Estimation of bank default probability
Investigation of the influence of various microeconomic financial and macroeconomic factors on the probability of a bank default. Analysis of the main reasons for revoking a banking license by the Central Bank of Russia using two binary choice models.
Рубрика | Банковское, биржевое дело и страхование |
Вид | дипломная работа |
Язык | английский |
Дата добавления | 01.12.2019 |
Размер файла | 513,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
As for microeconomic financial indicators of bank performance, the rise of the both RONA and the share of highly liquid assets increases the bank financial stability and makes the default less probable to occur. As we proposed in the hypothesis H1 («The increase in the amount of bank net assets accounts negatively to the probability of default for both «money laundering» and «economic reasons» default probabilities»), the problem called «too big to fail» is clearly seen in our model. Thus, the first hypothesis is confirmed.
As for the indicators referred to the allocation of Bank's Assets, we are troubled to interpret the insignificance of the share of overdue debt to loans to individuals and the same indicator for legal entities at least at the level of 10 percent. As for the loans to individuals, we are also troubled to interpret the negative influence of increasing the volume of retail lending to the default probability, because usually retail lending is the most risky one. As for the loans to legal entities, the indicator is statistically significant (at least at 10 percent level) for the «money laundering» bank default. The crediting of enterprises and organizations usually is much less risky, than retail crediting. This fact explains the negative influence of increasing the volume of legal entities lending to the default probability. As we proposed in the hypothesis H2 («The increase in the amount of the interbank loans given accounts negatively to the probability of default for both «money laundering» and «economic reasons» default probabilities »), our model confirm a fact, the banks involve in crediting other banks are more stable and less predisposed to the bankruptcy. Thus, the second hypothesis is confirmed.
As for the indicators referred to the Investments, we are troubled to interpret the negative influence of investments to principal notes on the default probability. The rise of the investments in bonds makes the default less probable to occur. Usually bonds are associated with smaller risk and more safe way to absorb interests. This fact makes cash flows more predictable and decreases banks default probability. Contrary to what was proposed in the hypothesis H3 («Investments in shares indicator will be statistically significant both «money laundering» and «economic reasons» default probabilities at least at 10 percent of statistical significance»), the investments in shares indicator has statistical significance at least at 10 percent only in «money laundering» model. Probably, investments in shares increases the default probability for banks involved in «money laundering», because they execute operations with illiquid securities and this fact makes them an object of the supervisory authority close attention and thus increases the license revocation probability. Thus, the third hypothesis is denied.
As for the indicators, referred to the Banks Liabilities, the interbank loans gained indicator appears to be statistically insignificant. The rise of the deposits of individuals makes bank defaults more probable. We suppose that the explanation of this phenomenon is the fact, that very often depositors provoke chain reaction of deposits outflow from the bank. The banking history knows a lot of such incidents, when this process ends with the bank default. Funds of enterprises and organizations indicator is statistically significant only for the «money laundering bank default». The rise of funds of enterprises and organizations in the bank increases the default probability of banks, involved in money laundering. Probably those banks mainly operates with enterprises that are parts in capital outflow chains. An increase of those funds signifies more aggressive capital outflow and thereafter more close attention of supervisory authority. This fact increases the default probability. Bonds and principal notes indicator is statistically significant only for the «economic reasons bank default». The rise of bonds and principal notes among banks liabilities increases the default probability of banks, because bank borrowed capital is increased with bank own capital remained at the same level. This fact increases the default probability.
Here we will make a resume on the hypotheses confirmation. Confirmed hypotheses:
H1: The increase in the amount of bank net assets accounts negatively to the probability of default for both «money laundering» and «economic reasons» default probabilities.
H2: The increase in the amount of the interbank loans given accounts negatively to the probability of default for both «money laundering» and «economic reasons» default probabilities.
Denied hypotheses:
H3: Investments in shares indicator will be statistically significant both «money laundering» and «economic reasons» default probabilities at least at 10 percent of statistical significance.
Conclusion
This work is a demonstration of econometric theory implementation into the bank default probability estimation. Our work showed that the division of bank defaults on the basis of different license revocation reasons seems to be appropriate taking into account the possibilities of econometric modelling and statistical packages.
