Влияние активаторов и ингибиторов на действие ферментов. Практическое значение

Скорость ферментативной реакции, механизм действия. Биологический смысл многоступенчатости переноса протонов и электронов. Реакция образования парного соединения из фенола и серной кислоты. Биосинтез гормонов щитовидной железы и их действие на организм.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 07.02.2013
Размер файла 102,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Влияние активаторов и ингибиторов на действие ферментов. Практическое значение

Скорость ферментативной реакции, как и активность фермента, в значительной степени определяется также присутствием в среде активаторов и ингибиторов: первые повышают скорость реакции, а вторые тормозят эту реакцию. Активирующее влияние на скорость ферментативной реакции оказывают разнообразные вещества органической и неорганической природы. Так, соляная кислота активирует действие пепсина желудочного сока;желчные кислоты повышают активность панкреатической липазы; некоторые тканевые ферменты (оксидоредуктазы, катепсины, аргиназа), растительная протеиназа и др. в значительной степени активируются соединениями, содержащими свободные SH-группы (глутатион, цистеин), а ряд ферментов - также витамином С.

Особенно часто активаторами выступают ионы двухвалентных и, реже, одновалентных металлов. Получены доказательства, что около четверти всех известных ферментов для проявления полной каталитической активности нуждаются в присутствии металлов. Многие ферменты вообще не активны в отсутствие металлов. Так, при удалении цинка угольная ангидраза (карбоангидраза), катализирующая биосинтез и распад Н2СО3, практически теряет свою ферментативную активность; более того, цинк при этом не может быть заменен никаким другим металлом. Известны ферменты , действие которых активируется ионами нескольких металлов; в частности, енолаза активируется Mg2+, Mn2+, К+

Ингибиторы тормозят действие ферментов. Механизм ингибирующего действия сводится к двум типам торможения (необратимое и обратимое).

Если ингибитор вызывает стойкие изменения пространственной третичной структуры молекулы фермента или модификацию функциональных групп фермента, то такой тип ингибирования называется необратимым. Чаще, однако, имеет место обратимое ингибирование, поддающееся количественному изучению на основе уравнения Михаэлиса-Ментен. Обратимое ингибирование в свою очередь разделяют на конкурентное и неконкурентное в зависимости от того, удается или не удается преодолеть торможение ферментативной реакции путем увеличения концентрации субстрата.

Конкурентное ингибирование может быть вызвано веществами, имеющими структуру, похожую на структуру субстрата, но несколько отличающуюся от структуры истинного субстрата. Такое ингибирование основано на связывании ингибитора с субстратсвязывающим (активным) центром. Классическим примером подобного типа ингибирования является торможение сукцинатдегидрогеназы (СДГ) малоновой кислотой. Этот фермент катализирует окисление путем дегидрирования янтарной кислоты (сукцината) в фумаровую.

Если в среду добавить малонат (ингибитор), то в результате структурного сходства его с истинным субстратом сукцинатом (наличие двух таких же ионизированных карбоксильных групп) он будет взаимодействовать с активным центром с образованием фермент-ингибиторного комплекса, однако при этом полностью исключается перенос атома водорода от малоната. Структуры субстрата (сукцинат) и ингибитора (малонат) все же несколько различаются. Поэтому они конкурируют за связывание с активным центром, и степень торможения будет определяться соотношением концентраций малоната и сукцината, а не абсолютной концентрацией ингибитора. Таким образом, ингибитор может обратимо связываться с ферментом, образуя фермент-ингибиторный комплекс. Этот тип ингибирования иногда называют ингибированием по типу метаболического антагонизма

В чем биологический смысл многоступенчатости переноса протонов и электронов? Назовите этапы переноса протонов и электронов, сопряженные с синтезом АТФ

При переносе электронов по окислительно-восстановительной цепи, локализованной в мембранах определенного типа, называемых энергопреобразующими, или сопрягающими, происходит неравномерное распределение H+ в пространстве по обе стороны мембраны.

