Роль биотехнологии в народном хозяйстве
Биотехнологические пути защиты растений от рассмотренных вредоносных агентов. Понятие технологической биоэнергетики. Получение этанола, метана, биогаза и других углеводородов. Пути повышения эффективности фотосинтетических систем. Свойства антибиотиков.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.12.2012 |
Размер файла | 292,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Биотехнологические разработки могут внести немаловажный вклад в решение комплексных проблем народного хозяйства, здравоохранения и науки.
Для удовлетворения пищевых потребностей необходимо увеличить эффективность растениеводства и животноводства. Именно на это, в первую очередь, нацелены усилия биотехнологов. Кроме того, биотехнология предлагает как источник кормового (возможно, и пищевого) белка клеточную массу бактерий, грибов и водорослей.
Во-вторых, повышение цен на традиционные источники энергии (нефть, природный газ, уголь) и угроза исчерпания их запасов побудили человечество обратиться к альтернативным путям получения энергии. Биотехнология может дать ценные возобновляемые энергетические источники: спирты, биогенные углеводороды, водород. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельскохозяйственного производства.
В-третьих, уже в наши дни биотехнология оказывает реальную помощь здравоохранению. Нет сомнений в терапевтической ценности инсулина, гормона роста, интерферонов, факторов свертывания крови и иммунной системы, тромболитических ферментов, изготовленных биотехнологическим путем. Помимо получе ния лечебных средств, биотехнология позволяет проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, моноклональных антител, ДНК/РНК-проб. С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.
В-четвертых, биотехнология может резко ограничить масштабы загрязнения нашей планеты промышленными, сельскохозяйственными и бытовыми отходами, токсичными компонентами автомобильных выхлопов и т. д. Современные разработки нацелены на создание безотходных технологий, на получение легко разрушаемых полимеров (в частности, биогенного происхождения: поли-b-оксибутирата, полиамилозы) и поиск новых активных микроорганизмов-разрушителей полимеров (полиэтилена, полипропилена, полихлорвинила). Усилия биотехнологов направлены также на борьбу с пестицидными загрязнениями -- следствием неумеренного и нерационального применения ядохимикатов.
Биотехнологические разработки играют важную роль в добыче и переработке полезных ископаемых, получении различных препаратов и создании новой аппаратуры для аналитических целей. [5,8,11]
1. Биотехнология и сельское хозяйство. Биотехнология и растениеводство
Культурные растения страдают от сорняков, грызунов, насекомых-вредителей, нематод, фитопатогенных грибов, бактерий, вирусов, неблагоприятных погодных и климатических условий. Перечисленные факторы наряду с почвенной эрозией и градом значительно снижают урожайность сельскохозяйственных растений. Известно, какие разрушительные последствия в картофелеводстве вызывает колорадский жук, а также гриб Phytophtora-- возбудитель ранней гнили (фитофтороза) картофеля. Кукуруза подвержена опустошительным «набегам» южной листовой гнили, ущерб от которой в США в 1970 г. был оценен в 1 млрд. долларов.
В последние годы большое внимание уделяют вирусным заболеваниям растений. Наряду с болезнями, оставляющими видимые следы на культурных растениях (мозаичная болезнь табака и хлопчатника, зимняя болезнь томатов), вирусы вызывают скрытые инфекционные процессы, значительно снижающие урожайность сельскохозяйственных культур и ведущие к их вырождению.
Биотехнологические пути защиты растений от рассмотренных вредоносных агентов включают:
1) выведение сортов растений, устойчивых к неблагоприятным факторам;
2) химические средства борьбы (пестициды) с сорняками (гербициды), грызунами (ратициды), насекомыми (инсектициды), нематодами (нематоциды), фитопатогенными грибами (фунгициды), бактериями, вирусами;
3) биологические средства борьбы с вредителями, использование их естественных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.
Наряду с защитой растений ставится задача повышения продуктивности сельскохозяйственных культур, их пищевой (кормовой) ценности, задача создания сортов растений, растущих на засоленных почвах, в засушливых и заболоченных районах. Разработки нацелены на повышение энергетической эффективности различных процессов в растительных тканях, начиная от поглощения кванта света и кончая ассимиляцией СО2 и водно-солевым обменом.
Выведение новых сортов растений. Традиционные подходы к выведению новых сортов растений -- это селекция на основе гибридизации, спонтанных и индуцированных мутаций. Методы селекции не столь отдаленного будущего включают генетическую и клеточную инженерию.
Генетическую инженерию предлагают использовать для выведения азотфиксирующих растений. В природных условиях азотфиксирующие клубеньковые бактерии, представители рода Rhizobium, вступают в симбиоз с бобовыми. Комплекс генов азотфиксации (nif) из этих или иных бактерий предлагают включить в геном злаковых культур. Трудности связаны с поиском подходящего вектора, поскольку широко используемые для подобных целей Agrobacteriumс плазмидами Ti и Ri не заселяют злаки. Планируют модификацию генома Agrobacterium, чтобы бактерия могла вступать в симбиоз со злаками и передавать им генетическую информацию. Другим решением проблемы могла бы быть трансформация растительных протопластов посредством ДНК. К компетенции клеточной инженерии относят создание новых азотфиксирующих симбиотических ассоциаций «растение -- микроорганизм».
В настоящее время выделены и клонированы гены sym, отвечающие за установление симбиотических отношений между клубеньковыми азотфиксаторами и растением-хозяином. Путем переноса этих генов в свободноживущие азотфиксирующие бактерии (Klebsiella, Azotobacter) представляется возможным заставить их вступить в симбиоз с ценными сельскохозяйственными культурами. Методами генетической инженерии предполагают также повысить уровень обогащения почвы азотом, амплифицируя гены азотфиксации у Klebsiellaи Azotobacter.
Разрабатываются подходы к межвидовому переносу генов asm, обусловливающих устойчивость растений к нехватке влаги, жаре, холоду, засоленности почвы. Перспективы повышения эффективности биоконверсии энергии света связаны с модификацией генов, отвечающих за световые и темновые стадии этого процесса, в первую очередь генов cfx, регулирующих фиксацию СО2 растением. В этой связи представляют большой интерес разработки по межвидовому переносу генов, кодирующих хлорофилл а/b-связывающий белок и малую субъединицу рибулозо-бис-фосфаткарбоксилазы -- ключевого фермента в фотосинтетической фиксации СО2. Гены устойчивости к некоторым гербицидам, выделенные из бактерий и дрожжей, были успешно перенесены в растения табака. Разведение устойчивых к гербицидам растений открывает возможность их применения для уничтожения сорняков непосредственно на угодьях, занятых сельскохозяйственными культурами. Проблема состоит, однако, в том, что массивные дозы гербицидов могут оказаться вредными для природных экосистем.
