбувається так, що всі вони віддаляються один від одного, і з будь-якого місця картина цього розгону виглядає так, як ми бачимо її з нашої планети.
Якщо Всесвіт розширяється, то, значить, у далекому минулому скупчення ближче один до одного. Більш того: з теорії Фрідмана слідує, що п'ятнадцять - двадцять мільярдів років тому ні зірок, ні галактик ще не було і вся речовина була перемішана і стисло до колосальної густини. Ця речовина була тоді і немислимо гарячимо. З такого особливого стану і почалося загальне розширення, яке привело з часом до утворення Всесвіту, якого ми бачимо і знаємо її зараз.
Загальні уявлення про будову Всесвіту складалися протягом всієї історії астрономії. Проте тільки в нашому столітті змогла з'явитися сучасна наука про будову і еволюцію Вселеної - космологія.
Вивчення історії розвитку Всесвіту і його великомасштабної структури.
Вкрай важкі завдання - вивчення історії розвитку Всесвіту і проблема виникнення її великомасштабної структури - одночасно є вкрай важливими для всієї астрофізики в цілому: тільки їх вирішення може показати вірність розуміння процесів, що відбуваються в окремих об'єктах та їх об'єднаннях на даний момент.
Складність полягає в тому, що необхідно спостерігати об'єкти, що народилися в одну і ту ж епоху, але різного віку. Таким чином, з одного боку виникає потреба спостерігати віддалені об'єкти, ослаблені як відстанню, так і тим, що їх спектр разом з вкрай важливою лінією Lб через розширення Всесвіту зміщується в інфрачервоний діапазон, спостереження в якому пов'язані з великими технічними труднощами. З іншого боку в найближчих околицях необхідно спостерігати дуже старі об'єкти, пік світності яких вже минув і зараз вони, з різних причин втративши основне джерело енергії, можуть світити лише завдяки мізерним старим запасам. Іншими словами доводиться спостерігати слабкі об'єкти. У той же час необхідна масовість спостережень, щоб виключити ефекти селекції.
З технічної точки зору рішення першої проблеми - будівництво великих телескопів. Проте у великого телескопу не може бути великого поля і, отже, він не може забезпечити масовість спостережень. І навпаки: телескоп з широким полем не може забезпечити якісні спостереження слабких об'єктів. Але є й інший шлях, більш творчий: застосування різних методик аналізу вже наявних даних, отриманих з використанням наявних ресурсів. Зазвичай їх застосовують у зв'язці: за допомогою другого способу намічають проблеми і завдання, які потім вирішуються на якісно новому рівні з допомогою найкращих космічних і наземних телескопів.
Додаткову складність вносить і те, що разом із Всесвітом еволюціонують і об'єкти, за допомогою яких ведуться дослідження. А значить, може скластися ситуація, коли залежності, побудовані на основі сучасного стану об'єктів, перестануть бути адекватними. Щоб уникнути подібного, крім самих об'єктів необхідно ретельно дослідити і метод, за допомогою якого ми хочемо вивчати Всесвіт.
Типовими об'єктами досліджень в космології є:
* Галактики;
* Квазари;
* Зоряні скупчення;
* Гамма-сплески;
* Реліктове випромінювання;
* Об'єкти, що не про еволюціонували або про еволюціонували слабо (сюди відносять як галактики, так і зорі. Характерною рисою даних об'єктів є їх низька металічність. Вони в основному складаються з тієї речовини, з якої складалися найперші зорі і галактики).
Загальні особливості та підходи.
Спостерігати космологічні об'єкти можна різними способами, деякі підходять тільки для одного типу об'єктів, деякі застосовні до всіх. Ті, що характерні для всіх, частково прийшли з зоряної астрономії (такі як метод зоряних підрахунків або порівняння різних ділянок спектра), частково винайдені тільки для потреб космології.
Загальні проблеми найбільш яскраво проявляються в галактиках. Класично, серед них виділяють чотири типи: еліптичні, лінзоподібні, спіральні та неправильні. Ці чотири типи багато в чому схожі, але також багато в чому різні. Факторів, що впливають на еволюцію властивостей окремо взятої галактики - величезна кількість. Все це відбивається на її спектральних і фотометричних характеристиках, причому часові масштаби еволюційних процесів - мільйони років. У результаті спостереження далеких об'єктів не можна співвіднести зі спостереженнями близьких галактик і немає простих механізмів екстраполяції того стану до нинішнього.