The first conclusion consists in the fact, that we can estimate the bank default probability estimation using publicly available accountings. Quite high predictive quality of the models suggest the viability of this approach.
The second conclusion consists in the fact that the change in the macroenvironment influences differently on the probability of default for different reasons of the default.
The third conclusion consists in the fact that varying time lags helps to forecast bank default. In addition it should be mentioned that different default reasons mean different time lags due to various contribution of factors in the probability of bank default.
Of course, there is a wide field for further researchers to deepen the study of this issue.
It may be deepen in sense of using advance econometric approaches, such as multinomial regression analysis or neuronets. Probably correct specification may lead us to the results that will outperform binary choice logit regression analysis.
Also further researches may involve new predictors in the analysis. Actually the most promising trends are found in the use of factor analysis, which allow to combine the set of factors into the smaller set or even one factor.
As another form of widening this research, it is possible to make binary choice modelling on the basis of premodelling clustering through underlying economic reasons or the use of data science approaches, for example cluster analysis.
At the end, we want to state, that our work is a necessary basis for the following works in this field, because it demonstrates the opportunity to make econometric regression analysis using publicly available information at present days. The debates on this issue are found promising and the relevance of bank default probability estimation is not in doubt.
References
1) Иванов В. В., Фёдорова Ю. И. (2015). Результаты моделирования вероятности наступления дефолта банка на примере российской банковской системы. Экономика и современный менеджмент: теория и практика, 6 (50), 6-20.
2) Карминский А. М., Костров А. В. (2014). Совершенствование моделей вероятности дефолта российских банков: использование рейтингов и панельных данных. XIV Апрельская международная научная конференция по проблемам развития экономики и общества: в 4-х книгах. Книга 1. М.: 538-546.
3) Пересецкий А. А. (2007). Методы оценки вероятности дефолта банков. Экономика и математические методы, 43 (3), 37-62.
4) Пересецкий А. А. (2013). Модели причин отзыва лицензий российских банков. Влияние неучтенных факторов. Прикладная эконометрика, 30 (2), 49-64.
5) Altman E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23 (4), 589-609.
6) Altman E. I., Haldeman R., Narayanan P. (1977). Zeta analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1 (1), 29-54.
7) Bondarenko M. V., Maria Semenova M. V. (2018). Do high deposit interest rates signal bank default? Evidence from the Russian retail deposit market. Financial Economics, WP BRP 65/FE/2018, 1-28.
8) Bovenzi J. F., Marino J. A., McFadden F. E. (1983). Commercial bank failure prediction models. Economic Review, 68, 14-26.
9) Cole R. A., Gunther J. W. (1995). Separating the likelihood and timing of bank failure. Journal of Banking and Finance, 19 (6), 1073-1089.
10) Cole R. A., Gunther J. W. (1998). Predicting bank failures: A comparison of on- and off-site monitoring systems. Journal of Financial Services Research, 13 (2), 103-117.
11) Estrella A., Park S., Peristiani S. (2000). Capital ratios as predictors of bank failure. FRBNY Economic Policy Review, 6 (2), 33-52.
12) Godlewski C. J. (2007). Are ratings consistent with default probabilities? Empirical evidence on banks in emerging market economies. Emerging Markets Finance and Trade, 43 (4), 5-23.
13) Izan H. Y. (1984). Corporate distress in Australia. Journal of Banking and Finance, 8 (2), 303-320.
14) Jagtiani J., Kolari J., Lemieux C., Shin H. (2003). Early warning models for bank supervision: Simpler could be better. Economic Perspectives, 27 (3), 49-60.
15) Kavussanos M. G., Tsouknidis D. A. (2016). Default risk drivers in shipping bank loans. Transportation Research Part E: Logistics and Transportation Review, 94 (C), 71-94.
16) Kolari J., Glennon D., Shin H., Caputo M. (2002). Predicting large US commercial bank failures. Journal of Economics and Business, 54 (4), 361-387.
17) Lennox C. (1999). Identifying failing companies: a reevaluation of the logit, probit and DA approaches. Journal of Economics and Business, 51 (4), 347-364.
18) Martin D. (1977). Early warning of bank failure: A logit regression approach. Journal of Banking and Finance, 1 (3), 249-276.
19) Ohlson J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18 (1), 109-131.