Предложенная модель предусматривает определенное расположение переносчиков электронов в сопрягающей мембране, например ЦПМ, которые могут быть погружены в глубь мембраны или локализованы у наружной и внутренней ее поверхностей так, что образуют "петли" в цепи переноса электронов. В каждой "петле" (у прокариот электронтранспортные цепи в сопрягающих мембранах могут формировать разное число "петель") два атома водорода движутся от внутренней стороны ЦПМ к наружной с помощью переносчика водорода (например. хинона). Затем два электрона возвращаются к внутренней стороне мембраны с помощью соответствующего электронного переносчика (например, цитохрома), а два протона освобождаются во внешнюю среду.

Схема переноса электронов и протонов по электронтранспортной цепи и протонной АТФ-синтазы: АНг и В -- донор и акцептор электронов соответственно; 1, 2, 3 -- компоненты электронтранспортной цепи.

Что называется высаливанием? Чем высаливание отличается от коагуляции и что между ними общего?

Высаливание- выделение вещества из раствора путем введения в раствор другого, как правило, хорошо растворимого в данном растворителе вещества-высаливателя. Высаливаемое вещество может выделяться в виде новой фазы - твердого осадка, жидкой или газовой фазы, а в случае экстракции растворителем - переходить в фазу последнего.

Механизм высаливания из растворов В.М.С. существенно отличается от механизма коагуляции золей электролитами. В данном случае процесс не связан с понижением С-потенциала до критического, поскольку у растворов В.М.С. он почти не играет никакой роли. Высаливание наступает вследствие нарушения сольватной связи между макромолекулами В.М.С. и растворителем, т. е. вследствие десольватации частиц. Это приводит к постепенному понижению растворимости В.М.С. и, в конечном итоге, к выпадению его в осадок.

Высаливающее действие электролита проявляется тем сильнее, чем больше степень сольватации его ионов, т. е. чем выше его способность десольватировать макромолекулы В.М.С. Коагуляцию растворов В.М.С. вызывают оба иона прибавленного электролита. Высаливающим действием обладают не только соли, но также все вещества, способные взаимодействовать с растворителем и понижать растворимость В.М.С.

Характеристика класса лигаз (синтетаз). Примеры действия ферментов этого класса.

Класс ферментов, катализирующих присоединение друг к другу двух молекул, реакция сопряжена с расщеплением пирофосфатной связи в молекуле нуклеозидтрифосфата (НТФ) - обычно АТФ, реже гуанозин-или цитозинтрифосфата. Подклассы лигаз (их пять) сформированы по типам связей, которые образуются в результате реакции, а подподклассы - по типам субстратов.

К лигазам, катализирующим реакции, в к-рых образуются связи С--О, относятся аминоацил-тРНК-синтетазы, катализирующие ацилирование транспортных РНК соответствующими аминокислотами. Образование связи С--S катализируют ферменты, участвующие в синтезе ацильных производных кофермента А.

К ферментам, участвующим в образовании связи С--N, относятся амидсинтетазы (катализируют образование амидов из к-т и NH3 или аминов, напр. глутаминсинтетаза), пептидсинтетазы (катализируют образование пептидной связи, напр. L-глутамилцистеинсинтетаза), цикло-лигазы (катализируют образование гетероциклов, содержащих в кольце атом N, напр. фосфорибозиламиноимидазол - синтетаза) и некоторые другие.

Реакции, в результате которых образуется связь С--С, катализируют карбоксилирующие ферменты, содержащие в качестве кофактора биотин, напр. пируваткарбоксилаза.