Лайман-альфа ліс.
У спектрах деяких далеких об'єктів можна спостерігати велике скупчення сильних абсорбційних ліній на малій ділянці спектра (т. зв. ліс ліній). Ці лінії ототожнюються як лінії серії Лаймана, але мають різні червоні зміщення.
Хмари нейтрального водню ефективно поглинають світло на довжинах хвиль від Lб(1216 Е) до межі Лаймана. Випромінювання, спочатку короткохвильове, на шляху до нас через розширення Всесвіту поглинається там, де його довжина хвилі зрівнюється з цим "лісом". Перетин взаємодії дуже великий і розрахунки показують, що навіть малої частки нейтрального водню достатньо для створення великого поглинання в безперервному спектрі.
При великій кількості хмар нейтрального водню на шляху світла на досить широкому інтервалі спектру утворюється провал. Довгохвильова межа цього інтервалу обумовлена Lб, а короткохвильова залежить від найближчого червоного зсуву, ближче якого середовище іонізоване і нейтрального водню мало. Подібний ефект носить назви ефекту Гана-Петерсона.
Ефект спостерігається в квазарах з червоним зсувом z>6. Звідси робиться висновок, що епоха іонізації міжгалактичного газу почалася з z?6.
Гравітаційне лінзування.
До ефектів, спостереження яких можливі також для будь-якого об'єкта (навіть не важливо, щоб він був далеким), необхідно віднести і ефект гравітаційного лінзування. У попередньому розділі було зазначено, що за допомогою гравітаційного лінзування будують шкалу відстаней. Це - варіант так званого сильного лінзування, коли кутове розділення зображень джерела можна безпосередньо спостерігати. Однак існує ще й слабке лінзування, з допомогою якого можна дослідити потенціал досліджуваного об'єкта. Так, з його допомогою було встановлено, що скупчення галактик розміром від 10 до 100 Мпк є гравітаційно пов'язаними, тим самим будучи найбільшими стабільними системами у Всесвіті. Також з'ясувалося, що забезпечує цю стабільність маса, що проявляє себе тільки в гравітаційній взаємодії - темна маса або, як її називають в космології, темна матерія.
Порівняння різних ділянок спектру.
До стандартних підходів, що дозволяють прояснити природу будь-якого об'єкта, можна віднести порівняння як спектрів різних, але приналежних до одного класу об'єктів, так і різних частин одного і того ж спектру.
Так, комбінуючи обидва варіанти: спочатку порівнюючи спектри двох різних квазарів, а потім порівнюючи окремі ділянки спектру одного і того ж квазару, виявили сильний провал на одній з ультрафіолетових ділянок спектру. Настільки сильний провал міг бути викликаний тільки великою концентрацією пилу, що поглинав випромінювання. Раніше пил намагалися виявити за спектральними лініями, але виділити конкретні серії ліній, що доводили б, що це саме пил, а не домішка важких елементів в газі, не вдавалося. Подальший розвиток цього методу дозволив оцінити темп зоре утворення на z від ~2 до ~6
Метод зоряних черепків.
Дані про великомасштабну структуру 2df-огляду.
Першим способом вивчення великомасштабної структури Всесвіту, що досі не втратив своєї актуальності, є так званий метод "зоряних черепків Гершеля". Сутність його полягає в підрахунку кількості об'єктів у різних напрямках. Метод винайдено Вільямом Гершелем наприкінці XVIII сторіччя, коли про існування далеких космічних об'єктів лише здогадувалися, і єдиними об'єктами, доступними для спостережень, були зорі. Сьогодні, природно, рахують не зорі, а позагалактичні об'єкти (квазари, галактики), і крім розподілу за напрямками будують розподіл за червоним зсувом.
Найбільшими джерелами даних про позагалактичні об'єкти є окремі спостереження конкретних об'єктів, огляди типу SDSS, APM, 2df, а також компілятивні бази даних, такі як Ned і Hyperleda. Наприклад, в огляді 2df охоплення неба становило ~ 5%, середнє z - 0,11 (~ 500 Мпк), кількість об'єктів - ~ 220 000.