20) Peresetsky A. A., Karminsky A. M., Golovan S. V. (2004). Probability of default models of Russian banks. Competitiveness and modernization of economy, 1, 407-417.
21) Peresetsky A. A., Karminsky A. M., Golovan S. V. (2011). Probability of default models of Russian banks. Economic Change and Restructuring, 44 (4), 297-334.
22) Raffaella Calabrese & Paolo Giudici (2015). Estimating bank default with generalised extreme value regression models. Journal of the Operational Research Society, 66 (11), 1783-1792.
23) Scott J. (1981). The probability of bankruptcy: A comparison of empirical predictions and theoretical models. Journal of Banking and Finance, 5 (3), 317-344.
24) Westgaards S., Wijst van der N. (2001). Default probabilities in a corporate bank portfolio: a logistic model approach. European Journal of Operational Research, 135, 338-349.
25) Wiginton J. C. (1980). A note on the comparison of logit and discriminant models of consumer credit behavior. Journal of Financial and Quantitative Analysis, 15 (3), 757-770.
Abstract
The object of this paper is to investigate the influence of both different microeconomic financial and macroeconomic factors on the bank default probability. Moreover, we differentiated the different reasons for recalling the banking license by Russian Central Bank through two binary choice models. The data stands for five years of Russian banking sector development: from the first quarter of 2014 to the fourth quarter of 2018. The contribution of our work to the bank default probability estimation can be described in two points. Firstly, we use the combination of factors, which differs from combinations of factors in other works. Secondly, we use two simultaneous binary choice models differentiating various reasons of default. This issue is rarely seen in such researches, because other papers most commonly ignore differing the reasons of recalling the license.
Целью данной работы является исследование влияния как различных микроэкономических финансовых, так и макроэкономических факторов на вероятность дефолта банка. Более того, мы дифференцировали различные причины отзыва банковской лицензии Центральным Банком России с помощью двух моделей бинарного выбора. Данные представлены за пять лет развития банковского сектора России: с первого квартала 2014 года по четвертый квартал 2018 года. Вклад нашей работы в оценку вероятности дефолта банка можно описать в двух пунктах. Во-первых, мы используем комбинацию факторов, которая отличается от комбинации факторов в других работах. Во-вторых, мы используем одновременно две модели бинарного выбора, дифференцирующие различные причины дефолта. Данный аспект редко встречается в подобных исследованиях, поскольку другие статьи чаще всего игнорируют разделение причин отзыва лицензии.
Appendix
Dataset for license revocation with wording «economic reasons». Histograms
Table 1 RONA
Table 2 Natural logarithm of Net Assets
Table 3 Highly Liquid Assets to Net Assets
Table 4 Loans to Individuals to Net Assets
Table 5 Overdue Debt to Loans to Individuals to Net Assets
Table 6 Interbank Loans Given to Net Assets
Table 7 Loans to Enterprises and Organisations to Net Assets
Table 8 Overdue Debt to Loans to Enterprises and Organisations to Net Assets
Table 9 Investments in Shares to Net Assets
Table 10 Investments in Bonds to Net Assets
Table 11 Investments in Principal Notes to Net Assets
Table 12 Deposits of Individuals to Net Assets
Table 13 Funds of Enterprises and Organisations to Net Assets
Table 14 Interbank Loans Gained to Net Assets
Table 15 Bonds and Principal Notes to Net Assets