Некоторые культурные растения сильно страдают от нематод. Обсуждается проект введения в растения новых генов, обусловливающих биосинтез и выделение нематоцидов корневыми клетками. Важно, чтобы эти нематоциды не проявляли токсичности по отношению к полезной прикорневой микрофлоре. Возможно также создание почвенных ассоциаций «растение -- бактерия» или «растение -- гриб (микориза)» так, чтобы бактериальный (грибной) компонент ассоциации отвечал за выделение нематоцидов.
Важное место в выведении новых сортов растений занимает метод культивирования растительных клеток invitro. Регенерируемая из таких клеток «молодая поросль» состоит из идентичных по генофонду экземпляров, сохраняющих ценные качества избранного клеточного клона. В Австралии из культивируемых invitroклеточных клонов выращивают красные камедные деревья (австралийские эвкалипты), отличающиеся способностью расти на засоленных почвах. Предполагается, что корни этих растений будут выкачивать воду из таких почв и тем самым понижать уровень грунтовых вод. Это приведет к снижению засоленности поверхностных слоев почвы в результате переноса минеральных солей в более глубокие слои с потоками дождевой воды. В Малайзии из клеточного клона получена масличная пальма с повышенной устойчивостью к фитопатогенам и увеличенной способностью к образованию масла (прирост на 20--30%). Клонирование клеток с последующим их скринингом и регенерацией растений из отобранных клонов рассматривают как важный метод сохранения и улучшения древесных пород умеренных широт, в частности хвойных деревьев. Растения-регенеранты, выращенные из клеток или тканей меристемы, используют ныне для разведения спаржи, земляники, брюссельской и цветной капусты, гвоздик, папоротников, персиков, ананасов, бананов.
С клонированием клеток связывают надежды на устранение вирусных заболеваний растений. Разработаны методы, позволяющие получать регенеранты из тканей верхушечных почек растений. В дальнейшем среди регенерированных растений проводят отбор особей, выращенных из незараженных клеток, и выбраковку больных растений. Раннее выявление вирусного заболевания, необходимое для подобной выбраковки, может быть осуществлено методами иммунодиагностики, с использованием моноклональных антител или методом ДНК/РНК-проб. Предпосылкой для этого является получение очищенных препаратов соответствующих вирусов или их структурных компонентов.
Клонирование клеток -- перспективный метод получения не только новых сортов, но и промышленно важных продуктов. При правильном подборе условий культивирования, в частности при оптимальном соотношении фитогормонов, изолированные клетки более продуктивны, чем целые растения. Иммобилизация растительных клеток или протопластов нередко ведет к повышению их синтетической активности. Табл. 6 включает биотехнологические процессы с использованием культур растительных клеток, наиболее перспективные для промышленного внедрения.
Коммерческое значение в основном имеет промышленное производство шиконина. Применение растительных клеток, которые являются высокоэффективными продуцентами алкалоидов, терпенов, различных пигментов и масел, пищевых ароматических добавок (земляничной, виноградной, ванильной, томатной, сельдерейной, спаржевой) наталкивается на определенные трудности, связанные с дороговизной используемых технологий, низким выходом целевых продуктов, длительностью производственного процесса.
Таким образом, биотехнология открывает широкие перспективы в области выведения новых сортов растений, устойчивых к неблагоприятным внешним воздействиям, вредителям, патогенам, не требующих азотных удобрений, отличающихся высокой продуктивностью.
Таблица 1. Примеры клеточных культур -- высокоэффективных продуцентов ценных соединений (по О. Sahai, M. Knuth, 1985. К. Hahlbrock. 1986)
Биодеградация пестицидов. Пестициды обладают мощным, но недостаточно избирательным действием. Так, гербициды, смываясь дождевыми потоками или почвенными водами на посевные площади, наносят ущерб сельскохозяйственным культурам. Помимо этого, некоторые пестициды длительно сохраняются в почве, что тоже приводит к потерям урожая. Возможны разные подходы к решению проблемы:
1) усовершенствование технологии применения пестицидов, что не входит в компетенцию биотехнологии;
2) выведение растений, устойчивых к пестицидам; биодеградация пестицидов в почве.
К разрушению многих пестицидов способна микрофлора почвы. Методами генетической инженерии сконструированы штаммы микроорганизмов с повышенной эффективностью биодеградации ядохимикатов, в частности штамм Pseudomonasceparia, разрушающий 2, 4, 5-трихлорфеноксиацетат. Устойчивость того или иного пестицида в почве меняется при добавлении его в сочетании с другим пестицидом. Так, устойчивость гербицида хлорпро-фама увеличивается при его внесении совместно с инсектицидами из группы метилкарбаматов. Оказалось, что метилкарбаматы ингибируют микробные ферменты, катализирующие гидролиз хлорпрофама.
Микробная трансформация пестицидов имеет и оборотную сторону. Во-первых, быстрая деградация пестицидов сводит на нет их полезный эффект. Во-вторых, в результате микробного превращения могут образоваться продукты, сильно ядовитые для растений. При использовании гербицида тиобенкарба в Японии наблюдали подавление роста и развития риса. Установлено, что подавляет не сам гербицид, а его дехлорированное производное S-бензил-N,N-диэтилтиокарбамат. Чтобы предотвратить образование такого производного, тиобенкарб применяют в комбинации с метоксифеном, ингибитором дехлорирующего фермента микроорганизмов.
Биологическая защита растений от вредителей и патогенов. Из широкого спектра биологических средств защиты растений ограничимся рассмотрением средств борьбы с насекомыми-вредителями и патогенными микроорганизмами. Именно в этих областях имеются наибольшие перспективы.
К традиционным биологическим средствам, направленным против насекомых, принадлежат хищные насекомые. В последние годы арсенал «оружия» инсектицидного действия пополнен грибами, бактериями, вирусами, патогенными для насекомых (энтомо-патогенными). Многие виды насекомых-вредителей (тля, колорадский жук, яблоневая плодожорка, озимая совка и др.) восприимчивы к заболеванию, вызываемому грибом Beauveriabussiana. Препарат боверин из лиофильно высушенных конидий гриба сохраняет энтомопатогенность в течение года после обработки почвы или растений. Препарат пецилолин из гриба Poecilomycesfumoso-roseusприменяют для борьбы с вредителями кустарников, например смородины.
Важным источником бактериальных энтомопатогенных препаратов служит Bacillusthuringiensis. Эти препараты обладают высокой устойчивостью и патогенны для нескольких сотен видов насекомых-вредителей, в том числе для листогрызущих насекомых -- вредителей яблонь, винограда, капусты, лесных деревьев. Гены, отвечающие за синтез одного из токсинов В. thuringiensis, были изолированы и перенесены в растения табака. Необходимо, чтобы такие «энтомопатогенные» растения не содержали веществ, токсичных для человека и животных.