На наведеному малюнку можна бачити, що галактики розташовано в просторі неоднорідно на малих масштабах. Після детальнішого розгляду виявляється, що просторова структура розподілу галактик - чарункова: вузькі стінки з шириною, яка визначається величиною скупчень і над скупчень галактик, а всередині них - порожнини, так звані войди.
Домінує думка, що після переходу до масштабів у сотні мегапарсек, розподіл видимої речовини стає однорідним. Проте однозначної відповіді на це питання поки що не знайдено: застосовуючи різні методики деякі дослідники приходять до висновків про неоднорідність розподілу галактик і в найбільших досліджуваних масштабах. Разом з тим, неоднорідності в розподілі галактик не скасовують факту високої однорідності Всесвіту в початковому стані, що виведено з високої міри ізотропності реліктового випромінювання.
Водночас встановлено, що розподіл кількості галактик за червоним зсувом має складний характер. Залежність для різних об'єктів різна. Однак для всіх них характерна наявність кількох локальних максимумів. З чим це пов'язано - поки не зовсім зрозуміло.
До останнього часу не було ясності в тому, як еволюціонує великомасштабна структура Всесвіту. Проте роботи останнього часу доводять, що першими сформувалися великі галактики, і лише потім - дрібніші (так званий ефект зменшення розміру).
Особливості спостережень квазарів
Квазар.
Унікальна властивість квазарів - великі концентрації газу в області випромінювання. За сучасними уявленнями, акреція цього газу на чорну діру і забезпечує настільки високу світність об'єктів. Висока концентрація речовини означає і високу концентрацію важких елементів, а значить і помітніші абсорбційні лінії. Так, в спектрі одного з лінзованих квазарів були виявлені лінії води.
Унікальною перевагою є і висока світність в радіодіапазоні, на її фоні поглинання частини випромінювання холодним газом помітніше. При цьому газ може належати як рідній галактиці квазара, так і випадковій хмарі нейтрального водню в міжгалактичному середовищі, або галактиці, що випадково потрапила на промінь зору (при цьому нерідкі випадки, коли таку галактику не видно - вона занадто тьмяна для наших телескопів). Вивчення міжзоряної речовини в галактиках даним методом називається "вивченням на просвіт", наприклад, подібним чином була виявлена перша галактика із над сонячною металічністю.
Також важливим результатом застосування даного методу, правда не в радіо, а в оптичному діапазоні, є вимірювання первинної наявності дейтерію. Сучасне значення наявності дейтерію, отримане за таким спостереженнями, становить.
За допомогою квазарів отримані унікальні дані про температуру реліктового фону на z?1,8 і на z=2,4. У першому випадку досліджувалися лінії надтонкої структури нейтрального вуглецю, для яких кванти з T?7,5°К (передбачувана температура реліктового фону на той момент) відіграють роль помпування, забезпечуючи інверсну заселеність енергетичних рівнів. У другому випадку виявили лінії молекулярного водню H2, дейтериду водню HD, а також молекули оксиду вуглецю СО, за інтенсивністю спектра якої якраз і виміряли температуру реліктового фону, вона з хорошою точністю збіглася з очікуваним значенням.
За іронією долі, головна перевага квазарів - це їхній же основний недолік: неможливо відокремити лінії акреційного газу від ліній міжзоряної речовини батьківської галактики.
Особливості спостережень гамма-сплесків
Популярна модель походження гамма-сплеску.
Гамма-сплески - унікальне явище, і загальновизнаної думки щодо його природи не існує. Однак переважна більшість вчених погоджується з твердженням, що предком гамма-сплесків є об'єкти зоряної маси.
Унікальні можливості застосування гамма-сплесків для вивчення структури Всесвіту полягають у наступному:
· Оскільки предком гамма-сплеску є об'єкт зоряної маси, то і простежити гамма-сплески можна на більшу відстань, ніж квазари, як через більш раннє формування самого предка, так і через малу масу чорної діри квазара, а значить і меншу його світність на той період часу.
