Эволюция жизни

Теория эволюции Ч. Дарвина. Причины макроэволюционного типостаза. Ограничения на пути арогенеза и ключевые ароморфозы. Критерии морфофизиологического прогресса. Основные направления неоламаркизма. Современные представления о наследственности организмов.

Рубрика Биология и естествознание
Вид книга
Язык русский
Дата добавления 14.06.2013
Размер файла 445,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В процессе приспособления к жизни на суше у растений совершенствовались вегетативные органы, в которых дифференцировались различные ткани: покровные (защищавшие растение от избыточного испарения и различных повреждений), механические (опорные, особенно важные в условиях возросшей в воздушной среде силы тяжести) и проводящие (обеспечивавшие транспорт веществ между различными органами). Особенно сложной для растений на суше стала проблема осуществления полового процесса: в воде подвижные мужские гаметы легко достигали яйцеклеток, тогда как в воздушной среде при неподвижности растений встреча гамет невозможна без специальных приспособлений, обеспечивающих их перенос от одного растения к другому. У высших наземных растений такие приспособления сформировались из гаплоидного поколения (гаметофита), которое редуцируется до одной - нескольких клеток (пыльца семенных растений). Диплоидное же поколение (спорофит) становится основным в жизненном цикле. Противоположное соотношение этих поколений в жизненном цикле - с преобладанием гаметофита - имеется лишь у мхов, что, вероятно, решающим образом ограничило адаптивные возможности этой группы в освоении суши: мхи выживают лишь в условиях достаточно высокой влажности и тесно связаны с субстратом.

Во влажном и теплом климате, характерном для первой поло вины каменноугольного периода, широкое распространение получила обильная наземная флора, имевшая характер густых влажных тропических лесов (рис. 47). Среди древовидных растении выделялись представители плаунообразных - лепидодендрон (Lepidodendraceae), достигавшие 40 м в высоту и до 2 м в диаметре у основания, и сигиллярии (Sigillariaceae) тридцатиметровой высоты. Стволы этих деревьев были покрыты характерным рельефным узором, образованным следами отпавших листьев (у взрослых деревьев листья сохранялись лишь в высокой кроне, где ствол дихотомически ветвился). Среди этих гигантов палеозойского леса высились и хвощеобразные пирамидальные каламиты (Calamitales) с членистым стеблем и мутовками мелких жестких листьев. Очень обильны были различные папоротники, как ползучие, так и древовидные, хотя и не достигавшие такой высоты, как плаунооб-разные, и составлявшие второй ярус лесной растительности и подлесок. Голосеменные были представлены разнообразными птеридоспермами, а также новой группой - кордаитами (Cordaitales). Кордаиты были высокими деревьями, стволы которых напоминали знакомые нам хвойные, но высоко расположенные кроны были образованы крупными, до 1 м в длину, ланцетообразными или лентовидными листьями. В древесине всех этих деревьев не обнаружено годичных колец, что говорит об отсутствии четко выраженной сезонности климата.

Наличие густых тропических лесов вдоль морских побережий, изрезанных лагунами, пересеченных дельтами рек и на больших территориях заболоченных, создавало предпосылки для интенсивного углеобразования. Мощные толщи каменных углей, сформировавшиеся в это время в разных районах земного шара, дали название каменноугольному периоду.

По мере заселения суши растениями возникли предпосылки для освоения наземной среды обитания животными. Вероятно, первыми на суше появились какие-то мелкие беспозвоночные, питавшиеся органическими остатками в почве. Возможно, такие животные появились уже к середине силурийского периода. Древнейшие известные наземные членистоногие - мелкие плоскоспинные многоножки (Myriapoda) со сдвоенными сегментами тела (как у современных двупарноногих - кивсяков) - были обнаружены в позднесилурийских и раннедевонских отложениях. М.С.Гиляров показал, что для многих групп беспозвоночных животных освоение суши началось с использования почвы как промежуточной среды обитания, в которой ряд факторов был в какой-то степени близок к показателям водной среды (высокая влажность, плотность субстрата). В почве можно использовать многие приспособления, сложившиеся в воде, при относительно незначительной их перестройке (аппарат передвижения, органы дыхания и др.). Вероятно, этим путем на сушу проникли из водоемов различные группы червей, которые в основном и остались почвенными обитателями, и членистоногих. Жизнь в почве и близких к ней местообитаниях характерна для наиболее примитивных современных групп членистоногих (онихофоры, многоножки, низшие насекомые - аптериготы и др.).