Ряд лигаз (полидезоксирибонуклеотид-синтетаза) катализирует образование фосфодиэфирных связей в нуклеиновых кислотах. В сопряженной реакции гидролиз пирофосфатной связи может осуществляться между a- и b- или b- и g-фосфатными группами:


В реакции X и Y - субстраты, НДФ и НМФ - соответственно нуклеозиддифосфат и нуклеозидмонофосфат, Ф и ПФ - соответственно фосфорная и пирофосфорная кислоты. Для Лигаз, у которых в сопряженной реакции АТФ гидролизуется до аденозинмонофосфата (АМФ) и пирофосфата, предложен механизм, согласно которому в качестве интермедиата образуется ацил-АМФ; в этом случае АТФ реагирует непосредственно с субстратом X или Y. Некоторые лигазы. (напр., L-глутамилцистеинсинтетаза) функционируют по механизму трехстадийного переноса, для которого характерно образование ковалентного промежут. производного фермента:

Е + АТФ : Е--Ф + АДФ;

Е--Ф + X : Е--X + Ф;

Е--X + У : X--У + Е

Е - фермент, АДФ - аденозиндифосфат. Катализируемые лигазами реакции играют важную роль в биосинтезе и функционировании всех организмов.

Напишите формулу холестерола и его эфира со стеариновой кислотой. Общая схема биосинтеза холестерола, его биологическая роль в организме.

Все атомы углерода в структуре холестерина происходят из активной уксусной кислоты (Ацетил-КоА). Один из промежуточных продуктов - b-гидрокси-b-метилглутарил-КоА, кроме того, следует назвать сквален и ланостерин. Синтез холестерола происходит в цитоплазме клеток.

Сам процесс синтеза можно условно разделить на три этапа: 1 - образование мевалоната; 2 - образование сквалена: 3 - формирование структуры и завершающий этап синтеза холестерола.

Первый этап сходен с синтезом кетоновых тел, но происходит не в митохондриях, а в цитозоле. После образования b-гидрокси-b-метилглютарил-КоА (ГМГ-КоА) под действием фермента Гидроксиметилглютарил-КоА-редуктазы (мевалонатсинтетазы) ГМГ-КоА восстанавливается за счет двух молекул НАД*Н2 до мевалоновой кислоты.

Далее следует второй этап синтеза - образование сквалена (последний этап синтеза сквалена свойственен только животным клеткам, у растений вместо сквалена синтезируются каротины, структуры не из 30, а из 35 глеродных атомов).

На третьем этапе синтеза холестерина при участии молекулярного кислорода и восстановленного НАДФ (т.е. НАДФ*Н2) под действием ланостеринсинтетазы образуется циклическая структура, формируются кольца циклопентанпергидрофенантрена и таким образом синтезируется ланостерин - непосредственный предшественник холестерола.

Под влиянием ряда ферментов ланостерин теряет три углерода и трансформируется в холестерин. 

Каким путем происходит обезвреживание вредных для организма веществ, образующихся при гниении белков в кишечнике? Напишите реакцию образования парного соединения из фенола и серной кислоты

В процессе распада серосодержащих аминокислот (цистин, цистеин, метионин) в кишечнике образуются сероводород H2S и метил-меркаптан CH3SH. Диаминокислоты - орнитин и лизин - подвергаются процессу декарбоксилирования с образованием аминов - путресцина и кадаверина.

Из ароматических аминокислот: фенилаланин, тирозин и триптофан - при аналогичном бактериальном декарбоксилировании образуются соответствующие амины: фенилэтиламин, параоксифенилэтиламин (или тира-мин) и индолилэтиламин (триптамин). Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена - соответственно крезола и фенола, скатола и индола. После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или ска-токсилсерная кислота). Последние выделяются с мочой. Механизм обезвреживания этих продуктов изучен детально. В печени содержатся специфические ферменты - арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы - 3'-фосфоаденозин-5'-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы - уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов.

Синтез пуриновых нуклеотидов.

При синтезе нуклеотидов пуринового ряда формирование гетероциклического ядра идет непосредственно на рибозо-5-фосфата. Вначале синтезируется ФРПФ, который при взаимодействии с глутамином превращается в 5-фосфорибозиламин. Затем следует большая последовательность реакций, в ходе которых формируется пуриновое ядро. Первым нуклеотидом, образующимся в ходе синтеза является инозиновая кислота ( ИМФ ):.В процессе синтеза 1 молекулы инозиновой кислоты клеткой расходуется 6 молекул АТФ.

