Астрономическая картина мира

Характер изменений и оценка достижений астрономии как научного направления в ХХ в. Создание квантовой механики как мощный импульс развития как астрофизики, так и космогонического аспекта науки. Методологические установки "неклассической" астрономии XX в.

Рубрика Астрономия и космонавтика
Вид контрольная работа
Язык русский
Дата добавления 21.08.2017
Размер файла 20,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Астрономическая картина мира

1. Новая астрономическая революция

В ХХ в. в астрономии произошли поистине радикальные изменения. Прежде всего, значительно расширился и обогатился теоретический фундамент астрономических наук. Начиная с 20-30-х годов, в качестве теоретической основы астрономического познания стали выступать (наряду с классической механикой) релятивистская и квантовая механика, что существенно раздвинуло «теоретический горизонт» астрономических исследований. Общая теория относительности создала возможность модельного теоретического описания явлений космологического масштаба и по сути впервые поставила космологию - эту чрезвычайно важную отрасль астрономии - на твердую теоретическую почву.

А создание квантовой механики послужило чрезвычайно мощным импульсом развития, как астрофизики, так и космогонического аспекта астрономии (в частности, выяснения источников энергии и механизмов эволюции звезд, звездных систем и др.); обеспечило переориентацию задач астрономии с изучения в основном механических движений космических тел (под влиянием гравитационного поля) на изучение их физических и химических характеристик. Выдвижение на первый план астрофизических проблем сопровождалось также интенсивным развитием таких отраслей астрономической науки, как звездная и внегалактическая астрономия.

Наряду с этим существенно совершенствовались и эмпирические методы астрономического познания. Астрономия стала всеволновой, т.е. астрономические наблюдения проводятся на всех диапазонах длин волн излучений (радио, - инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма - диапазоны). Появилась также возможность непосредственного исследования с помощью космических аппаратов и наблюдений космонавтов околоземного космического пространства, Луны и планет Солнечной системы.

Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (и, как правило, неожиданных и во многом необъяснимых) явлений. Среди этих открытий особенное значение имеют нестационарные процессы во Вселенной:

· обнаружение в конце 40-х годов существования «звездных ассоциаций», представляющих собой группы распадающихся после своего рождения звезд;

· обнаружение в 50-х годах явлений распада скоплений и групп галактик;

· открытие в 60-е годы квазаров (Квазары - самые мощные из известных сейчас источников энергии. При сравнительно небольших размерах (не более 1 светового месяца) средний квазар излучает вдвое больше энергии, чем вся наша Галактика, имеющая в поперечнике размер в 100 тысяч световых лет и состоящая из 200 млрд. звезд. Для квазаров характерны и признаки явной нестабильности: переменность блеска и выбросы вещества с огромными скоростями), радиогалактик, взрывной активности ядер галактик с колоссальным энерговыделением (~ 1 0 n эрг, где n = 6 0);

· нестационарных явлений в недрах звезд;

· нестационарных явлений в Солнечной системе (быстрый распад короткопериодических комет, планетарная эруптивная деятельность и др.).

Кроме того, к выдающимся астрономическим открытиям следует отнести обнаружение:

· «реликтового» излучения, которое является важнейшим аргументом в пользу теории «горячей» Вселенной;

· «рентгеновских звезд»;

· пульсаров;

· космических мазеров на линиях некоторых молекул (воды, ОН и др.);

· вероятное открытие «черных дыр»; и др.

Попытки объяснить эти и другие новейшие открытия столкнулись с рядом принципиальных трудностей, преодоление которых связано с необходимостью совершенствования теоретико - методологического инструментария современной астрономии. Все это привело к значительному возрастанию количества разрабатываемых астрофизических и космологических моделей, концепций, опирающихся на разные принципы и не связанных пока единой фундаментальной теорией.

На этом фоне происходит интенсивная дифференциация и интеграция знаний о Вселенной. Выделяются не только новые отрасли теоретической и наблюдательной астрономии, но в связи с успехами космической техники возникают прикладные отрасли астрономии.

В то же время возрастает роль общетеоретических интегративных принципов, понятий, установок, которые формируются под влиянием математики, физики, других естественных и даже гуманитарных наук. Изменяется место астрономии в системе научного познания: она сближается не только с естественными и математическими, но и с гуманитарными науками, философией.

По сути, астрономия во второй половине ХХ века астрономия вступила в период научной революции, которая изменила способ астрономического познания - на смену классическому способу познания пришел «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания и астрономической картины мира.

2. Методологические установки «неклассической» астрономии XX в.

астрономия астрофизика космогонический квантовый

Обзор современной астрономической картины мира показывает, что астрономия в XX в. кардинально преобразовала старые классические представления о Вселенной, ее структуре и эволюции, пережила глубокую научную революцию, которая изменила способ астрономического познания. На смену классического пришел «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания.