Приспособление животных к жизни на суше требовало, во-первых, перестройки локомоторного аппарата для передвижения в условиях возросшей по сравнению с водой силы тяжести; во-вторых, развития органов дыхания, способных усваивать кислород воздуха и избавлять организм от углекислого газа; в-третьих, формирования приспособлений, защищающих организм от обезвоживания. Последние включают развитие кожных покровов, снижающих потери воды с испарением (эпикутикула у членистоногих), а также совершенствование органов выделения, которые должны выводить из организма экскреты в малотоксичной и концентрированной (обезвоженной) форме. У водных животных чаще всего конечным продуктом азотистого обмена является аммиак, ядовитый и требующий для своего растворения значительного количества воды. У наземных форм выводятся из организма такие соединения, как мочевина, мочевая кислота, гуанин и др.

Замечательно, что очень сходные приспособления к наземной жизни формировались независимо и параллельно у представителей разных эволюционных стволов: в типе членистоногих, например, у нескольких самостоятельных линий среди хелицеровых (у скорпионов, пауков, сольпуг, клещей); во многом сходные адаптации развивались и у трахейных (у многоножек и насекомых). Отметим, что указанные выше приспособления растений к на-земности также формировались независимо и параллельно у пла-унообразных, членистостебельных, папоротникообразных. Параллельная эволюция вообще очень широко распространена в природе. Причины этой закономерности будут рассмотрены в последней части книги.

Из девона известны представители нескольких групп наземных членистоногих: палеозойская группа панцирных пауков (Soluta), клещи (Acaromorpha) и низшие первичнобескрылые группы насекомых (Insecta). Несомненно, разнообразие наземных беспозвоночных в девонском периоде было значительно большим, чем это представляется по дошедшим до нас скудным ископаемым остаткам.

Во второй половине раннекарбоновой эпохи появились наделенные крыльями высшие насекомые - птериготы. Вероятно, предки крылатых насекомых перешли к лазающей жизни на стволах и в Кронах деревьев. Для планирования при падениях и прыжках у Этих животных служили боковые уплощенные выступы тела на нудных сегментах. Из этих неподвижных придатков в процессе приспособительной эволюции естественный отбор сформировал удивительный в своем совершенстве летательный аппарат. Первоначально крылья имелись на всех 3 сегментах груди, хотя передняя пара еще сохраняла примитивное строение в виде неподвижных плоскостей, как это было, например, у палио-диктиоптеры (Palaeodictyoptera) (рис. 48). У большинства известных групп насекомых эта передняя пара крыльев утрачена. К концу карбона уже существовали разнообразные группы летающих насекомых, некоторые из них дожили до современности (поденки, стрекозы, тараканы, прямокрылые, равнокрылые, скорпионницы). В палеозое насекомые были единственными летающими животными.

Некоторые виды стрекоз тогда достигали крупных размеров: у верхнекарбоновых - нижнепермских Meganeura длина тела достигала 30 см, размах крыльев до 65 см.

Разнообразие наземных беспозвоночных в карбоне было дополнено появлением растительноядных брюхоногих моллюсков (Gastropoda) из группы легочных (Pulmonata), дышащих воздухом. Вслед за беспозвоночными к освоению наземной среды обитания приступили и позвоночные. Их выход на сушу был возможен лишь после появления соответствующей пищевой базы (достаточно обильной фауны наземных беспозвоночных). Эти крупные животные не могли использовать почву как промежуточную среду между водой и сушей. Поэтому освоение суши для позвоночных было возможно только в условиях влажного и теплого климата, наиболее благоприятного для животных, физиология которых еще во многом подобна физиологии рыб. С другой стороны, комплекс преадаптаций для перехода к наземной жизни должен был сформироваться у предков наземных позвоночных еще в водной среде.

Предками наземных позвоночных (тетрапод) стали кистеперые рыбы, обладавшие легкими и снабженными мощной мускулатурой парными конечностями - саркоптеригиями, которые, вероятно, позволяли этим рыбам не только передвигаться по дну водоемов среди густых зарослей, но и выбираться на мелководье, проползать по мелким протокам из одного водоема в другой. Внутренний скелет этих конечностей был образован одной крупной костью, сочлененной с поясом конечностей (плечевым или тазовым), далее следовал второй отдел из двух параллельных костей, и дистально располагались многочисленные мелкие косточки (рис. 45, в). В этой схеме легко просматривается прототип скелета конечностей наземных позвоночных.

Вероятно, некоторые виды кистеперых рыб перешли к освоению новой кормовой базы - обильной фауны беспозвоночных, обитавших на мелководье, среди прибрежных растений и по берегам водоемов. Это направление приспособительной эволюции вело дальше к освоению суши, с ее бурно развивавшейся флорой и фауной, в составе которой еще не было крупных хищников. Эту экологическую нишу и заняли наземные позвоночные.