Dataset for license revocation with wording «money laundering». Histograms
Table 1 RONA
Table 2 Natural logarithm of Net Assets
Table 3 Highly Liquid Assets to Net Assets
Table 4 Loans to Individuals to Net Assets
Table 5 Overdue Debt to Loans to Individuals to Net Assets
Table 6 Interbank Loans Given to Net Assets
Table 7 Loans to Enterprises and Organisations to Net Assets
Table 8 Overdue Debt to Loans to Enterprises and Organisations to Net Assets
Table 9 Investments in Shares to Net Assets
Table 10 Investments in Bonds to Net Assets
Table 11 Investments in Principal Notes to Net Assets
Table 12 Deposits of Individuals to Net Assets
Table 13 Funds of Enterprises and Organisations to Net Assets
Table 14 Interbank Loans Gained to Net Assets
Table 15 Bonds and Principal Notes to Net Assets
Dataset for license revocation with wording «economic reasons». Descriptive statistics
Table 1 Macroeconomic variables
Change in GDP |
Deflator Index |
Key Interest Rate of Central Bank |
The Exchange Rate of the Ruble to the US Dollar |
||
Mean |
2,144570 |
106,9141 |
9,650590 |
54,72913 |
|
Median |
6,924986 |
107,4000 |
9,750000 |
57,65000 |
|
Maximum |
11,72334 |
114,2067 |
17,00000 |
72,92990 |
|
Minimum |
-16,64006 |
102,5000 |
5,500000 |
32,65870 |
|
Std. Dev. |
10,08277 |
2,627834 |
2,773650 |
12,13142 |
|
Skewness |
-1,010060 |
0,500564 |
0,975541 |
-0,715524 |
|
Kurtosis |
2,182010 |
3,362723 |
3,790236 |
2,238238 |
|
Jarque-Bera |
2449,809 |
584,7711 |
2285,387 |
1355,484 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
26545,49 |
1323382, |
119455,0 |
677437,2 |
|
Sum Sq. Dev. |
1258273, |
85469,53 |
95217,93 |
1821539, |
|
Observations |
12378 |
12378 |
12378 |
12378 |
Table 2 Microeconomic financial variables
RONA |
Natural Logarithm of Net Assets |
Highly Liquid Assets to Net Assets |
||
Mean |
0,764635 |
15,63178 |
16,38441 |
|
Median |
0,800000 |
15,36613 |
10,94000 |
|
Maximum |
763,1400 |
23,99718 |
99,97000 |
|
Minimum |
-207,2400 |
7,602401 |
0,010000 |
|
Std. Dev. |
9,901205 |
1,996606 |
17,04378 |
|
Skewness |
35,89458 |
0,526328 |
2,693744 |
|
Kurtosis |
2925,151 |
4,118093 |
11,42321 |
|
Jarque-Bera |
4,35E+09 |
1203,083 |
51004,18 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
9351,486 |
191395,6 |
200610,7 |
|
Sum Sq. Dev. |
1198856, |
48805,92 |
3556475, |
|
Observations |
12230 |
12244 |
12244 |
Table 3 «Assets» variables group
Loans to Individuals to Net Assets |
Overdue Debt to Loans to Individuals |
Interbank Loans Given to Net Assets |
Loans to Enterprises and Organizations to Net Assets |
Overdue Debt to Loans to Enterprises and Organizations |
||
Mean |
13,23973 |
9,862268 |
13,43664 |
34,93628 |
7,548095 |
|
Median |
8,100000 |
4,960000 |
6,930000 |
35,07000 |
3,080000 |
|
Maximum |
96,14000 |
100,0000 |
95,97000 |
96,81000 |
100,0000 |
|
Minimum |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Std. Dev. |
16,01238 |
14,46946 |
16,90364 |
21,49491 |
14,67679 |
|
Skewness |
2,242526 |
3,135989 |
1,791836 |
0,142943 |
4,142897 |
|
Kurtosis |
8,816704 |
15,42895 |
6,320609 |
2,285124 |
22,32777 |
|
Jarque-Bera |
27523,36 |
98878,71 |
12177,25 |
302,4161 |
225604,4 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
162107,2 |
120753,6 |
164518,3 |
427759,8 |
92418,88 |
|
Sum Sq. Dev. |
3139059, |
2563259, |
3498229, |
5656646, |
2637244, |
|
Observations |
12244 |
12244 |
12244 |
12244 |
12244 |
Table 4 «Investments» variables group
Investments in Shares to Net Assets |
Investments in Bonds to Net Assets |
Investments in Promissory Notes to Net Assets |
||
Mean |
0,601097 |
8,863382 |
0,959257 |
|
Median |
0,000000 |
1,870000 |
0,000000 |
|
Maximum |
49,29000 |
96,08000 |