Глутамин, аспартат, глицин, углекислый газ образуются в организме, однако в условиях недостатка фолиевой кислоты могут возникнуть проблемы с обеспеченностью синтеза пуриновых нуклеотидов одноуглеродными группировками, переносчиками которых служит в клетках ТГФ.

Из ИМФ синтезируются другие нуклеотиды пуринового ряда. При синтезе АМФ идет аминирование ИМФ, источником аминогруппы служит аспартат. Реакция идет в два этапа, а затраты энергии покрываются за счет гидролиза ГТФ.

При синтезе гуаниловой кислоты вначале остаток гипоксантина в ИМФ окисляется до ксантина с образованием КМФ,а затем идет аминирование и превращение КМФ в ГМФ. Донором аминогруппы выступает глутамин, энергетика реакции обеспечивается расщеплением АТФ.

Образовавшиеся АМФ и ГМФ в ходе реакций трансфосфорилирования с АТФ преобразуются в АДФ и ГДФ, а затем последние подвергаются фосфорилированию за счет энергии, выделяющейся при биологическом окислении, превращаясь в АТФ и ГТФ.

Описанный синтез пуриновых нуклеотидов с использованием в качестве пластического материала атомных группировок из молекул других соединений получил название синтеза de novo. В клетках млекопитающих работают также механизмы реутилизации образовавшихся в ходе внутриклеточного расщепления пуриновых нуклеотидов азотистых оснований. Этот механизм синтеза пуриновых нуклеотидов получил название "синтез сбережения."

Наиболее важным путем реутилизации является фосфорибозилирование свободных азотистых оснований. Известны два варианта этого процесса:

а. При участии фермента гипоксантин-гуанин - фосфорибозилтрансферазы свободные гипоксантин или гуанин превращаются в ИМФ и ГМФ соотвественно:

б. При участии фермента аденин-фосфорибозилтрансферазы в аналогичной реакции свободный аденин превращается в АМФ.

Расщепление пуриновых нуклеотидов идет во всех клетках. Конечным продуктом катаболизма образующихся при расщеплении нуклеотидов пуриновых азотистых оснований является мочевая кислота. С наибольшей интенсивностью образование мочевой кислоты идет в печени, тонком кишечнике и почках. Установлено, что до 20% мочевой кислоты у человека может расщепляется до СО2 и NH3 и выделяться через кишечник, причем это расщепление мочевой кислоты не связано с действием кишечной микрофлоры.

Нуклеотиды в клетках подвергаются дефосфорилирования с образованием аденозина или гуанозина. Аденозин при участии фермента аденозиндезаминазы превращается в инозин и далее путем фосфоролиза в гипоксантин. Гипоксантин при участии ксантиноксидазы вначале окисляется в ксантин, а затем при участии того же фермента ксантин переходит в мочевую кислоту. При расщеплении ГМФ вначале в несколько этапов происходит образование свободного гуанина, который при участии фермента гуаназы переходит непосредственно в ксантин, а затем окисляется в мочевую кислоту.

Образовавшаяся мочевая кислота поступает в кровь и выводится через почки с мочей. Нормальное содержание мочевой кислоты в крови составляет 0,12 - 0,46 мМ/л. Общее количество растворенной мочевой кислоты в жидкой фазе организма ( уратный пул ) составляет для мужчин величину порядка 1,2 г. Ежесуточно с мочой выводится от О,5 до 0,7 г мочевой кислоты.

Витамин B1 - строение, биологическая роль

Витамин В1 (тиамин; антиневритный. В химической структуре его содержатся два кольца - пиримидиновое и тиазоловое, соединенных метиленовой связью. Обе кольцевые системы синтезируются отдельно в виде фосфорилированных форм, затем объединяются через четвертичный атом азота.