Вирусные препараты отличаются высокой специфичностью действия, длительным (до 10--15 лет) сохранением активности, устойчивостью к колебаниям температуры и влажности. Из многих сотен известных энтомопатогенных вирусов наибольшее применение находят вирусы ядерного полиэдроза, обладающие высокой эффективностью действия на насекомых-вредителей. Насекомых выращивают в искусственных условиях, заражают вирусом, из гомогенатов погибших насекомых готовят препараты. Применяют отечественные препараты вирин-ЭКС (против капустной совки), вирин-ЭНШ (против непарного шелкопряда). В последние годы для культивирования вирусов широко применяю; культуры клеток насекомых.
Комбинация из нескольких биологических средств нередко действует на вредителей более эффективно, чем каждый в от дельности. Смертность соснового шелкопряда резко возрастает, если вирус цитоплазматического полиэдроза применяют в сочетании с препаратами из Вас. thuringiensis. Эффективна комбинация биологических и химических средств защиты растений от насекомых.
Среди новых средств защиты растений -- вещества биогенного происхождения, ингибирующие откладку яиц насекомыми или стимулирующие активность естественных врагов насекомых вредителей: хищников, паразитов.
Разнообразны средства защиты растений от фитопатогенных микроорганизмов.
1. Антибиотики. Примерами могут служить триходермин и трихотецин, продуцируемые грибами Trichodermasp. и Trichoteciumroseum. Эти антибиотики используются для борьбы с корневыми гнилями овощных, зерновых и технических культур.
2. Фитоалексины, естественные растительные агенты, инактивирующие микробных возбудителей заболеваний. Эти соединения, синтезируемые в тканях растений в ответ на внедрение фитопатогенов, могут служить высокоспецифичными заменителями пестицидов. Фитоалексин перца успешно применяли при фитофторозе. Могут быть использованы также вещества, стимулирующие синтез фитоалексинов в растительных тканях.
3. Использование микробов-антагонистов, вытесняющих патогенный вид и подавляющих его развитие.
4. Иммунизация и вакцинация растений. Вакцинные препараты стремятся вводить непосредственно в прорастающие семена.
5. Введение в ткани растений специфичного агента (d-фактора), снижающего жизнеспособность возбудителя.
Биологические средства -- важная составная часть комплексной программы защиты растений. Эта программа предусматривает проведение защитных мероприятий агротехнического, биологического и химического плана наряду с использованием устойчивых сортов растений. Задачей комплексной программы является поддержание численности вредителей растений на экологически сбалансированном уровне, не наносящем ощутимого вреда культурным растениям. [3,4,7]
Биологические (бактериальные) удобрения применяют для обогащения почвы связанным азотом. Большое распространение получили препараты нитрагин и азотобактерин -- клетки клубеньковых бактерий и азотобактера, к которым добавляют стабилизаторы (мелассу, тиомочевину) и наполнитель (бентонит, почву). Азотобактерин обогащает почву не только азотом, но и витаминами и фитогормонами, гиббереллинами и гетероауксинами. Препарат фосфо-бактерин из Bacillusmegateriumпревращает сложные органические соединения фосфора в простые, легко усвояемые растениями. Фосфобактерин также обогащает почву витаминами и улучшает азотное питание растений.
Растения синтезируют ряд соединений, регулирующих их рост и развитие (фитогормоны, биорегуляторы). К их числу принадлежат ауксины, гиббереллины, цитокинины. Созревание плодов стимулирует этилен. Эти биорегуляторы находят применение в сельском хозяйстве. К числу новых, обнаруженных в последние годы биорегуляторов относят пептиды, имеются перспективы их применения в сельском хозяйстве. [10,11]
Биотехнология и животноводство.
Большое значение в связи с интенсификацией животноводства отводится профилактике инфекционных заболеваний сельскохозяйственных животных с применением рекомбинантных живых вакцин и генноинженерных вакцин-антигенов, ранней диагностике этих заболеваний с помощью моноклональных антител и ДНК/РНК-проб.
Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов -- бактерий, грибов, дрожжей, водорослей. Богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет получить 0,4- 0,6 т свинины, до 1,5 т мяса птиц, 25--30 тыс. яиц и сэкономить 5--7 т зерна (Р. С. Рычков, 1982). Это имеет большое народнохозяйственное значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице.
Одноклеточные организмы характеризуются высоким содержанием белка -- от 40 до 80% и более. Белок одноклеточных богат лизином, незаменимой аминокислотой, определяющей его кормовую ценность. Добавка биомассы одноклеточных к недостаточным по лизину растительным кормам позволяет приблизить их аминокислотный состав к оптимальному. Недостатком биомассы одноклеточных является нехватка серусодержащих аминокислот, в первую очередь метионина. У одноклеточных его приблизительно вдвое меньше, чем в рыбной муке. Этот недостаток присущ и таким традиционным белковым кормам, как соевая мука. Питательная ценность биомассы одноклеточных может быть значительно повышена добавкой синтетического метионина.
Производство кормового белка на основе одноклеточных -- процесс, не требующий посевных площадей, не зависящий от климатических и погодных условий. Он может быть осуществлен в непрерывном и автоматизированном режиме.
В нашей стране производится биомасса одноклеточных, в особенности на базе углеводородного сырья. Достигнутые успехи не должны заслонять проблемы, возникающей при использовании углеводородов как субстратов для крупномасштабного производства белка, -- ограниченность их ресурсов. Важнейшими альтернативными субстратами служит метанол, этанол, углеводы растительного происхождения, в перспективе водород.
Очищенный этанол на мировом рынке стоит почти вдвое дороже метанола, но этанол отличается очень высокой эффективностью биоконверсии. Из 1 кг этанола можно получить до 880 г дрожжевой массы, а из 1 кг метанола-до 440 г. Биомасса из этанола особенно богата лизином -- до 7%.
Большое значение для животноводства имеет обогащение растительных кормов микробным белком. Для этого широко применяют твердофазные процессы.
Перспективными источниками белка представляются фото-трофные микроорганизмы, в особенности цианобактерии рода Spirulinaи зеленые одноклеточные водоросли из родов Chlorellaи Scenedesmus. Наряду с обычными аппаратами для их выращивания используют искусственные водоемы. Добавление к растительным кормам биомассы Scenedesmusпозволяет резко повысить эффективность усвоения белков животными.