Отметим, что приспособления к наземности независимо и параллельно развивались в нескольких линиях эволюции кистеперых рыб. В связи с этим Э.Ярвик выдвинул гипотезу о дифилетическом происхождении наземных позвоночных от двух разных групп кистеперых рыб (Osteolepiformes и Porolepiformes). Однако целый ряд ученых (А.Ромер, И.И.Шмальгаузен, К.Томсон, Э.И.Воробьева) подвергли аргументы Ярвика критике. Ныне большинство исследователей считают более вероятным монофилетическое происхождение тетрапод от остеолепиформных кистеперых, хотя при этом допускается возможность парафилии, т.е. достижения уровня организации земноводных несколькими близкородственными филетическими линиями остеолепиформных рыб, эволюционировавшими параллельно.

Наиболее древние представители земноводных (класс Amphibia) ихтиостеги (Ichthyostegalia, рис. 49) известны из верхнедевонских отложений Гренландии. Ихтиостеги были довольно крупными животными (свыше 80 см длиной), имевшими уже хорошо Развитые пятипалые конечности наземного типа, с помощью которых они, несомненно, могли переползать по суше. Однако значительную часть жизни ихтиостеги, вероятно, проводили в водоемах, будучи, по удачному выражению Ярвика, "четвероногими рыбами". Об этом говорит наличие у них настоящего хвостового плавника, напоминавшего хвост кистеперых рыб, а также сохранение во взрослом состоянии сейсмосенсорных рецепторов ("боковой линии" - органов чувств, которые функционируют только в водной среде, воспринимая инфразвуковые колебания и электромагнитные поля). В черепе ихтиостег сохранялись рудименты костей жаберной крышки (возможно, имелись и жабры, укрепленные на хрящевых жаберных дугах). Тело было покрыто мелкими костными чешуйками.

Вероятно, древнейшие земноводные, подобные ихтиостегам, в водной среде проигрывали конкуренцию многочисленным и разнообразным кистеперым рыбам, поскольку парные конечности наземного типа не могли быть эффективными рулями глубины при плавании. Преимущества пятипалых конечностей проявлялись лишь в наиболее мелких участках водоемов и на суше. Скорее всего, между кистеперыми рыбами и их потомками - земноводными-в девоне существовали конкурентные отношения, способствовавшие расхождению этих групп в разные адаптивные зоны: кистеперые рыбы доминировали в водоемах, а земноводные заняли промежуточные местообитания между водой и сушей (мелкие прибрежные участки водоемов, где свободное плавание затруднено; заболоченные районы; области с избыточной влажностью на суше). Попутно отметим, что этот тип местообитаний, промежуточных и пограничных между водой и сушей, остался и доныне наиболее благоприятной для земноводных адаптивной зоной, где амфибии сохранили преимущества и перед рыбами, и перед более совершенными наземными группами тетрапод. В позднем девоне уже началась дивергентная эволюция древнейших земноводных. Помимо ихтиостег в конце девона существовали представители и ряда других групп амфибий, ископаемые остатки которых были обнаружены в различных районах.

Любопытно, что число пальцев у этих животных часто достигало 7-8.

В карбоне начинается расцвет древних амфибий, представленных в верхнем палеозое большим разнообразием форм, которых условно объединяют под названием стегоцефалов, т.е. покрытоголовых.

Этот термин, не имеющий ныне таксономического значения, подчеркивает характерную особенность этих животных, голова которых была защищена унаследованным от ры сплошным костным панцирем (так называемый стегальный череп), пронизанным лишь отверстиями ноздрей, глазниц и "теменного глаза".

Наиболее известной из групп стегоцефалов являются лабиринтодонты (Labyrinthodontia), к числу которых принадлежат и ихтиостеги. Их название связано с любопытной особенностью строения зубов, также унаследованной от кистеперых рыб: эмаль и дентин образуют многочисленные складки, так что на поперечном шлифе возникает картина, напоминающая лабиринт.