Тиамин хорошо растворим в воде. Водные растворы тиамина в кислой среде выдерживают нагревание до высоких температур без снижения биологической активности. В нейтральной и особенно в щелочной среде витамин B1, наоборот, быстро разрушается при нагревании. Этим объясняется частичное или даже полное разрушение тиамина при кулинарной обработке пищи, например выпечке теста с добавлением гидрокарбоната натрия или карбоната аммония. При окислении тиамина образуется тио-хром, дающий синюю флюоресценцию при УФ-облучении. На этом свойстве тиамина основано его количественное определение.

Витамин B1легко всасывается в кишечнике, но не накапливается в тканях и не обладает токсическими свойствами. Избыток пищевого тиамина быстро выводится с мочой. В превращении витамина B1в его активную форму - тиаминпирофосфат (ТПФ), называемый также тиамин-дифосфатом (ТДФ), участвует специфический АТФ-зависимый фермент тиаминпирофосфокиназа, содержащаяся главным образом в печени и ткани мозга.

Экспериментально доказано, что витамин B1в форме ТПФ является составной часть минимум 5 ферментов, участвующих в промежуточном обмене веществ. ТПФ входит в состав двух сложных ферментных систем - пируват - и б - кетоглутарат дегидрогеназных комплексов, катализирующих окислительное декарбоксилирование пировиноградной и б-кетоглутаровой кислот. В составе транскетолазы ТПФ участвует в переносе гликоальдегидного радикала от кетосахаров на альдосахара. ТПФ является коферментом пируватдекар-боксилазы клеток дрожжей (при алкогольной ферментации) и дегидро-геназы г-оксикетоглутаровой кислоты.

В частности, ТПФ участвует в окислительном декарбоксилировании глиоксиловой кислоты и б-кетокислот, образующихся при распаде аминокислот с разветвленной боковой цепью; в растениях ТПФ является эссенциальным кофактором при синтезе валина и лейцина в составе фермента ацетолактатсинтетазы.

Биосинтез гормонов щитовидной железы и их действие на организм животных

щитовидный гормон ингибитор ферментативный

Щитовидная железа играет исключительно важную роль в обмене веществ. Об этом свидетельствуют резкое изменение основного обмена, наблюдаемое при нарушениях деятельности щитовидной железы, а также ряд косвенных данных, в частности обильное ее кровоснабжение несмотря на небольшую массу (20-30 г). Щитовидная железа состоит из множества особых полостей - фолликулов, заполненных вязким секретом - коллоидом. В состав коллоида входит особый йодсодержащий гликопротеин с высокой мол. массой - порядка 650000 (5000 аминокислотных остатков). Этот глико-протеин получил название йодтиреоглобулина. Он представляет собой запасную форму тироксина и трийодтиронина - основных гормонов фолликулярной части щитовидной железы.

Помимо этих гормонов (биосинтез и функции которых будут рассмотрены ниже), в особых клетках - так называемых парафолликулярных клетках, или С-клетках щитовидной железы, синтезируется гормон пептидной природы, обеспечивающий постоянную концентрацию кальция в крови. Он получил название «кальцитонин».

Кальцитонины быка, овцы, свиньи и лососевых рыб мало отличаются друг от друга как по структуре и концевым аминокислотам, так и по гипокальциемической активности. Биологическое действие кальцитонина прямо противоположно эффекту паратгормона: он вызывает подавление в костной ткани резорбтивных процессов и соответственно гипокальциемию и гипофосфатемию. Таким образом, постоянство уровня кальция в крови человека и животных обеспечивается главным образом паратгормоном, кальцитриолом и кальцитонином, т.е. гормонами как щитовидной и паращитовидных желез, так и гормоном - производным витамина D3. Это следует учитывать при хирургических лечебных манипуляциях на данных железах.

Считается установленным, что все йодсодержащие гормоны, отличающиеся друг от друга содержанием йода, являются производными L-тиронина, который синтезируется в организме из аминокислоты L-тирозина.Из L-тиронина легко синтезируется гормон щитовидной железы тироксин, содержащий в 4 положениях кольцевой структуры йод. Следует отметить, что гормональной активностью наделены 3,5,3'-трийодтиронин и 3,3'-дийодтиронин, также открытые в щитовидной железе. Биосинтез гормонов щитовидной железы регулируется тиротропином - гормоном гипоталамуса.