Таким образом, существуют разнообразные источники сырья для получения биомассы одноклеточных. Некоторые субстраты (этанол) дают столь высококачественный белок, что он может быть рекомендован в пищу. Цианобактерии рода Spirulinaиздавна используют в пищу ацтеки в Центральной Америке и племена, обитающие на озере Чад в Африке. [5,11,13]
2. Технологическая биоэнергетика
Технологическая биоэнергетика -- одно из направлений биотехнологии, связанное с эффективным использованием энергии, запасаемой при фотосинтезе. Это может быть достигнуто путем: 1) превращения биомассы, накопленной в результате фотосинтеза в дешевое и высококалорийное топливо -- метан и другие углеводороды, этанол и т. д.; 2) модификации самого процесса фотосинтеза, в результате которой энергия света с максимальной эффективностью используется на образование водорода или другого топлива, минуя стадию фотоассимиляции СО2 и синтеза компонентов клетки. На уровне теоретических разработок находится идея непосредственного преобразования энергии Солнца в электрическую (биофотоэлектрические преобразователи энергии).
Рассмотрим вначале путь, пролегающий через использование биомассы, в первую очередь, растительной, ресурсы которой в мире огромны и оцениваются в 100 млрд. т по сухому веществу в год. Лишь незначительная часть ее расходуется человечеством, но и эта часть дает до 14% потребляемой в мире энергии. Биомасса -- не только возобновляемый и почти даровой источник энергии, но и альтернатива тающим запасам полезных ископаемых. [1,8]
Получение этанола как топлива. Этанол -- экологически чистое топливо, дающее при сгорании СО2 и Н2О. Он используется в двигателях внутреннего сгорания в чистом виде или как 10--20%-ная добавка к бензину (газохол). В Бразилии уже к 1983 г. 75% автомобилей работали на 95%-ном этаноле, а остальные -- на газохоле. В США предполагают заменить на этанол 10% потребляемого бензина. Широкое внедрение этанола планируется в странах Западной Европы.
На значительных посевных площадях намечают выращивать сельскохозяйственные культуры, предназначенные для биотехнологической переработки в этанол. В условиях дефицита посевных площадей возникает проблема, которая уже в наши дни актуальна для Бразилии и выражается дилеммой: продовольствие или энергия. Производство этанола из растительного сырья не является безотходным: на каждый литр спирта приходится 12--14 л сточных вод с высокой концентрацией отходов, опасных для природных экосистем. Проблема рациональной переработки этих отходов не решена.
Классическим биообъектом, используемым при получении спирта, являются дрожжи Saccharomycescerevisiae. Дрожжи имеют ряд недостатков.
1. Конкуренция брожения и дыхания. Субстрат (например, глюкоза) лишь частично сбраживается до этанола. Оставшаяся часть безвозвратно теряется, превращаясь в результате дыхания в СО2 и Н2О. Процесс необходимо вести в анаэробных условиях или применять мутанты дрожжей, утратившие митохондрии и не способные к дыханию.
2. Чувствительность к этанолу, которая снижает выход целевого продукта на единицу объема биореактора. Получены устойчивые к этанолу мутанты, характеризующиеся измененным строением клеточных мембран.
3. Отсутствие ферментов, катализирующих расщепление крахмала, целлюлозы, ксилана. Необходим предварительный гидролиз субстрата или засев биореактора смешанной культурой, содержащей, помимо S. cerevisiae, микроорганизмы с соответствующей гидролитической активностью.
Бактерия Zymomonasmolilis, применявшаяся центральноамериканскими индейцами для сбраживания сока агавы, более эффективно сбраживает сахара и более устойчива к этанолу. Дальнейшее повышение устойчивости Z. mobilisк этанолу достигается добавлением в среду инкубации Mg2+ и ряда нуклео-тидных компонентов.
Термофильные бактерии, продуценты этанола характеризуются высокой скоростью роста и метаболизма, чрезвычайно стабильными ферментами, необычной для остальных бактерий устойчивостью к этанолу (до 15% и более). Термофилы способны к биоконверсии полисахаридных субстратов в этанол. Так, Thermoanaerobiumbrockiiсбраживает крахмал, Clostridiumthermocellum -- целлюлозу, Cl. thermohydrosulfuricumутилизирует продукты деградации целлюлозы с очень высоким выходом спирта. Перспективно применение экстремально термофильного продуцента спирта Thermoanaerobacterethanolicus. Планируют использование также ацидофильных (оптимум рН 1,5) и галофильных продуцентов спирта.
Повышение выхода спирта и стабилизация активности его продуцентов могут быть достигнуты путем иммобилизации клеток. Так, эффективный синтез этанола осуществлен с применением клеток Z. mobilis, иммобилизованных на хлопчатобумажных волокнах (S. Prentis, 1984). [7,9]
Получение метана и других углеводородов. Получение метана -- важный путь утилизации сельскохозяйственных отходов. Он получается в виде биогаза -- смеси метана и СО2. Присутствие СО2 ограничивает теплотворную способность биогаза как топлива, которая в зависимости от соотношения СН4/СО2 составляет 20,9--33,4 кДж/м3. Содержание метана в биогазе варьирует от 50 до 85%.
Непосредственно к образованию метана способна небольшая группа микроорганизмов, относящихся к архебактериям. Жизнедеятельность метанобразующих архебактерий протекает в строго анаэробных условиях. Субстратами для образования метана могут служить муравьиная и уксусная кислоты, метанол, газовые смеси (Н2 + СО, Н2 + СО2). Поскольку биогаз практически получают из сложных органических веществ (целлюлозы, крахмала, белков, липидов, нуклеиновых кислот), то для метан-образования применяют многокомпонентные микробные ассоциации.
Наряду с метанобразующими бактериями в состав таких ассоциаций входят микроорганизмы, переводящие органические субстраты в метанол, муравьиную и уксусную кислоты, Н2, СО и т. д. Примером может служить метаногенная ассоциация «MethanobacillusKuzneceovii», образующая метан при разложении биомассы водорослей (Чан Динь Тоай, 1984).
Процесс метанобразования отличается высокой эффективностью: до 90--95% используемого углерода переходит в метан. Поэтому метаногенные ассоциации с успехом используют для очистки сточных вод от органических загрязнений с одновременным получением высококалорийного топлива. До 5--10% потребленного углерода превращается в биомассу, которая также находит применение. Используют как жидко-, так и твердофазные процессы получения биогаза (биогазификации).
Наряду с биогазом метаногенные ассоциации образуют другие ценные продукты, например витамин В12 После переработки органического субстрата в биогаз остается материал, представляющий собой ценное минеральное (азотное и фосфорное) удобрение.