· Спектр гамма-сплеску - неперервний, тобто не містить спектральних ліній. Це означає, що найвіддаленіші лінії поглинання в спектрі гамма-сплеску - це лінії міжзоряного середовища батьківської галактики. З аналізу цих спектральних ліній можна отримати інформацію про температуру міжзоряного середовища, його металічність, ступінь іонізації і кінематику.
· Гамма-сплески дають ледь не ідеальний спосіб вивчати міжгалактичне середовище до епохи реіонізаціі, тому що їх вплив на міжгалактичне середовище на 10 порядків менший, ніж квазарів, через малий час життя джерела.
· Якщо післясвітіння гамма-сплеску в радіодіапазоні досить сильне, то за лінією 21 см можна судити про стан різних структур нейтрального водню в міжгалактичному середовищі поблизу від галактики-предка гамма-сплеску.
· Детальне вивчення процесів формування зірок на ранніх етапах розвитку Всесвіту за допомогою гамма-сплесків сильно залежить від обраної моделі природи явища, але якщо набрати достатню статистику і побудувати розподіл характеристик гамма-сплесків в залежності від червоного зсуву, то, залишаючись в рамках досить загальних положень, можна оцінити темп зореутворення і функцію мас зірок, що народжуються.
· Якщо прийняти припущення, що гамма-сплеск - це вибух наднової зорі, то можна вивчати історію збагачення Всесвіту важкими металами.
· Гамма-сплеск може слугувати вказівником на дуже слабку карликову галактику, яку важко виявити при "масовому" спостереженні неба.
Основною проблемою гамма-сплесків є їх спорадичність і стислість часу, коли післясвітіння сплеску можна спостерігати спектроскопічно.
Теоретична доля Всесвіту.
Всесвіт і в наші дні продовжує свою еволюцію, оскільки еволюціонують його частини. Час цієї еволюції для кожного типу об'єктів відрізняється більше, ніж на порядок. І коли життя об'єктів одного типу закінчується, то в інших усе лише починається. Це дозволяє розбити еволюцію Всесвіту на епохи. Однак кінцевий вид еволюційного ланцюга залежить від швидкості і прискорення розширення: при рівномірній або майже рівномірній швидкості розширення будуть пройдені всі етапи еволюції і будуть вичерпані всі запаси енергії. Цей варіант розвитку називається тепловою смертю.
Якщо швидкість буде все наростати, то, починаючи з певного моменту, сила, що розширює Всесвіт, спочатку перевищить гравітаційні сили, які утримують галактики в скупченнях. За ними розпадуться галактики і зоряні скупчення. І, нарешті, останніми розпадуться найбільш тісно пов'язані зоряні системи. Через деякий час, електромагнітні сили не зможуть утримувати від розпаду планети і дрібніші об'єкти. Світ знову буде існувати у вигляді окремих атомів. На наступному етапі розпадуться і окремі атоми. Що буде після цього, точно сказати неможливо: на цьому етапі перестає працювати сучасна фізика.
Сценарій, що описаний вище - це сценарій Великого розриву. Існує і протилежний сценарій - Велике стиснення. Якщо розширення Всесвіту сповільниться, то в майбутньому воно припиниться і почнеться стиснення. Еволюція і вигляд Всесвіту будуть визначатися космологічними епохами до того моменту, поки її радіус не стане у п'ять разів менший від сучасного. Тоді всі скупчення у Всесвіті утворюють єдине мегаскупчення, проте галактики не втратять свою індивідуальність: в них все також буде відбуватися народження зірок, будуть спалахувати наднові і, можливо, буде розвиватися біологічне життя. Всьому цьому прийде кінець, коли Всесвіт скоротиться ще в 20 раз і стане у 100 разів меншим, ніж зараз; в той момент Всесвіт буде являти собою одну величезну галактику.