73,41000 |
|
Minimum |
0,000000 |
0,000000 |
0,000000 |
|
Std. Dev. |
2,315475 |
13,38379 |
3,504151 |
|
Skewness |
7,699469 |
2,010275 |
7,397390 |
|
Kurtosis |
91,67743 |
7,365847 |
83,40866 |
|
Jarque-Bera |
4132765, |
17970,85 |
3410178, |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
7359,827 |
108523,2 |
11745,14 |
|
Sum Sq. Dev. |
65639,91 |
2193039, |
150332,7 |
|
Observations |
12244 |
12244 |
12244 |
Table 5 «Liabilities» variables group
Deposits of Individuals to Liabilities |
Funds of Enterprises and Organizations to Liabilities |
Interbank Loans Gained to Liabilities |
Bonds and Promissory Notes Issued to Liabilities |
||
Mean |
30,54313 |
27,73794 |
6,294725 |
1,878194 |
|
Median |
30,49500 |
24,51500 |
0,000000 |
0,010000 |
|
Maximum |
86,26000 |
96,91000 |
102,9800 |
65,42000 |
|
Minimum |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Std. Dev. |
22,96919 |
17,70197 |
12,92900 |
4,874038 |
|
Skewness |
0,132618 |
0,854309 |
3,051145 |
5,124744 |
|
Kurtosis |
1,787781 |
3,545393 |
13,69426 |
38,35332 |
|
Jarque-Bera |
785,5681 |
1641,118 |
77343,88 |
691229,5 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
373970,1 |
339623,4 |
77072,61 |
22996,61 |
|
Sum Sq. Dev. |
6459208, |
3836462, |
2046527, |
290847,8 |
|
Observations |
12244 |
12244 |
12244 |
12244 |
Dataset for license revocation with wording «money laundering». Descriptive statistics
Table 1 Macroeconomic variables
Change in GDP |
Deflator Index |
Key Interest Rate of Central Bank |
The Exchange Rate of the Ruble to the US Dollar |
||
Mean |
2,139364 |
106,9238 |
9,643049 |
54,69138 |
|
Median |
6,924986 |
107,4000 |
9,750000 |
57,65000 |
|
Maximum |
11,72334 |
114,2067 |
17,00000 |
72,92990 |
|
Minimum |
-16,64006 |
102,5000 |
5,500000 |
32,65870 |
|
Std. Dev. |
10,09326 |
2,631550 |
2,775670 |
12,12900 |
|
Skewness |
-1,006481 |
0,503942 |
0,979623 |
-0,712392 |
|
Kurtosis |
2,173988 |
3,367997 |
3,792727 |
2,234652 |
|
Jarque-Bera |
2427,717 |
590,3530 |
2290,673 |
1341,343 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
26329,15 |
1315911, |
118677,0 |
673086,8 |
|
Sum Sq. Dev. |
1253661, |
85219,71 |
94809,66 |
1810368, |
|
Observations |
12307 |
12307 |
12307 |
12307 |
Table 2 Microeconomic financial variables
RONA |
Natural Logarithm of Net Assets |
Highly Liquid Assets to Net Assets |
||
Mean |
0,821446 |
15,62889 |
16,48204 |
|
Median |
0,810000 |
15,36168 |
11,00000 |
|
Maximum |
763,1400 |
23,99718 |
99,97000 |
|
Minimum |
-207,2400 |
7,602401 |
0,010000 |
|
Std. Dev. |
9,821340 |
1,999839 |
17,13602 |
|
Skewness |
36,92685 |
0,529414 |
2,682217 |
|
Kurtosis |
3032,790 |
4,103484 |
11,31527 |
|
Jarque-Bera |
4,66E+09 |
1188,887 |
49776,46 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
10010,14 |
190672,5 |
201080,9 |
|
Sum Sq. Dev. |
1175349, |
48788,13 |
3582151, |
|
Observations |
12186 |
12200 |
12200 |
Table 3 «Assets» variables group
Loans to Individuals to Net Assets |
Overdue Debt to Loans to Individuals |
Interbank Loans Given to Net Assets |
Loans to Enterprises and Organizations to Net Assets |
Overdue Debt to Loans to Enterprises and Organizations |
||
Mean |
13,26056 |
9,845455 |
13,49197 |
34,79625 |
7,552376 |
|
Median |
8,120000 |
4,960000 |
6,990000 |
34,91500 |
3,080000 |
|
Maximum |
96,14000 |
100,0000 |
95,97000 |
94,82000 |
100,0000 |
|
Minimum |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Std. Dev. |
16,02242 |
14,38487 |
16,91650 |
21,39848 |
14,70517 |
|
Skewness |
2,240721 |
3,117114 |
1,786010 |
0,139167 |
4,146011 |
|
Kurtosis |
8,807880 |
15,31007 |
6,298845 |
2,278386 |
22,32692 |
|
Jarque-Bera |
27355,85 |
96788,34 |