Получение биогаза -- процесс, отличающийся простотой оборудования и доступностью сырья, требует небольших капиталовложений. В Китае, Индии, ряде других стран эксплуатируются небольшие установки, в которые вносят подручный материал (солому, навоз и др.), что исключает затраты на доставку сырья. В Китае действует свыше 7 млн. малых установок вместимостью 10--15 л, достаточных для удовлетворения энергетических потребностей семьи из пяти человек.
Кроме метаногенных анаэробов существует другая группа организмов -- продуцентов углеводородов как заменителей топлива. Это микроводоросли -- Botryacoceus, Isochrysis, Nanochlo-ropsisи др. Углеводороды накапливаются в значительных количествах -- до 80% сухой массы клеток. В США действует ферма для выращивания водорослей с суммарной площадью водоемов 52 тыс. гектаров, дающая около 4800 м3 жидких углеводородов в сутки. Для улучшения топливных характеристик полученные из водорослей углеводороды подвергают гидрированию (Г Н Чернов, 1982). [7,9,10]
Получение водорода как топлива будущего. Получение водорода как топлива пока остается на уровне поисковых разработок. Это абсолютно чистое топливо, дающее при сгорании лишь Н2О, отличается исключительно высокой теплотворной способностью -- 143 кДж/г. Химический и электрохимический способы получения Н2 неэкономичны, поэтому заманчиво использование микроорганизмов, способных выделять водород. Такой способностью обладают аэробные и анаэробные хемотрофные бактерии, пурпурные и зеленые фототрофные бактерии, цианобактерии, различные водоросли и некоторые простейшие (Е. Н. Кондратьева, И. Н. Го-готов, 1981). Процесс протекает с участием гидрогеназы или нитрогеназы.
Гидрогеназа -- фермент, содержащий FeS-центры. Она катализирует реакцию
2Н+ + 2е- = Н2
Одна из технологических возможностей основана на включении изолированной гидрогеназы в состав искусственных Н2-генерирую-щих систем. Сложной проблемой является нестабильность изолированного фермента и быстрое ингибирование его активности водородом (продуктом реакции) и кислородом. Повышение стабильности гидрогеназы может быть достигнуто ее иммобилизацией (Чан Динь Тоай, 1984; Y. Nosakaet. al., 1986). Иммобилизация предотвращает ингибирование гидрогеназы кислородом.
Предложено много вариантов модельных систем, катализирующих образование водорода из воды за счет энергии света. Эти системы различаются механизмом улавливания энергии света и содержат хлоропласты или изолированный из них хлорофилл, а также восстановленные никотинамидные нуклеотиды. Некоторые системы наряду с водородом образуют кислород: в этом случае речь идет о биофотолизе воды.
Примером может служить система хлоропласт -- ферредоксин -- гидрогеназа. Ферредоксин служит промежуточным переносчиком электронов от фотосинтетической цепи хлоропластов к добавленной гидрогеназе. Серьезной проблемой является поддержание низкого парциального давления этих газов, с тем чтобы не наступило ингибирование гидрогеназы. При замене ферредоксина на флавопротеид или метилвиологен система образует только Н2. Флавопротеид и, по некоторым данным, метилвиологен защищают гидрогеназу от ингибирования кислородом. Разрабатываются системы с изолированным хлорофиллом, встроенным в детергент ные мицеллы или липосомы вместе с гидрогеназой. Предложена также система с гидрогеназой, иммобилизованной в агарозном геле, с которым прочно связан полимерный виологен и металлопорфирин, аналог хлорофилла.
Водород получают также с применением целых клеток микроорганизмов, стабильность которых возрастает при их иммобилизации. Высокоэффективными продуцентами Н2 являются пурпурные фототрофные бактерии, например Rhodopseudomonassp., которые при иммобилизации в агарозном геле дают до 180 мкмоль Н2 за 1 ч в пересчете на 1 мг бактериохлорофилла (М. Tadashi, A. Akira, 1983). Важное направление работ -- поиск продуцентов Н2 с устойчивой к О2 гидрогеназой.
Другим ферментом, катализирующим выделение водорода, является нитрогеназа. У всех микроорганизмов нитрогеназа состоит из двух, компонентов, а именно из MoFeS-протеида (молибдоферредоксина) и FeS-протеида (азоферредоксина). Основной функцией нитрогеназы является восстановление молекулярного азота:
N2 + 8H+ + 8е- + nАТФ -> 2NH3 + Н2 + nАДФ + n-фосфорная кислота
В отсутствие основного субстрата (N2) нитрогеназа катализирует энергозависимое восстановление Н+ с образованием Н2. Переключение фермента с одного режима работы на другой является технологической проблемой. Один из путей решения -- получение штаммов микроорганизмов с нитрогеназой, не утилизирующей азот.
В Японии получен штамм Anabaenasp., который осуществляет биофотолиз воды в режиме, не чувствительном к Н2, О2 и N2. Повышению эффективности биофотолиза воды способствует чередование периодов функционирования биообъекта как продуцента Н2 и О2 с периодами «отдыха», когда клетки фотоассими-лируют СО2 (вводимый на этот период в среду культивирования). Возможно комбинирование процессов получения Н2 и других ценных продуктов. В частности, представители рода Clostridiumдают органические растворители и в то же время обладают активной гидрогеназой. Если в реакторе с культурой Cl. saccharo-perbutylacetoniocumне создавать оттока для выделяющегося Н2, то наблюдается ингибирование образования Н2 и эффективный синтез бутанола, ацетона и этанола. Если водороду обеспечивают свободный отток, то наряду с довольно активным образованием Н2 культура синтезирует лишь этанол. Этот пример иллюстрирует возможность управления ходом биотехнологического процесса условиями культивирования биообъекта.
Таким образом, предложены разнообразные проекты систем для получения водорода с использованием биообъектов. Речь идет о вмешательстве человека в процесс биоконверсии энергии с целью добиться ее возможно более полного превращения в энергию химической связи в молекуле Н2. [2,3,4]
Пути повышения эффективности фотосинтетических систем. Рассчитанная теоретически эффективность фотосинтеза, т. е. коэффициент превращения световой энергии в химическую энергию органических веществ, близка к 15%. Фактически, однако, наиболее продуктивные культурные растения запасают не более 1,5--2% энергии падающего света. Актуальная проблема технологической биоэнергетики -- повышение эффективности фотосинтеза у культурных растений.