Температура реліктового фону досягне 274К і на планетах земного типу почне танути лід. Подальше стиснення призведе до того, що випромінювання реліктового фону затьмарить навіть центральне світило планетарної системи, випалюючи на планетах останні паростки життя. А незабаром після цього випаруються або будуть розірвані на шматки самі зорі і планети. Стан Всесвіту буде схожим на те, що було в перші моменти його зародження. Подальші події будуть нагадувати ті, що відбувалися на початку, але промотуючись в зворотному порядку: атоми розпадаються на атомні ядра й електрони, починає домінувати випромінювання, потім починають розпадатися атомні ядра на протони і нейтрони, потім розпадаються й самі протони і нейтрони на окремі кварки, відбувається велике об'єднання. У цей момент, як і в момент Великого вибуху, перестають працювати відомі нам закони фізики і подальшу долю Всесвіту передбачити неможливо.
Висновок
Ми знаємо будову Всесвіту у величезному об'ємі простору, для перетину якого світлу потрібні мільярди років. Але допитлива думка людини прагне проникнути далі.
Що лежить за межами спостережуваної області світу?
Чи нескінченний Всесвіт за об'ємом? І її розширення - чому воно почалося і чи буде воно завжди продовжуватися в майбутньому?
А яким є походження "прихованої маси"?
І нарешті, як зародилося розумне життя у Всесвіті? Чи є воно ще де-небудь окрім нашої планети?
Остаточні і повні відповіді на ці питання поки відсутні.
Всесвіт невичерпний. Невичерпне і жадання знання, що примушує людей задавати все нові і нові питання про світ і настирливо шукати відповіді на них.
Література
1. Клімишин І. А.; "Астрономія наших днів"; М.; "Наука", 1976 р.
2. Коптев Ю. І., Нікітін С. А.; "Космос" Збірка; М.; 1987 р.
3. Томілін А. Н.; "Небо Землі. Нариси по історії астрономії"; Л., 1974 р.
4. Ерпілов Н. П.; "Енциклопедичний словник юного астронома"; М.: Педагогіка, 1986 р.
5. Сайт про сучасну космологію (http://www.modcos.com/).
Размещено на Allbest.ru
...Подобные документы
Уявлення про систему світу, розташування в просторі і русі Землі, Сонця, планет, зірок і інших небесних тіл. Спостереження переміщення Сонця серед зірок. Перша геліоцентрична система, обертання небесних сфер. Вивчення будови Галактики, Чумацького Шляху.
реферат [41,5 K], добавлен 09.09.2009Юпітер – найбільша планета Сонячної системи, його дослідження. Швидкість обертання та супутники Сатурна. Відкриття німецьким астрономом Й. Галле Нептуна. Температура поверхні та орбіта Плутона. Астероїди, боліди, комети та метеорити, їх рух і відмінності.
презентация [302,4 K], добавлен 12.11.2012Дослідження методів вивчення знань з астрономії. Наша Сонячна система, її склад, характеристика планет (Земля, Луна, Сатурн, Марс). Малі тіла, комети, супутники планет та зорі. Наукові гіпотези про походження Всесвіту та основні етапи його розвитку.
презентация [756,4 K], добавлен 07.04.2011Місце Марса в Сонячній системі, його будова та астрономічні характеристики. Основні супутники. Специфіка атмосфери і клімат планети. Рельєф поверхні і переважний ландшафт. Стан і кількість води. Перші марсоходи. Особливості гори Олімп і каньйонів.
презентация [6,4 M], добавлен 02.11.2014Розмір, маса та елементний склад планет-гігантів: Юпітера, Сатурна, Урана та Нептуна. Газоподібна атмосфера планет, її перехід в ядро з рідкого та твердого металічного водню. Обертання навколо планет-гігантів супутників. Історія відкриття планет-гігантів.
презентация [1,5 M], добавлен 22.03.2012Життя людей на планеті Земля. Можливі причини руйнування Землі та необхідності її залишити. Чорні діри як монстри Всесвіту, загроза від астероїдів. Місця для колонізації, пристосування до життя на інших планетах Сонячної системи або у відкритому космосі.
научная работа [20,3 K], добавлен 11.11.2010Нептун - це передостання планета в сонячній системі. Її орбіта перетинається з орбітою Плутона в деяких місцях. Комета Галилея ще перетинає її орбіту, у відмінності від Плутона. Її екваторіальний діаметр такої ж, як і в Урана.