Последовательность реакций, связанных с синтезом гормонов щитовидной железы, была расшифрована при помощи радиоактивного йода [131I]. Было показано, что введенный меченый йод прежде всего обнаруживается в молекуле монойодтирозина, затем - дийодтирозина и только потом - тироксина. Эти данные позволяли предположить, что монойод- и дийодтирозины являются предшественниками тироксина. Однако известно также, что включение йода осуществляется не на уровне свободного тироксина, а на уровне полипептидной цепи тиреоглобулина в процессе его постсинтетической модификации в фолликулярных клетках. Дальнейший гидролиз тиреоглобулина под действием протеиназ и пептидаз приводит к образованию как свободных аминокислот, так и к освобождению йодтиронинов, в частности тироксина, последующее депонирование которого способствует образованию трийодтиронина. Эта точка зрения кажется более правдоподобной с учетом универсальности постсинтетической химической модификации при биосинтезе биологически активных веществ в организме.

Катаболизм гормонов щитовидной железы протекает по двум направлениям: распад гормонов с освобождением йода (в виде йодидов) и дезами-нирование (отщепление аминогруппы) боковой цепи гормонов. Продукты обмена или неизмененные гормоны экскретируются почками или кишечником. Возможно, что некоторая часть неизмененного тироксина, поступая через печень и желчь в кишечник, вновь всасывается, пополняя резервы гормонов в организме.

Биологическое действие гормонов щитовидной железы распространяется на множество физиологических функций организма. В частности, гормоны регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечнососудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др.

Минеральные компоненты крови и их роль в организме животных

Из минеральных компонентов крови наиболее информативными, являются кальций и фосфор Снижение сг в крови наблюдается при рахите, остеомаляции, родильном парезе Хронические заболевания почек, поражение проксимальных и дистальных почечных канальцев, а также цирроз печени сопровождаются гипокальциемией.

Увеличение содержания Р в крови может наблюдаться при нефрозах и нефритах, желтой атрофии печени, гипервитаминозе Д, Гипофосфатемия наблюдается при рахите, я также при избытке Са в рационе. Большинство патологии, связанных с поражением кишечника, приводят к снижению Са и Р в крови но причине нарушения их всасывания и кишечнике. В крови кошек содержится: Са (10-12 мг%) Р (6-7 мг%).

Размещено на www.allbest.

...

Подобные документы

  • Характерная особенность гормонов щитовидной железы, ее действие на обмен углеводов и жиров. Функция щитовидной железы и ее связь с тиреотропным гормоном. Функциональная недостаточность щитовидной железы, свертывание и группы крови, обмен белков.

    контрольная работа [171,9 K], добавлен 24.10.2009

  • Анатомическое расположение щитовидной железы. Гипоталамо-гипофизарно-тиреоидная система. Действие тиреоидных гормонов на рост и развитие головного мозга. Оценка функции щитовидной железы. Схема синтеза йодтиронинов. Причины возникновения гипотиреоза.

    презентация [1,2 M], добавлен 25.10.2014

  • Гормоны коры и мозгового вещества надпочечников. Механизм действия стероидных гормонов. Функциональные взаимодействия в системе "гипоталамус - гипофиз - кора надпочечников". Гормоны щитовидной железы и их синтез. Синдромы нарушения выработки гормонов.

    презентация [1,9 M], добавлен 08.01.2014

  • Исследование распространенности заболеваний щитовидной железы в зависимости от возраста, выделение групп риска. Изучение методики определения уровня ТТГ и гормонов щитовидной железы. Характеристика процесса метаболизма йодида в тиреоидном фолликуле.

    дипломная работа [2,0 M], добавлен 05.03.2012

  • Биологическая роль ионов натрия и калия в процессе сокращения мышц и в поддержании водного баланса организма. Влияние температуры, активаторов и ингибиторов на активность ферментов. Фаза суперкомпенсации веществ, основные причины ее возникновения.