Разрабатывают следующие основные подходы к решению этой проблемы: 1) повышение коэффициента превращения солнечной энергии до 4--5% за счет увеличения площади листьев и их раннего формирования; 2) вмешательство в системы регуляции фотосинтеза -- сбалансированное использование фитогормонов, трансплантация регуляторных генов; 3) увеличение скорости роста растений за счет оптимизации водного и минерального питания, что приведет к повышению их фотосинтетической активности; 4) увеличение числа хлоропластов в клетке на единицу площади листа; 5) установление оптимального соотношения между функционирующими реакционными центрами хлорофилла и промежуточными переносчиками электронов, например, цитохромами; 6) увеличение скорости переноса электронов между фотосистемами I и II и эффективности сопряжения между транспортом электронов и синтезом АТФ.
Радикальным способом максимизации эффективности фотосинтеза было бы создание искусственных фотосистем, имитирующих основные блоки фотосинтетического аппарата живых организмов, но внедрение подобных преобразователей энергии, по-видимому, отделено от нас несколькими десятилетиями. [1,8,9]
Биотопливные элементы. На уровне поисковых разработок находятся биотоплйвные элементы, превращающие химическую энергию субстрата в электрическую. Примерами могут служить топливные элементы на основе окисления метанола в муравьиную кислоту с участием алкогольдегидрогеназы, муравьиной кислоты в CU2 с участием формиатдегидрогеназы, глюкозы в глюконовую кислоту с участием глюкозооксидазы. Используют также катали -тическую активность целых клеток, например Е. coli, Вас. subtilis, Ps. aeruginosa, в реакции окисления глюкозы.
Окисление субстрата происходит на электроде (аноде). Посредником между субстратом и анодом является биокатализатор. Существуют два пути дальнейшей передачи электронов наэлектрод:
1) с участием медиатора и
2) непосредственный транспорт электронов на электрод (А. И. Ярополов, И. В. Березин, 1985). Конструкция биотопливного элемента позволяет генерировать не только электрический ток, но и осуществлять важные химические превращения. Например, топливный элемент с глюкозооксида-зой и p-D-фруктофуранидазой переводит сахарозу в смесь фруктозы и глюконовой кислоты.
Ферментные электроды применяются не только в топливных элементах. Они представляют собой основной компонент биологических датчиков -- биосенсоров, широко применяемых в химической промышленности, медицине, при контроле за биотехнологическими процессами, в аналитических целях и т. д. Обычно используют системы с биокатализатором, иммобилизованным на поверхности мембранного электрода. Например, иммобилизацией пенициллиназы на обычном рН-электроде получают чувствительный биосенсор, регистрирующий концентрацию пенициллина. Иммобилизация клеток Е. coliна кислородном электроде дает биосенсор для измерения концентрации глутаминовой кислоты, а иммобилизация клеток Nitro-somonassp. и Nitrobactersp. на том же электроде -- биосенсор на NH4+. На биосенсоре протекают следующие превращения: NH4+NitrosomonasNO2 NitrobacterNO3 Разработаны биосенсоры для быстрой регистрации концентрации глюкозы в крови больного, что особенно важно при диагностике диабета.
3. Биотехнология и медицина
Нет такого экспериментального подхода или исследовательского направления в биотехнологии, которые бы не получили применения в медицине. Вот почему столь многообразны связи между биотехнологией и самой гуманной из всех наук. Здесь мы остановимся лишь на основных моментах. [2,3,7,13]
Антибиотики -- это специфические продукты жизнедеятельности, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов и к злокачественным опухолям, избирательно задерживающих их рост или полностью подавляющих развитие (Н. С. Егоров, 1979). Далеко не все из этих соединений, число которых приближается к 5000, допущены для применения в медицине. К важнейшим антибиотикам терапевтического назначения принадлежат следующие их классы (табл. 2).
Приведенные классы антибиотиков не исчерпывают их многообразия, список их пополняется с каждым годом. Причины неослабевающего внимания к поиску новых антибиотиков, как видно из табл. 10, связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики. Основные пути поиска включают:
1.Испытание новых продуцентов. Так, с начала 80-х годов исследуют миксобактерии, продуцирующие большое количество антимикробных агентов (Н. Thierbach, N. Reichenbach, 1981).
2. Химическая модификация антибиотиков. Противомикроб-ные макролиды токсичны для человека. Например, гептаен амфо-терицин В, используемый по жизненным показаниям при тяжелых микозах, вызывает необратимые поражения почек. Получены метиловые эфиры амфотерицина, менее токсичные и сохраняющие противогрибковую активность. При модификации пенициллинов и цефалоспоринов используют иммобилизованные ферменты.
3. Мутасинтез. Применяют мутантные штаммы, у которых блокирован синтез отдельных фрагментов молекулы антибиотика. В среду культивирования вносят аналоги этих фрагментов. Микроорганизм использует эти аналоги для биосинтеза, в результате чего получают модифицированный антибиотик.
4. Клеточная инженерия. Получают гибридные антибиотики, например, с новыми комбинациями агликона и Сахаров.
5. Генетическая инженерия -- введение в геном микроорганизма информации о ферменте, необходимом для модификации продуцируемого антибиотика, например его метилирования при помощи метилаз.
Важной задачей является повышение эффективности биосинтеза известных антибиотиков. Значительных результатов удалось добиться за десятилетия селекции штаммов-продуцентов с применением индуцированного мутагенеза и ступенчатого отбора. Например, продуктивность штаммов Penicilliumпо синтезу пенициллина увеличена в 300--350 раз. Определенные перспективы открываются в связи с возможностью клонирования генов «узких мест» биосинтеза антибиотика или в случае, если все биосинтетические ферменты кодируются единым опероном.
Многообещающим подходом служит инкапсулирование антибиотиков, в частности их включение в лигюсомы, что позволяет прицельно доставлять препарат только к определенным органам и тканям, повышает его эффективность и снижает побочное действие. Этот подход применим и для других лекарственных препаратов. Например, кала-азар, болезнь, вызываемая лейгшма-нией, поддается лечению препаратами сурьмы. Однако лечебная доза этих препаратов токсична для человека. В составе липосом препараты сурьмы избирательно доставляются к органам, пораженным лейшманией, -- селезенке и печени.
Вместо антибиотика в организм человека может вводиться его продуцент, антагонист возбудителя заболевания. Этот подход берет начало с работ И. И.Мечникова о подавлении гнилостной микрофлоры в толстом кишечнике человека посредством молочнокислых бактерий. Важную роль в возникновении кариеса зубов, по-видимому, играет обитающая во рту бактерия Streptococcusmutans, которая выделяет кислоты, разрушающие зубную эмаль и дентин. Получен мутант Strept. mutans, который при введении в ротовую полость почти не образует коррозивных кислот, вытесняет дикий патогенный штамм и выделяет летальный для него белковый продукт. [11]
Гормоны. Биотехнология предоставляет медицине новые пути получения ценных гормональных препаратов. Особенно большие сдвиги произошли в последние годы в направлении синтеза пеп-тидных гормонов.