12017,87 |
304,0836 |
224829,5 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
161778,8 |
120114,6 |
164602,0 |
424514,3 |
92138,99 |
|
Sum Sq. Dev. |
3131702, |
2524271, |
3490963, |
5585862, |
2637937, |
|
Observations |
12200 |
12200 |
12200 |
12200 |
12200 |
Table 4 «Investments» variables group
Investments in Shares to Net Assets |
Investments in Bonds to Net Assets |
Investments in Promissory Notes to Net Assets |
||
Mean |
0,604814 |
8,869327 |
0,953890 |
|
Median |
0,000000 |
1,885000 |
0,000000 |
|
Maximum |
49,29000 |
87,61000 |
73,41000 |
|
Minimum |
0,000000 |
0,000000 |
0,000000 |
|
Std. Dev. |
2,346990 |
13,36650 |
3,503724 |
|
Skewness |
7,746757 |
1,993521 |
7,487502 |
|
Kurtosis |
91,66747 |
7,231623 |
85,01734 |
|
Jarque-Bera |
4118501, |
17183,26 |
3533473, |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
7378,737 |
108205,8 |
11637,46 |
|
Sum Sq. Dev. |
67196,49 |
2179515, |
149755,9 |
|
Observations |
12200 |
12200 |
12200 |
Table 5 «Liabilities» variables group
Deposits of Individuals to Liabilities |
Funds of Enterprises and Organizations to Liabilities |
Interbank Loans Gained to Liabilities |
Bonds and Promissory Notes Issued to Liabilities |
||
Mean |
30,44075 |
27,84022 |
6,297652 |
1,870832 |
|
Median |
30,38500 |
24,63000 |
0,000000 |
0,010000 |
|
Maximum |
86,26000 |
96,91000 |
102,9800 |
65,42000 |
|
Minimum |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Std. Dev. |
22,93442 |
17,71881 |
12,94308 |
4,870367 |
|
Skewness |
0,136748 |
0,850284 |
3,050998 |
5,143042 |
|
Kurtosis |
1,789798 |
3,538992 |
13,68528 |
38,57068 |
|
Jarque-Bera |
782,5228 |
1617,742 |
76966,52 |
696964,2 |
|
Probability |
0,000000 |
0,000000 |
0,000000 |
0,000000 |
|
Sum |
371377,1 |
339650,7 |
76831,35 |
22824,16 |
|
Sum Sq. Dev. |
6416522, |
3829954, |
2043617, |
289366,1 |
|
Observations |
12200 |
12200 |
12200 |
12200 |
Размещено на Allbest.ru
...Подобные документы
Development banking, increasing the degree of integration of the banking sector of Ukraine in the international financial community, empowerment of modern financial markets, increasing range of banking products. The management mechanism of bank liquidity.
реферат [17,2 K], добавлен 26.05.2013The principal types of banking in the modern world are commercial banking and central banking. The provision of safe deposit facilities for money and valuables. Establishing a bank account. Cashier’s checks. Characteristic of the central bank in the UK.
презентация [1,1 M], добавлен 23.03.2015General information about Asya Participation Bank. Offering uninterrupted, rapid and effective service via Online Banking. Capital and Shareholder Structure. Affiliates and subsidiaries. The leader of participation banking. Bank Asya’s Objectives.
курсовая работа [1,4 M], добавлен 01.11.2011A bank: nature of activity, main business-processes and organizational structure, the market place and history. Definitions of the project and project management, the project life cycle. Management of development projects in a bank, the expected results.
реферат [20,6 K], добавлен 14.02.2016Financial position of the "BTA Bank", prospects, business strategy, management plans and objectives. Forward-looking statements, risks, uncertainties and other factors that may cause actual results of operations; strategy and business environment.
презентация [510,7 K], добавлен 17.02.2013The Banking System of USA. Central, Commercial Banking and the Development of the Federal Reserve and Monetary Policy. Depository Institutions: Commercial Banks and Banking Structure. Banking System in Transition. Role of the National Bank of Ukraine.