Лабиринтодонты в верхнем палеозое были одной из наиболее Распространенных и обильных видами групп позвоночных. К ним принадлежали и мелкие, и крупные, более 1,5 м, формы. В карбоне преобладали виды со слабыми конечностями и длинным телом, которые, вероятно, обитали в многочисленных болотах. В пермское время появились крупные крокодилообразные стегоцефалы с большой уплощенной головой (подобные Eryops, см. рис.50, б), а также мелкие виды с лучше развитыми конечностями и укороченным туловищем и хвостом (Cacops, рис. 50, в). Эти последние жили, скорее всего, преимущественно на суше, питаясь различными беспозвоночными, хотя, как и все земноводные, нуждались в повышенной влажности воздуха и близости водоемов для 0тКдадки икры. Как считает ряд ученых, мелкие лабиринтодонты, державшиеся по берегам водоемов и спасавшиеся от наземных врагов прыжками в воду, стали предками бесхвостых земноводных (Anura), возникших, вероятно, в позднепермское время. Древнейший известный представитель бесхвостых амфибий Triadoba-trachus из раннего триаса Мадагаскара уже имел характерные пропорции тела и основные структурные особенности лягушек, хотя еще сохранял небольшой хвост.

Два других отряда современных амфибий в ископаемом состоянии известны из значительно более поздних отложений: хвостатые (Urodela) из средней юры, безногие, или червяги (Apoda). из ранней юры. Проблема их происхождения остается дискуссионной. По многим признакам скелета и мускулатуры головы хвостатые амфибии близки к бесхвостым и, возможно, имеют с ними общее происхождение.

Безногие амфибии стоят несколько особняком, сохраняя во многих отношениях наиболее примитивное строение среди современных земноводных. Некоторые палеонтологи связывают их происхождение с филогенетическим стволом стегоцефалов, объединяемых в подкласс лепоспондильных (Lepospondyli). (Согласно другой точке зрения, все три отряда современных амфибий имели общее происхождение, вероятно от лабиринтодонтов).

Среди лепоспондильных было много форм с сильно удлиненным телом и слабо развитыми конечностями. Таковы, например, лизорофы (Lysorophia). Представители другого отряда лепоспондильных - аистоподы (Aistopoda), как и червяги, совсем утратили конечности. Однако они не могли быть предками червяг, так как обладали рядом специфических особенностей строения. К лепоспондильным принадлежат также нектридии (Nectridia). Одно из их семейств отличалось причудливым строением черепа, задние углы которого непомерно разрастались вбок и назад в виде длинных конических выростов, так что голова в целом сверху выглядела подобной бумерангу. Предполагают, что эти выросты могли играть роль своего рода подводных крыльев, создававших при движении некоторую подъемную силу, способствуя планированию в воде.

От примитивных лабиринтодонтов уже в девоне обособилась группа антракозавров (Anthracosauria), древнейший представитель которых Tulerpeton был обнаружен в верхнедевонских отложениях Тульской области. Первоначально эти стегоцефалы также обитали в прибрежной зоне водоемов.

Однако среди антракозавров очень рано наметилась тенденция к освоению наземных местообитаний. Как и в большинстве случаев, эта тенденция независимо и параллельно развивалась в нескольких разных филетических линиях, в каждой из которых постепенно формировались во многом сходные приспособления к жизни на суше. Антракозавров и тех из их потомков, которые сохранили, несмотря на наземный образ жизни, общий уровень организации и характерные черты размножения и онтогенеза земноводных (с откладкой икры в водоемах и водными личинками, имеющими жабры), объединяют в подкласс батрахозавров, или "ящероземноводных" (Batrachosauria). К батрахозаврам принадлежат сеймурии (Seymouria; рис. 51), кот-лассии (Kotlassia) и родственные им формы, существовавшие в пермском периоде. Сеймурии долгое время считали не земноводными, а пресмыкающимися, так близки они по строению черепа, позвоночника и конечностей к настоящим рептилиям. Однако позднее были обнаружены остатки личиночных стадий этих животных, имевших следы каналов сейсмосенсорных органов на костях черепа и, следовательно, живших в воде.

От каких-то примитивных батрахозавров в раннем карбоне возникли настоящие рептилии (Reptilia), к которым, в частности, относят небольшую форму Westlothiana, обнаруженную в нижнекарбоновых отложениях Шотландии. В ее организации сочетаются прогрессивные (рептильные) особенности черепа и примитивное состояние ряда признаков позвоночника и конечностей ("мозаичность"). Р.Кэррол считает, что непосредственные предки пресмыкающихся могли быть близки по основным особенностям к позднекарбоновым гефиростегам (Gcphyrostegidae, рис. 51), которые, однако существовали слишком поздно, чтобы быть действительными предками рептилий. Возможно, гефиростеги были реликтовой группой, сохранившей ряд архаических особенностей строения, характерных для раннекарбоновых предков пресмыкающихся.