Раньше гормоны получали из органов и тканей животных и человека (крови доноров, удаленных при операциях органов, трупного материала). Требовалось много материала для получения небольшого количества продукта. Так, человеческий гормон роста (соматотропин) получали из гипофиза человека, каждый гипофиз содержит его не более 4 мг. В то же время для лечения одного ребенка, страдающего карликовостью, требуется около 7 мг соматотропина в неделю; курс лечения должен продолжаться несколько лет. С применением генноинже-нерного штамма Е. coliв настоящее время получают до 100 мг гормона роста на 1 л среды культивирования. Открываются перспективы борьбы не только с карликовостью, но и с низкорос-лостью -- более слабой степенью дефицита соматотропина. Соматотропин способствует заживлению ран и ожогов, наряду с каль-цитонином (гормоном щитовидной железы) регулирует обмен Са2+ в костной ткани.
Инсулин, пептидный гормон островков Лангерганса поджелудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Препарат отличался от человеческого инсулина 1--3 аминокислотными заменами, так что возникала угроза аллергических реакций, особенно у детей. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.
Компания EliLilly с 1982 г. производит генноинженерный инсулин на основе раздельного синтеза Е. coliего А- и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому. С 1980 г. в печати имеются сообщения о клонировании у Е. сой гена проинсулина -- предшественника гормона, переходящего в зрелую форму при ограниченном протеолизе.
К лечению диабета приложена также технология инкапсули-рования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года.
Компания IntegratedGenetics приступила к выпуску фолли-кулостимулирующего и лютенизирующего гормонов. Эти пептиды составлены из двух субъединиц. На повестке дня вопрос о промышленном синтезе олигопептидных гормонов нервной системы -- энкефалинов, построенных из 5 аминокислотных остатков, и эндорфинов, аналогов морфина. При рациональном применении эти пептиды снимают болевые ощущения, создают хорошее настроение, повышают работоспособность, концентрируют внимание, улучшают память, приводят в порядок режим сна и бодрствования. Примером успешного применения методов генетической инженерии может служить синтез р-эндорфина по технологии гибридных белков, описанной выше для другого пептидного гормона, соматостатина.
Значителен вклад биотехнологии и в промышленное производство непептидных гормонов, в первую очередь стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона, гормона надпочечников, применяемого для лечения ревматоидного артрита. При производстве стероидных гормонов широко используют иммобилизованные микробные клетки, например Arthrobacterglobiformis, для синтеза преднизолона из гидрокортизона. Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.
Интерфероны, интерлейкины, факторы крови. Интерфероны выделяются клетками человека и животных в ответ на инфици-рование вирусами. Они обладают антивирусной активностью. Механизм действия интерферонов до конца не выяснен. Предполагается, в частности, что Интерфероны препятствуют проникновению вирусных частиц в клетку. Интерфероны стимулируют деятельность иммунной системы и препятствуют размножению клеток раковых опухолей. Все аспекты действия интерферонов важны с точки зрения их терапевтического применения.
Различают a-, b-, g- и e-интерфероны, образуемые соответственно лейкоцитами, фибробластами соединительной ткани, Т-лимфоцитами и эпителиальными клетками. Наибольшее значение имеют первые три группы. Интерфероны состоят из146--166 аминокислотных остатков, b - и g-интерфероны связаны с остатками Сахаров (гликозилированы). До введения методов генетической инженерии интерфероны получали из донорской крови -- до 1 мкг неочищенного интерферона из 1 л крови, т. е. примерно одну дозу для инъекции.
В настоящее время a-, b- и g-интерфероны успешно получают с применением генноинженерных штаммов Е. coli, дрожжей, культивируемых клеток насекомых (Drosophila) и млекопитающих. Генно-инженерные интерфероны могут быть очищены с использованием моноклональных антител. В случае у- и р-интерферонов предпочтительно применение эукариотических продуцентов, так как прокариоты не гликозилируют белки. Некоторые фирмы, например Bioferon(ФРГ), используют не генноинженерные мутанты, а культивируемые invitroфибропласты человека.
Интерфероны используются для лечения болезней, вызываемых вирусами герпеса, бешенства, гепатитов, цитомегаловиру-сом, вирусом, вызывающим опасное поражение сердца, а также для профилактики вирусных инфекций. Вдыхание аэрозоля интерферонов позволяет предупредить развитие острых респираторных заболеваний. Несколько курьезной проблемой является то что интерфероны, в частности a-интерфероны, сами могут вызывать у пациентов простудные симптомы (насморк, повышение температуры и т.д.). Проблема побочного действия стоит особенно остро при длительном терапевтическом применении интерферонов, необходимом для лечения злокачественных опухолей.
Интерфероны оказывают лечебное воздействие на организм больных раком груди, кожи, гортани, легких, мозга, рассеянной миеломе и саркоме Капоци -- два последних заболевания характерны для лиц, страдающих приобретенными иммунодефицитами (см. ниже). Интерфероны полезны также при лечении рассеянного склероза.
Методы генетической инженерии позволяют получать модифицированные Интерфероны. Антивирусная активность интерферонов варьирует при аминокислотных заменах (J. Werenne, 1983). Американская компания CetusCorporation производит b-интер-ферон, в аминокислотной последовательности которого цистеин в положении 17 замещен на серии. Это приводит к повышению терапевтической активности препарата, так как предотвращает наблюдаемое invitroформирование неактивного димера b-интер-ферона за счет дисульфидных связей между остатками цистеина в положении 17. Определенные надежды возлагают на модификацию интерферонов путем получения гибридных молекул (Е. Д. Свердлов, 1984).
Интерлейкины--сравнительно короткие (около 150 аминокислотных остатков) полипептиды, участвующие в организации иммунного ответа. Интерлейкин-1, образующийся определенной группой лейкоцитов крови -- макрофагами, в ответ на введение антигена стимулирует размножение (пролиферацию) Т-хелперов (субпопуляции Т-лимфоцитов), продуцирующих, в свою очередь, интерлейкин-2. Последний вызывает пролиферацию различных субпопуляций Т-лимфоцитов -- Т-киллеров, Т-хелперов, Т-супрессоров, а также В-лимфоцитов, продуцентов антител. Под влиянием интерлейкина-2 из Т-лимфоцитов высвобождаются регуляторные белки -- лимфокины, активирующие звенья иммунной системы; синтезируются также Интерфероны. [8,7,10,11]
Заключение
растение технологическая биоэнергетика этанол метан антибиотик
Нет сомнения, потенциал биотехнологии в наши дни велик. Ей дано -- пусть в определенных границах -- перевивать поновому «нить жизни» -- ДНК -- методами генетической и клеточной инженерии, создавать биообъекты по заранее заданным параметрам и, как обычно добавляют, на благо человечества.