Основа астрономического познания - признание объективного существования предмета астрономической науки (космических тел, их систем и Вселенной в целом) и их принципиальной познаваемости научно-рациональными средствами (причем не только структурного, но и исторического аспекта Вселенной). Следовательно, можно говорить о полной победе материалистического принципа познаваемости природы, истории Вселенной в системе методологии астрономии XX в.

Эмпирическая основа современной астрономии - наблюдение во всеволновом диапазоне. Теоретические исследования и экспериментальные попытки регистрации гравитационных волн открывают перспективы развития гравитационной астрономии. Сведения о космосе несут космические лучи и нейтрино. Важная особенность наблюдений во внеоптических диапазонах состоит в том, что они дают информацию, как правило, о нестационарных процессах во Вселенной.

Теоретическая основа современной астрономии - не только классическая механика, но и релятивистская и квантовая механика, квантовая теория поля. Классическая механика не потеряла своего значения для астрономического познания (прежде всего, для объяснения процессов, происходящих в Солнечной системе). Как и прежде, все расчеты движений тел планетной системы и искусственных спутников Земли, Луны и планет, космических аппаратов, созданных человеком, осуществляются (в силу слабости релятивистских и квантовых эффектов для этих систем) на базе ньютоновской механики.

Физическая реальность состоит из трех качественно несводимых друг к другу уровней: микро-, макро- и мегамиров. В системе астрономического познания выделяются две большие подсистемы: во-первых, астрономические науки, изучающие закономерности космических тел и процессов макроуровня (небесная механика, астродинамика, астрометрия и др.); во-вторых, астрономические науки, изучающие космические процессы на уровне мегамира (внегалактическая астрономия, релятивистская космология и др.). Считается, что исследования носят космологический характер, если предмет изучения имеет линейные размеры, превышающие 109 пк; именно здесь проходит разграничительная линия между «обычным» астрономическим и космологическим масштабами.

В системе астрономического познания большую роль играет исследование закономерностей микромира, связанных с процессами излучения звезд, ранних этапов эволюции Вселенной и т.п., поэтому современная астрономия пользуется и аппаратом микрофизики (квантовая механика, квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика и др.). Вопрос о глубинных внутренних связях между микро-, макро- и мегамирами, о том, что на определенном уровне они представляют, собой некое (диалектическое) единство, также входит в поле зрения современной астрономии.

Вопрос о единственности Вселенной как объекта космологии в современной астрономии решается отнюдь не однозначно. Наряду с точкой зрения, что Вселенная как объект космологии - это наша Метагалактика в ее самых общих свойствах, существует мнение, что множество вселенных, порождаемых виртуальной «пеной» физического вакуума, могут сосуществовать друг с другом, а тезис об уникальности Вселенной должен рассматриваться как исторически относительный, определяемый уровнем практики.

Хотя эмпирических данных, подтверждающих представление о множественности вселенных, пока нет (более того, проблематична даже та конкретная логико-гносеологическая форма, в которой такой эмпирический базис может быть зафиксирован), тем не менее, такое представление вытекает из принципов инфляционной космологии.

Претерпевают значительные изменения трактовки сущности пространства и времени. С одной стороны, современная астрономия опирается на общую теорию относительности, в соответствии с которой пространственно-временные характеристики перестают быть фундаментальными, не зависимыми ни от чего понятиями физики.

Геометрические характеристики тел, их поведение и ход часов зависят прежде всего от гравитационных полей, которые в свою очередь создаются материальными телами. Важное значение имеет то обстоятельство, что в релятивистской физике такая характеристика, как «конечность-бесконечность», является вариантом (относительной величиной), значит, противопоставление конечности и бесконечности относительно - конечность пространства в одной системе не исключает его бесконечности в другой. Более того, относительны не только «конечность-бесконечность», но и топологические характеристики пространства-времени.

Это значит, что метрический и континуальный характер пространства-времени в нашей Вселенной относителен и возможны пространственно-временные организации вещества и поля с иными топологическими характеристиками.

С другой стороны, инфляционная космология допускает на ранних стадиях эволюции Вселенной раздувание физического вакуума со скоростью, на много порядков превышающей скорость света; стадия раздувания физического вакуума, наполненного скалярным полем, осуществляется без присутствия вещества и излучения, которые к тому времени еще не образовались.

Современная астрономия теоретически и эмпирически обосновывает идею нестационарности Вселенной: мир астрономических объектов находится в состоянии постоянного качественного изменения, развития. Идея развития пронизывает всю современную астрономию. Эта идея носит не умозрительный характер, а воплощается в конкретных астрофизических и космологических моделях.