Несомненные рептилии известны начиная со среднего карбона. Е.Олсон указал на близкое совпадение времени появления пресмыкающихся и разнообразных групп высших насекомых-птеригот. Отметив, что все наиболее древние рептилии были относительно мелкими насекомоядными животными, Олсон пришел к выводу, что формирование пресмыкающихся как группы было тесно связано с использованием новой богатой пищевой базы, возникшей на суше с появлением насекомых.

Вероятно, уже в карбоне у пресмыкающихся сформировался целый комплекс приспособлений, позволивших им и их потомкам стать в полной мере наземными животными. Важнейшим из этих приспособлений, которое сделало возможными многие другие существенные изменения организации пресмыкающихся, было развитие эффективного механизма вентиляции легких посредством движений грудной клетки. Он сделал ненужным кожное дыхание, которое у земноводных является необходимым дополнением легочного, так как из-за несовершенства вентиляции легких, где скапливается избыток углекислого газа, земноводные нуждаются в выведении последнего через кожу. Поэтому в коже рептилий стало возможным усиление процессов ороговения эпидермиса, защитившего организм от постоянной потери влаги через покровы (неизбежного при кожном дыхании у земноводных) и риска гибели в сухом воздухе от обезвоживания. После этого пресмыкающиеся получили возможность заселить практически любые местообитания на суше, вплоть до безводных пустынь. Этому способствовало также развитие метанефрической (тазовой) почки и механизмов обратного всасывания воды из мочи, позволявших выводить из организма максимально концентрированные экскреты. После ликвидации кожного дыхания у рептилий стало возможным разделение в сердце артериальной (поступающей из легких) и венозной (идущей от всех остальных органов) крови, что также невозможно для земноводных, так как у них от кожи кровь поступает в правое предсердие, а от легких - в левое, и разделение этих потоков крови в желудочке сердца затруднило бы использование кожного дыхания. Все эти важнейшие достижения рептилий наряду с целым рядом усовершенствований скелета (увеличение подвижности головы с развитием особой формы передних шейных позвонков, некоторые преобразования в скелете конечностей и др.) создали важнейшие предпосылки для полного овладения наземной средой обитания.

Одновременно у древнейших рептилий сформировался второй комплекс приспособлений, избавивших от связи с водоемами все процессы, связанные с размножением. Это было появление внутреннего осеменения вместо характерного для земноводных наружного; формирование крупных яиц, обильно снабженных запасами питательных веществ (желтком) и способных обеспечить длительное развитие зародыша; образование прочных яйцевых оболочек, защищающих яйцо на суше от обезвоживания и механических повреждений; и наконец, возникновение особых зародышевых оболочек - амниона, серозы и аллантоиса, обеспечивающих благоприятную среду для развития зародыша, газообмен и накопление экскретов (из-за невозможности их выведения из яйца во внешнюю среду).

По признаку наличия этих зародышевых оболочек высшие классы наземных позвоночных объединяются в группу амниот, противопоставляемую низшим позвоночным - анамниям.

Древнейшие и наиболее примитивные пресмыкающиеся принадлежали к подклассу котилозавров (Cotylosauria). Название "котилозавр" подчеркивает характерную особенность черепа этих животных, защищающего голову сплошным костным панцирем, как у стегоцефалов, но более высокого и узкого и несколько напоминающего у некоторых котилозавров при взгляде сверху чашу или кубок, откуда и название (греч. kotylos - чаша, кубок). Центральной группой котилозавров являются капториноморфы (Captorhinomorpha, рис. 52), древнейшие представители которых известны из среднекарбоновых отложений. Это были небольшие, до 50 см длиной, насекомоядные животные.

Уже во второй половине каменноугольного периода возникло большое разнообразие форм пресмыкающихся, среди которых появились помимо насекомоядных растительноядные животные (диадектиды) и крупные хищники, питавшиеся позвоночными (некоторые более поздние капториноморфы и другие группы).

Удивительно, что некоторые филетические линии рептилий уже в карбоне вернулись в водоемы, став полуводными или даже полностью водными животными. Особенно интересны мезозавры Mesosauria конечности которых преобразовались в ласты, а длинные узкие челюсти (удобные для схватывания добычи в воде) были усажены многочисленными тонкими и острыми зубами. Остатки мезозавров были найдены в Южной Африке и Бразилии. Это хорошо соответствует представлениям о существовании в верхнем палеозое единого материка Гондваны.

Жизнь в позднем палеозое.

Как мы уже упоминали, начиная с верхнего карбона в Южном полушарии усилились процессы оледенения. На свободной от ледников территории Гондваны установился умеренный прохладный климат с выраженной сезонностью. Об этом говорит, в частности, наличие годичных колец в древесине гондванской флоры этого времени, получившей название глоссоптериевой по широко распространенным в ней видам семенного папоротника Glossopte-ris - небольшим растениям с крупными цельными листьями.