    контрольная работа [95,1 K], добавлен 25.11.2014

  • Природа константы К в уравнении. Преобразование уравнения Михаэлиса-Ментен. Влияние концентрации субстрата на кинетику реакции, образование устойчивого комплекса. Факторы, от которых зависит скорость ферментативной реакции, устройства для их определения.

    курсовая работа [278,9 K], добавлен 23.02.2012

  • Катализирующие окислительно-востановительные реакции. Особенность процесса оксидоредуктаза. Механизм связывания двух атомов водорода (протонов и электронов). Видовая специфичность цитохромов. Преобразование других моносахаров при участии фосфотрансфераз.

    реферат [21,9 K], добавлен 19.12.2013

  • Железы внутренней секреции у животных. Механизм действия гормонов и их свойства. Функции гипоталамуса, гипофиза, эпифиза, зобной и щитовидной железы, надпочечников. Островковый аппарат поджелудочной железы. Яичники, желтое тело, плацента, семенники.

    курсовая работа [422,0 K], добавлен 07.08.2009

  • Сходство физической природы звука и вибрации. Действие низкочастотной вибрации на клетки и ткани организма животных и человека. Патологические процессы, возникающие в результате действия вибрации. Совместное действие шума и вибрации на живой организм.

    контрольная работа [20,8 K], добавлен 21.09.2009

  • Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.

    презентация [5,3 M], добавлен 03.12.2013

  • Значение влажности среды при выращивании ферментов на сыпучих средах. Влияние степени аэрирования культур микроскопических грибов. Воздействие состава среды и длительности культивирования на биосинтез липазы. Способы обработки и выращивания культуры.

    презентация [734,7 K], добавлен 19.03.2015

  • Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.

    презентация [294,1 K], добавлен 17.10.2012

  • Уникальные свойства ферментов как биокатализаторов, их высокая каталитическая активность и избирательность действия. Определение наличия и активности фермента в препарате. Факторы, влияющие на биосинтез ферментов, интенсификация процесса роста и синтеза.

    реферат [19,5 K], добавлен 19.04.2010

  • Изучение ферментов, их свойств и механизма биологического действия. Проведение исследования современных представлений о механизме ферментативного трансаминирования. Разработка общей теории пиридоксалевого катализа. Строение фермент-субстратного комплекса.

    реферат [189,0 K], добавлен 14.03.2015

  • Теория передачи наследственной информации молекулярными цепочками ДНК. Механизмы образования форм организмов на примере миксомицеты и гидры. Микроскопические структуры на молекулярной основе, гипотеза существования веществ-активаторов и ингибиторов.

    реферат [705,7 K], добавлен 26.09.2009

  • Характеристика основных гормонов поджелудочной железы. Изучение этапов синтеза и выделения инсулина. Анализ биохимических последствий взаимодействия инсулина и рецептора. Секреция и механизм действия глюкагона. Исследование процесса образования C-пептида.

    презентация [72,8 K], добавлен 12.05.2015

  • Действие гормонов на клеточном уровне. Плохо проникающие в клетку гормоны (белково-пептидные, катехоламины), их действие через рецепторы на клеточной мембране. Использование аденилатциклазной, фосфоинозитидной, гуанилатциклазной и тирозинкиназной систем.

    лекция [2,0 M], добавлен 24.01.2010

  • Субстраты для синтеза эйкозаноидов, их структура, номенклатура и биосинтез. Механизмы действия эйкозаноидов: биологические эффекты. Роль эйкозаноидов в тромбообразовании. Действие на сердечно-сосудистую и нервную системы, водно-электролитный обмен.

    курсовая работа [1,8 M], добавлен 14.11.2010

  • Химическая классификация углеводов: полигидроксикарбонильные соединения. Свойства и структура моносахаридов, их химические свойства. Реакции брожения и их применение. Биосинтетические реакции углеводов. Производные моносахаров, гликозиды и их биосинтез.

    реферат [5,4 M], добавлен 27.08.2009

  • Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

    презентация [2,3 M], добавлен 21.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.