доклад [6,4 K], добавлен 17.02.2004Планети, які обертаються навколо Сонця: Меркурій, Венера, Земля, Марс, Юпітер, Сатурн, Уран, Нептун, Плутон. Ознаки мікроорганізмів у марсіанських породах, пошуки життя на цій планеті. Супутники, відкрити Г. Галілеєм: Європа, Каллісто, Ганімед, Метіс.
презентация [2,2 M], добавлен 10.10.2013Дослідження вибухових процесів виділення енергії в атмосфері Сонця. Вивчення швидких змін в магнітному полі Землі, що виникають у періоди підвищеної сонячної активності. Аналіз впливу спалахів на Сонці та магнітних бур на здоров'я і самопочуття людей.
презентация [1,3 M], добавлен 28.10.2012Існування у Всесвіті зірок - велетенських розжарених та самосвітних небесних тіл, у надрах яких відбуваються термоядерні реакції. Класифікація зірок за характеристиками, початок їх формування та склад. Вплив сонячного випромінювання на нашу планету.
презентация [2,3 M], добавлен 12.10.2011Релігійна теорія виникнення Сонячної системи. Велика Червона пляма. Супутники Марса, Юпітера, Сатурна, Урана. Походження, минуле і майбутнє Місяця. Постаккреційна еволюція: дія припливів і резонансів. Карликові планети та інші тіла Сонячної системи.
курсовая работа [50,5 K], добавлен 24.03.2015Геліоцентрична концепція Сонячної системи як групи астрономічних тіл, що обертаються навколо зірки на ім'я Сонце. Геоцентрична система Птолемея. Характеристика планет Сонячної системи (Меркурій, Венера, Марс, Юпітер, Сатурн, Уран, Нептун та Плутон).
презентация [12,1 M], добавлен 12.05.2014Наукова гіпотеза Канта про походження Сонячної системи. Гіпотеза Лапласа та критичні зауваження Фуше. Доведення існування механізму перенесення кутового обертального моменту Сонця до планет. Походження, будова та закономірності планет Сонячної системи.
реферат [23,4 K], добавлен 26.04.2009Астрономія як наука про будову і розвиток космічних тіл і їх систем, історія розвитку. Загальна характеристика Всесвіту, поняття галактики та метагалактики. Зірки: створення, еволюція, характеристики та класифікація. Проблема походження життя у Всесвіті.
реферат [24,9 K], добавлен 01.05.2009Історія спостережень за Меркурієм з найдавніших часів і до наших днів. Основні фізичні характеристики та особливості руху планети, період обертання навколо Сонця і тривалість сонячної доби. Атмосфера і фізичні поля та модель внутрішньої будови Меркурія.
реферат [1,1 M], добавлен 15.11.2010Процеси, пов'язані з утворенням і розпадом в сонячній атмосфері сильних магнітних полів. Зміни основних характеристик магнітного поля Землі під впливом сонячної активності. Характеристика впливу магнітних збурень на здоров'я та життєдіяльність людини.
реферат [75,5 K], добавлен 09.10.2014Етапи еволюції протозірки та формування зірок. Рух у просторі, видимий блиск та світимість, колір, температура і склад зірок. Найвідоміші зоряні скупчення, їх класифікація за потужністю випромінювання, нейтронні зірки. Вимірювання відстаней до Землі.
реферат [27,5 K], добавлен 26.11.2010Положення в Сонячній системі, атмосфера, клімат та особливості поверхні планети Марс. Орбітальні та фізичні характеристики природних супутників Фобоса та Деймоса, їх відкриття, форма та дослідження поверхні. Поняття та створення штучних супутників.
презентация [526,2 K], добавлен 17.01.2012Гіпотези різних учених щодо процесу формування Сонячної системи. Походження та будова планет Сонячної системи. Закономірності у будові та таємниці Сонячної системи. Пізнання законів лептонів ВВЕ - фундамент нових технологій третього тисячоліття.
реферат [31,9 K], добавлен 13.08.2010Значення орбітальних показників планети Венера, її афелій, перигелій, середня орбітальна швидкість та рух відносно Сонця. Особливості планетарних характеристик. Вивчення поверхні Венери, наявність загадкових "русел" та ймовірні причини їх появи.
презентация [742,8 K], добавлен 26.02.2012