В состав глоссоптериевой флоры кроме различных семенных папоротников (птеридоспермов) входили также представители других групп голосеменных растений: кордаитов, гинкговых и хвойных. Глоссоптериевая флора была характерна для обширных территорий, соответствующих современным Индии, Афганистану, Южной Африке, Южной Америке, Австралии, Новой Зеландии и Антарктиде.

На северных континентах, входивших в состав Лавразии и располагавшихся в раннепермское время в значительной степени в экваториальном поясе, сохранялась растительность, близкая к тропической флоре карбона, но уже с меньшим богатством видов лепидодендронов и сигиллярий. К середине пермского периода во многих районах Лавразии климат становится все более засушливым, что приводит к изменению растительности: исчезают папоротники, каламиты, древовидные плаунообразные и другие влаголюбивые растения тропических лесов. Лишь на востоке Лавразии (современные Китай и Корея) климат и флора оставались в известной мере близкими к таковым в каменноугольное время.

Животный мир также претерпел значительные изменения на протяжении пермского периода, ставшие особенно драматичными во второй его половине. В наибольшей степени это коснулось морских животных, среди которых многие группы подверглись значительному угнетению, сопровождавшемуся уменьшением численности и разнообразия видов, вплоть до полного вымирания целых классов. Примерно в середине пермского периода вымирают последние трилобиты, эвриптериды, бластоидеи (один из классов прикрепленных иглокожих), палеозойские группы морских лилий. К концу перми исчезают тетракораллы, значительно сокращается число видов фораминифер среди простейших, морских ежей и офиур среди иглокожих, аммоноидей и наутилоидей среди моллюсков, остракод среди ракообразных, губок, мшанок и плеченогих. Из позвоночных вымирают акантондии, многие палеозойские группы хрящевых рыб. В пресных внутриконтинентальных водоемах значительно снижается численность хоановых рыб. К концу палеозоя вымирают лепоспондильные стегоцефалы. Изменения в наземной фауне были не столь значительны.

Пермское вымирание по своим масштабам принадлежит к категории так называемых "великих вымираний" и сравнимо, например, с широко известным великим вымиранием в конце мелового периода. Причины массовых вымираний, приводивших к радикальным изменениям общего облика фауны и флоры, во многом остаются загадочными. Вымирание вообще сопровождает эволюцию организмов как ее неизбежный побочный результат: в борьбе за существование выживают лишь те виды, которые оказались наиболее приспособленными при данных условиях. Вымирание отдельных видов происходило на любом отрезке эволюционной истории мира организмов либо в результате конкуренции с биологически близкими видами, либо по причине неспособности данного вида выдержать те или иные изменения абиотических факторов внешней среды. В обоих случаях возможности модифи-кационной изменчивости вымирающего вида и резерв его комби-нативной изменчивости оказываются недостаточными, чтобы обеспечить его выживание в изменяющейся внешней среде.

В принципе те же общие причины определяют фатальную судьбу для каждого вымирающего вида и в эпохи массовых вымираний, но тогда одновременно обрывается множество филетических линий. Это может происходить и достаточно постепенно (численность вымирающих видов падает от поколения к поколению на протяжении больших промежутков времени), но в огромной исторической перспективе геологического времени эти процессы нередко выглядят как относительно быстрые и резкие изменения фауны и флоры.

Очевидно, массовые вымирания обусловлены какими-то причинами, имевшими общее значение для эволюционной судьбы сразу многих филетических линий, принадлежащих к разным группам организмов. Конечно, при этом совсем не обязательно, чтобы изменения какого-то одного или нескольких важных факторов прямо влияли на все подвергающиеся вымиранию виды организмов. Нарушения структуры биоценозов, выходящие за пределы возможностей естественной саморегуляции этих биологических макросистем, должны прямо или косвенно сказываться на многих видах организмов. Вероятно, существенной чертой эпох великих вымираний было именно разрушение многих биоценозов (биоценотические кризисы, по определению Б.Б. Родендорфа и В.В.Жерихина). Биоценотические кризисы могут быть вызваны самыми различными причинами, как абиотическими - изменения климата, рельефа и т.п., так и биотическими - появление и массовое расселение новых групп организмов, причем часто имеет место целый комплекс взаимодействующих факторов, что очень затрудняет анализ конкретных случаев, особенно в далеком прошлом.