Общая идея о нестационарности Вселенной (пространственной и структурной) конкретизируется в следующих методологических установках:

· во-первых, развитие космических тел рассматривается диалектически - со взрывами, скачками, перерывами постепенности; при этом учитывается многообразие путей развития, включая моменты нисходящего, регрессивного движения;

· во-вторых, в качестве факторов, определяющих процесс развития космических тел, рассматриваются все четыре известных сейчас фундаментальных взаимодействия; прибегать ко всем четырем приходится в моделировании начальных стадий эволюции Вселенной, вблизи сингулярности; в масштабах Метагалактики решающая роль принадлежит силе тяготения;

· в-третьих, признается необходимость доведения теоретического описания астрономического объекта и его эволюции до выделения его индивидуальных черт, поскольку астрономические объекты даже одного типа (например, звезды или даже звезды определенного класса) имеют заметные индивидуальные различия (масса, светимость, химический состав, температура и др.).

Современная астрономия исходит из установки о космогоническом смысле (прямом или опосредованном) любой астрономической проблемы. Именно космогонический аспект исследования Вселенной начинает все больше выступать в виде того организующего центра, который объединяет различные разделы дифференцировавшейся астрономической науки.

В современной неклассической астрономии (так же, как и в классической) нет свободы выбора условий наблюдения. Современная астрономия осознает зависимость результата наблюдения от условий, в которых находится наблюдатель. Но в отличие от классической современная астрономия не во всех случаях допускает возможность пренебречь этой зависимостью или внести в нее поправку. В современной астрономии на эмпирическом уровне познания возрастает роль субъекта. Так, при объяснении с помощью общей теории относительности космологических явлений (искривленного пространства-времени) необходимо пользоваться классическими понятиями для описания содержания эксперимента с излучением от удаленных объектов, поскольку он происходит в однородной и изотропной локальной области плоского пространства-времени. Это описание условий эксперимента не может быть элиминировано в окончательном результате исследования.

Резкое возрастание теоретической активности субъекта современного астрономического познания. Современная астрономия (как и «неклассическая» физика) отвергает классический идеал абсолютного описания, согласно которому в рамках одной теории можно достичь исчерпывающего описания закономерностей и свойств мира астрономических объектов. В системе теоретического описания структуры и эволюции Вселенной необходима не одна, а множество теоретических моделей.

Изменяемость структуры познавательной деятельности в астрономии - одна из новых методологических установок. Принципы и способы познавательной деятельности в развитии астрономии периодически изменяются. Эпохи, когда происходят такие изменения, - это эпохи научных революций в астрономии.

Итак, методологические установки современной астрономии существенно отличаются от методологических установок классической астрономии.

Такая смена методологических установок позволяет сделать вывод о том, что в XX в. в астрономии произошла научная революция, которая привела к изменению способов астрономического познания и астрономической картины мира.

Список использованной литературы

1. Астрономия и современная картина мира // Под ред. В.В. Казютинского. - М.: 2004. - 247 с.

2. Дубнищева, Т.Я. Концепции современного естествознания: Учеб. для студентов высш. учеб. заведений. - Новосибирск: ЮКЭА, 2004. - 830 с.

3. Еремеева А.И. Астрономическая картина мира и ее творцы. - М.: 2003. - 224 с.

4. Идлис Г.М. Революции в астрономии, физике и космологии. - М.: 2003.

5. Карпенков С.Х. Концепции современного естествознания: Учеб. для вузов. - М.: 2003. - 519 с.

6. Клишишин И.А. Астрономия наших дней. - М.: Наука. - 2004.

7. Концепции современного естествознания: Учеб. для вузов/В.Н. Лавриненко В.П. Ратников, В.Ф. Голубь и др. - М.: Издательское объединение «ЮНИТИ», 2002. - 271 с.

8. Рузавин Г.И. Концепции современного естествознания: Учеб. для вузов / Г.И. Рузавин. - М.: Культура и спорт: ЮНИТИ, 2002. - 286 с.

9. Струве О., Зебергс В. Астрономия XX века. - М., 2000.

10. Шама Д. Современная космология. Перевод с английского. - М.: 2001.

Размещено на Allbest.ru

...

Подобные документы

  • Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.

    презентация [9,1 M], добавлен 05.11.2013

  • Наука - особый вид интеллектуальной деятельности, целью которой является выработка достоверного знания об окружающей действительности. Структурность системы знаний. Научная картина мира. Развитие астрономии, ее связь с религией и социальной идеологией.

    курсовая работа [28,4 K], добавлен 29.08.2012

  • Астрономия каменного века и древних цивилизаций. Особенности развития астрономии как науки от Средневековья до ХХ века. Разделы современной астрономии. Экспертная оценка будущего астрономии. Современная популярность и востребованность данной профессии.

    реферат [56,6 K], добавлен 03.03.2012

  • Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени.