Всегда ли на благо? Думается, что уже из основного текста ясно: что накопленный разносторонний потенциал современной биотехнологии -- это обоюдоострый меч, который, подобно другим новым отраслям научно-технического прогресса, сформировавшимся в XX в. (ядерная энергетика, компьютерная электроника, космонавтика), может принести не только пользу, но и вред при бесконтрольном, неосторожном и тем более злонамеренном применении. Так, в распространении методов генетической инженерии видели угрозу заражения людей невиданными болезнетворными «генетическими монстрами», создания новых разновидностей злостных сорняков и даже выведения «стандартных людей» по заранее заданным программам. Потенциальную угрозу, заключающуюся в развитии биотехнологии, нельзя ни преувеличивать, ни преуменьшать, она в значительной мере определяется не чисто научно-техническими, а этическими и социально-политическими факторами. Как отмечено в материалах XXVII съезда КПСС, в разных общественно-политических системах научно-техническая революция оборачивается разными ее гранями и последствиями.
Биотехнология представляется «страной контрастов», сочетания самых передовых достижений научно-технического прогресса с определенным возвратом к прошлому, выражающимся в использовании живой природы как источника полезных для человека продуктов вместо химической индустрии.
Значительные контрасты характерны для биотехнологии и в отношении необходимых для ее развития финансовых средств, сырьевых материалов и кадров. Есть биотехнологические разработки, требующие весьма внушительных капиталовложений, концентрации усилий крупных коллективов научных работников, инженерно-технических и управленческих кадров, дорогостоящего сырья и оборудования (многие генноинженерные разработки, биотехнологические процессы с применением автоматизированных систем управления). Это так называемая «большая
...Подобные документы
История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.
шпаргалка [249,1 K], добавлен 04.05.2014Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.
курсовая работа [43,1 K], добавлен 07.11.2015Фитобиотехнология как составная часть биотехнологии, предмет и методы ее изучения, общие сведения и история развития. Характеристика и получение протопластов. Проблема создания векторов для введения чужеродной ДНК в протопласты растений, пути ее решения.
реферат [22,8 K], добавлен 24.01.2010Исходное сырьё для получение биогаза: отходы животного скота, птицеводства, химических заводов. Использование переработанной биомассы для удобрения полей и производства компоста. Способы внедрения биогазовых установок на энергетическом рынке России.
презентация [1,4 M], добавлен 08.12.2014Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.
реферат [25,0 K], добавлен 11.01.2013Особенности биотехнологии на службе пищевой промышленности. Жиры и углеводы как источники энергии, и проблема питания при их дефиците. Лизин, метионин - питательные добавки. Типы окислительных процессов бактерий. Биотехнологические процессы в пивоварении.
контрольная работа [27,3 K], добавлен 25.11.2010Иммуноглобулины как главные факторы специфической антимикробной защиты. Бактериостатические и бактерицидные свойства слюны. Механизмы формирования иммунологического фактора слюны. Роль слюны в защите организма от инфекционных и других чужеродных агентов.
презентация [708,6 K], добавлен 05.04.2015Пути передачи вирусов от одного растения к другому. Грибковые заболевание в виде белого мучнистого налета на листьях, побегах, бутонах растений. Лечение зараженных растений. Химическое протравливание, сбрызгивание, опыливание и другая обработка растений.
презентация [6,0 M], добавлен 16.11.2014Биотехнология как наука о методах и технологиях производства. Понятие генной и клеточной инженерии. Биотехнология сельскохозяйственных растений. Повышение урожайности и естественная защита растений. Устойчивость к гербицидам и неблагоприятным факторам.
реферат [34,6 K], добавлен 14.11.2010Активирование определенных ферментативных систем растений с помощью микроэлементов. Роль почвы как комплексного эдафического фактора в жизни растений, соотношение микроэлементов. Классификация растений в зависимости от потребности в питательных веществах.
курсовая работа [1005,7 K], добавлен 13.04.2012Понятие жизненной формы в отношении растений, роль внешней среды в ее становлении. Габитус групп растений, возникающий в результате роста и развития в определенных условиях. Отличительные черты дерева, кустарника, цветковых и травянистых растений.
реферат [18,9 K], добавлен 07.02.2010Основы и порядок формирования почв, факторы влияния на данный процесс. Черноземы и определение их значения в сельском хозяйстве Украины. Пути заражения человека через загрязненную почву, проблема накопления в растениях нитратов и пути ее разрешения.
реферат [17,8 K], добавлен 14.04.2010Характеристика эволюции человека в сфере коллективного сознания и резкий рост асимметрии в направлении доминирования позитивного рационального интеллекта, граничащего с прагматизмом. Определение природы биоэнергетики, ее значение и прикладные аспекты.
контрольная работа [19,0 K], добавлен 13.03.2009Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.
реферат [32,4 K], добавлен 23.07.2008- Биотехнологии: понятие, сущность, история возникновения. Основные направления и методы биотехнологии
Промышленное использование биологических процессов на основе микроорганизмов, культуры клеток, тканей и их частей. История возникновения и этапы становления биотехнологии. Основные направления, задачи и методы: клонирование, генная и клеточная инженерия.
презентация [1,5 M], добавлен 22.10.2016 Изучение биотехнологии - науки об использовании живых организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в продукты. Клонирование и биотехнология в животноводстве, перспективы генетической инженерии.
реферат [39,2 K], добавлен 04.03.2010Сущность понятия "фотопериодизм". Нейтральные, длиннодневные, короткодневные растения. Свет и его роль в жизни растений. Экологические группы растений по отношению к свету. Адаптация растений к световому режиму. Локализация фотопериодических реакций.
курсовая работа [25,9 K], добавлен 20.05.2011Закаливание растений. Сущность закаливания растений и его фазы. Закалка семян. Закаливание рассады. Реакция адаптации корневых систем, воздействуя на них температурами закаливания. Холодостойкость растений. Морозоустойчивость растений.
курсовая работа [43,4 K], добавлен 02.05.2005Физико-географическая характеристика территории произрастания западноевропейских растений, почвенный покров, растительность и животный мир. Маршрутный метод при флористических исследованиях полемохоров. Особенности гербаризации сосудистых растений.
дипломная работа [3,2 M], добавлен 27.01.2018Основные разделы биотехнологии и их характеристика. Клетка как объект биотехнологических исследований. Механизмы синтеза и распада веществ в живой клетке. Биополимеры и их производные. Классификация направлений пищевой биотехнологии по целевым продуктам.
курсовая работа [72,0 K], добавлен 15.12.2014