О причинах пермского вымирания было выдвинуто несколько гипотез. Большинство из них в конечном итоге опирается на теорию дрейфа континентов. Согласно гипотезе, предложенной Д.Валентайном и Э.Мурсом, образование Пангеи обусловило значительное сокращение общей площади мелководных бассейнов в области континентального шельфа, которая является наиболее благоприятной средой для жизни многих групп морских организмов. Это должно было привести к существенному нарушению многих сложившихся в середине палеозоя морских биоценозов и, как следствие, к вымиранию многих видов.

Другая гипотеза, выдвинутая Р. Боуэном, обращает внимание на потепление климата и завершение великого оледенения Гондваны во второй половине пермского периода, что могло быть связано с относительно небольшим смещением входивших в ее состав континентальных плит, в результате которого Южный полюс оказался в океане. Потепление климата привело к бурному таянию ледников и поступлению в океан огромного объема талых ввод, которое должно было вызвать понижение солености морской воды. Пермское вымирание отразилось в первую очередь именно на тех группах морских организмов, которые наиболее чувствительны к изменениям солености: кораллы, морские лилии, мшанки, брахиоподы, головоногие моллюски и др. Новая стабилизация температурного и солевого режима океана произошла уже в триасовом периоде, и разнообразие форм морских беспозвоночных к концу триаса вновь стало возрастать.

Для наземных животных изменения физических условий в позднем палеозое не имели столь катастрофических последствий, как для представителей морской фауны. Пермский период стал временем расцвета древних пресмыкающихся, быстро осваивавших все новые местообитания, вытесняя хуже приспособленных конкурентов из числа стегоцефалов и батрахозавров, с запозданием пытавшихся закрепиться на суше.

Котилозавры разделились на несколько основных эволюционных стволов, первоначальная дифференциация которых была связана, вероятно, с освоением разных способов питания и различных местообитаний. Самыми крупными котилозаврами были растительноядные парейазавры, известные из средне- и верхнепермских отложений Европы и Африки. Эти животные, Достигавшие 3 м длины, имели широкое массивное тело и крупный тяжелый череп с поразительно маленькой полостью, вмещавшей головной мозг. Наружная поверхность толстых черепных Костей была покрыта своеобразным бугорчатым рельефом из приросших к ним остеодерм (вторичных кожных окостенений, часто встречающихся у рептилий), по бокам черепа выступали толстые костные пластины-"щеки" (отсюда название этих животных: Pareiasauria - "щекастые ящеры"). Парейазавры были, вероятно, неповоротливы и медлительны, от нападений хищников их защищал панцирь из толстых костных бляшек-остеодерм, рядами сидевших в коже. Судя по строению зубов (довольно слабых, с плоской листовидной коронкой), пищей парейазавров служили какие-то сочные и мягкие растения. Возможно, парейазавры обитали по берегам водоемов и болот, питаясь водной растительностью, и были палеозойскими аналогами современных бегемотов.

Самые крупные хищники пермского времени принадлежали к подклассу зверообразных, или синапсидных рептилий (Theromorpha, или Synapsida). У этих пресмыкающихся в височной области черепа для его облегчения и предоставления необходимого пространства для сокращения мощных челюстных мышц возникла одна пара широких отверстий, или височных окон, пронизавших наружный черепной панцирь и ограниченных по бокам скуловыми дугами.

Такой тип черепа, называемый синапсидным, дал одно из названий подкласса.

Самыми древними зверообразными рептилиями были пеликозавры (Pelycosauria), появившиеся уже в позднем карбоне. Их расцвет приходится на раннепермское время, когда многие их представители достигали крупных размеров, до 2 м. Некоторые пеликозавры (диметродон - Dimetrodon, эдафозавр - Edaphosaurus и др.) имели странное приспособление: гипертрофированные остистые отростки спинных позвонков поднимались над позвоночником почти на 1 м, а у эдафозавра (рис. 56) на этих отростках имелись еще и короткие боковые выросты. Вероятно, между ними была натянута складка кожи, образуя огромный продольный гребень ("спинной парус"). Может быть, эта складка играла роль в терморегуляции, увеличивая поверхность тела, что могло в одних ситуациях усиливать теплоотдачу, в других же - содействовать повышению температура тела при обогревании в солнечных лучах (повышение температуры тела путем инсоляции, называемое гелиотермией, присуще всем современным рептилиям).