    учебное пособие [528,1 K], добавлен 10.04.2007

  • История возникновения астрономии, первые записи астрономических наблюдений. Создание греческими астрономами геометрической теории эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Гелиоцентрическая система мира Коперник

    презентация [794,1 K], добавлен 28.05.2012

  • Древнее представление о Вселенной. Объекты астрономического исследования. Расчеты небесных явлений по теории Птолемея. Особенности влияния астрономии и астрологии. Гелиоцентрическая система мира с Солнцем в центре. Исследование Дж. Бруно в астрономии.

    реферат [22,7 K], добавлен 25.01.2010

  • Астрономическая карта мира и ее творцы. Галактики. Млечный путь. Что такое звезды? Рождение астрономии. Кометы и их природа. Календари Солнце и жизнь Земли. Солнце - ближайшая звезда. Релятивистская космология - теория эволюции Вселенной в целом.

    реферат [34,0 K], добавлен 05.10.2006

  • История создания лазера. Принцип действия и устройство лазера. Применение лазеров в астрономии. Лазерная система стабилизации изображений у телескопов. Создание искусственных опорных "звезд". Лазерный термоядерный синтез. Измерение расстояния до Луны.

    реферат [1,4 M], добавлен 17.03.2015

  • Основные понятия, необходимые для успешного изучения космической геодезии. Описание систем координат, наиболее часто используемых в астрономии для описания положения светил на небе. Общие сведения о задачах космической геодезии как науки, их решение.

    контрольная работа [1,2 M], добавлен 11.01.2010

  • Предмет и задачи астрономии. Особенности астрономических наблюдений. Принцип действия телескопа. Видимое суточное движение звезд. Что такое созвездие, его виды. Эклиптика и "блуждающие" светила-планеты. Звездные карты, небесные координаты и время.

    реферат [40,5 K], добавлен 13.12.2009

  • Зарождение теории о движении Солнца и планет в Древней Греции. Первые научные знания в области астрономии. Гелиоцентрическая система в варианте Н. Коперника, характеристика произведения "О вращениях небесных сфер". Значение гелиоцентризма в истории науки.

    контрольная работа [1,9 M], добавлен 18.05.2009

  • Особенности астрономии как науки. Ее философское значение, определяющее мировоззрение людей и связь с другими дисциплинами. Основные задачи, связанные с изучением движений, строения, проблем происхождения и развития небесных тел и особенности их решения.

    презентация [3,2 M], добавлен 09.02.2014

  • Этапы развития астрономии как науки. Строение и размеры объектов Вселенной. Карта звездного неба. Факторы, искажающие видимое положение светил на небе. Характеристики эллиптической орбиты небесного тела относительно Солнца, сущность законов Кеплера.

    презентация [8,8 M], добавлен 16.02.2015

  • Анализ геоцентрической системы мира, разработанной Клавдием Птолемеем. Описания исследований движения небесных тел. Система мира Николая Коперника. Открытия Джордано Бруно и Галилея в астрономии. Теория расширяющейся Вселенной и ядерных реакций в звездах.

    презентация [21,7 M], добавлен 16.12.2013

  • Исследования Галилея в области механики: закон свободного падения, телескоп, закон иннерции и наблюдения за планетами в начале астрономии. Нападки инквизиции на учение Коперника и галилея - непринятие обществом и фальсификация отречения от взглядов.

    доклад [11,4 K], добавлен 19.10.2008

  • Краткая биографическая справка из жизни Клавдия Птолемея. Анализ труда "Великое математическое построение по астрономии в тринадцати книгах". Движение звёзд Альмагеста. Геоцентрическая модель мира. Изобретение прообраза стенного круга (квадранта).

    презентация [449,1 K], добавлен 29.09.2013

  • Астрономия как наука о Вселенной, изучающая расположение, движение, строение, происхождение и развитие небесных тел и образованных ими систем. Знакомство с интересными факторами из мира Астрономии. Общая характеристика планеты Венера, ее особенности.

    презентация [2,4 M], добавлен 25.04.2014

  • Характеристика астрономии – науки, изучающей движение, строение и развитие небесных тел и их систем. Открытие, строение и планеты солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер. История первого полета в космос, который совершил Ю.A. Гагарин.

    презентация [553,1 K], добавлен 13.01.2011

  • Основные этапы в истории астрономии. История создания астрономических приборов. Развитие конструкций астрономических инструментов в Китае и Древней Греции. Распространение армиллярных сфер. Первые телескопические наблюдения, астрономические часы.

    контрольная работа [1,1 M], добавлен 26.05.2010

  • Применения инструментов физики в объяснении феноменов космических тел. Первые открытия внесолнечных планет. Использование спектрального анализа в исследовании Космоса, применение радиотелескопов в открытии звездных систем. Исследование затмений звезд.

    презентация [633,8 K], добавлен 11.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.