научная работа [192,0 K], добавлен 22.01.2010Commercial banks as the main segment market economy. Principles and functions of commercial banks. Legal framework of commercial operation banks. The term "banking risks". Analysis of risks and methods of their regulation. Methods of risk management.
дипломная работа [95,2 K], добавлен 19.01.2014Краткая финансово-экономическая характеристика деятельности ОАО "Optima Bank", адекватность капитала. Процедура учета и организация документооборота расчетно-кассовых операций. Коэффициенты эффективности использования обязательств коммерческого банка.
отчет по практике [42,3 K], добавлен 29.01.2015Рoль вклaдoв клиентoв в фoрмирoвaние реcурcнoй бaзы бaнкa. Клaccификaция бaнкoвcкиx депoзитoв. Xaрaктериcтика АО "Kaspi Bank", анализ его финaнcoвo-xoзяйcтвенной деятельнocти. Aнaлиз депoзитнoгo пoртфеля бaнкa, его прoблемы и перcпективы развития.
дипломная работа [289,2 K], добавлен 21.05.2012History of introduction of a modern banking system to the Muslim countries, features of their development and functioning in today's market economy. Perspectives of future development of Islamic banking in the world and in the Republic of Kazakhstan.
курсовая работа [1,3 M], добавлен 19.04.2012Сущность понятия "ипотечное кредитование". Объемы ипотечного кредитования в Казахстане. Основные источники финансирования жилищного строительства Астаны. Кредитный портфель АО "Kaspi Bank". Предложения по совершенствованию ипотечного кредитования.
доклад [14,2 K], добавлен 09.12.2010Asian Development Fund. Poverty reduction in Asia and the Pacific. Promotion of pro poor, sustainable economic growth. Supporting social development. Facilitating good governance. Long-term Strategic Framework. Private, financial sector development.
презентация [298,7 K], добавлен 08.07.2013History of the online payment systems. Payment service providers. Online bill payments and bank transefrs. Pros and cons for using online payment systems. Card Holder Based On Biometrics. Theft in online payment system. Online banking services, risk.
реферат [37,2 K], добавлен 26.05.2014The concept and general characteristics of the banking system and its main elements of the claimant. Current trends and prospects of development of the banking system, methods of its realization, legal foundation. Modern banking services in Ukraine.
контрольная работа [21,7 K], добавлен 02.10.2013Оценка современного состояния и перспектив дальнейшего развития банковской системы Казахстана, причины опережения развития по сравнению с постсоветскими странами. Характеристика "HSBC Bank Kazakhstan", анализ и оценка его сервисов, микро- и медиасреда.
презентация [125,7 K], добавлен 17.02.2011Раскрытие сущности и характеристика основных видов кредитования населения. Общие условия и методы кредитования. Кредитная политика и анализ структуры кредитного портфеля в КФ АО "Kaspi bank". Кредитный мониторинг проблемных потребительских кредитов.
дипломная работа [312,2 K], добавлен 25.10.2015Внедрение CRM и его преимущества. Общая характеристика Сбербанка, стратегия и элементы бизнес-модели. Задекларированные высокоуровневые цели и направления развития CRM в исследуемом банке. Ожидаемые результаты реализации стратегии и критерии успеха.
дипломная работа [2,2 M], добавлен 15.01.2017Оценка основных показателей деятельности банка, величина собственного капитала, коэффициенты доходности и прибыльности АО "Kaspi bank". Анализ динамики и структуры его кредитного портфеля. Финансовые отношения банка с клиентами и расчетные операции.
курсовая работа [648,3 K], добавлен 08.12.2014The history of the development of Internet banking in Kazakhstan and abroad. Analysis of the problems faced by banks in the development of this technology. Description of statistical of its use and the dynamics of change. Security practices for users.
презентация [1,3 M], добавлен 24.05.2016Анализ и оценка финансово-экономической деятельности банка на примере ОАО "Кaspi bank". Организационно-экономическая характеристика и финансовые показатели деятельности коммерческого банка, разработка рекомендаций по его финансовому оздоровлению.
курсовая работа [1,2 M], добавлен 05.05.2015