Большинство пеликозавров вымерло уже в середине пермского периода, вероятно не выдержав конкуренции с представителями возникшей от пеликозавров более прогрессивной группы зверообразных рептилий - терапсид (Therapsida). В позднепермской эпохе терапсиды стали доминирующей группой пресмыкающихся. Этому способствовал целый ряд присущих им прогрессивных особенностей, в частности усовершенствование наземного передвижения. У большинства рептилий сохранилось примитивное положение конечностей, при котором плечо и бедро располагаются в целом горизонтально, локоть и колено направлены вбок, и тело животного удерживается на весу между конечностями усилиями мышц (отсюда характерное для рептилий "пресмыкание", когда брюхо при движении лишь незначительно приподнимается над землей). У высших терапсид локтевой сустав повернулся назад, коленный - вперед, бедро и плечо (и конечности в целом) оказались расположенными под телом, высоко приподнятым над субстратом; для поддержки тела при этом не требуется столь значительной работы мышц, как у типичных пресмыкающихся.

У многих терапсид произошла дифференциация зубной системы на передние острые "резцы", крупные кинжалообразные "клыки" и заклыковые щечные зубы, которые у высших представителей этой группы (териодонтов, или "зверозубых", - Theriodontia) приобрели усложненную коронку с тремя бугорками, что позволяло более эффективно пережевывать пищу. Пережевывание пиши в ротовой полости требовало задержки дыхания, в связи с чем у терапсид развивается вторичное нёбо, разделившее примитивную ротовую полость на два этажа: верхний (носовой ход) и нижний (собственно ротовая полость).

Терапсиды были очень разнообразны: среди них были и хищники различных размеров, вплоть до трехметровых иностранцевий (Inostrancevia) с клыками более 10 см длиной (своего рода "саблезубых тигров" пермского периода), и растительноядные животные, иногда имевшие причудливое строение. Для некоторых растительноядных дейноцефалов (Deinocephalia, их название буквально означает "страшноголовые") характерны большие костные бугры или шишки на темени и щечной области черепа, придававшие голове этих животных устрашающий вид (скорее всего, это были защитные приспособления). Были и хищные дейноцефалы, например приземистый и длинный титанофонеус - Titanophoneus, большие лапы которого, по мнению Ю.А.Орлова, были снабжены плавательными перепонками, а сам этот хищник вел полуводный образ жизни.

В позднепермское время были широко распространены дици-нодонты (Dicynodontia), утратившие все зубы, кроме пары огромных верхних клыков, сохранявшихся у некоторых видов лишь у самцов. Беззубые челюсти были покрыты роговым клювом. Нелегко представить себе способ питания этих странных животных, среди которых были и сравнительно мелкие, и очень крупные, размеров носорога, виды. Предполагали, что дицинодонты питались падалью или поедали питательную сердцевину стволов саговниковых растений, раскалывая или разрывая их своими клыками, или выкапывали корневища хвощеобразных растений, в изобилии произраставших по берегам водоемов.

Местонахождения с ископаемыми остатками целых комплексов видов позднепермских рептилий (котилозавров, дицинодонтов, дейноцефалов, териодонтов) с довольно сходным общим обликом фауны известны в Южной Африке и Восточной Европе. Замечательные местонахождения позднепермских тетрапод были обнаружены на территории России. На берегу Северной Двины, в районе г.Котласа, В.П. Амалицким в 1897г. были найдены остатки крупных парейазавров, дицинодонтов, хищных териодонтов (среди них были огромные иностранцевии), батрахозавров и лабиринтодонтов. Еще одна интересная позднепермская фауна была раскопана в 1957-1960 гг. в Очерском районе Пермской области. В состав Очерской фауны, исследованной П.К. Чудиновым, входили хищные и травоядные дейноцефалы (среди последних огромные рогатые эстемменозухи, Estemmenosuchus), хищные териодонты, терапсиды, близкие к предкам дицинодонтов, лабиринтодонты. Костеносные породы этих местонахождений сформировались из глинистых и песчаных осадков речных дельт.

В некоторых филогенетических стволах рептилий продолжалось совершенствование приспособлений к насекомоядности, которая была, вероятно, самой примитивной формой питания пресмыкающихся. Это направление эволюционных преобразований привело к появлению небольших и проворных ящерицеобразных животных, причем сходный тип строения сформировался параллельно в нескольких независимых филетических линиях. Одна из них сохранила общий уровень организации котилозавров, со сплошным покровом накладных костей в височной области черепа. Это были проколофоны (Procolophonia). Остатки примитивных проколо-фонов, никтифрурета (Nyctiphruretu) и никтеролетера (Nycteroleter) - легких большеглазых животных с удлиненным телом и хвостом общей длиной до 30-40 см были найдены в верхнепермских отложениях на берегах р. Мезени.

В других группах насекомоядных рептилий произошли некоторые прогрессивные изменения организации, в частности усовершенствование строения черепа. Эти животные, давшие начало двум центральным подклассам рептилий: лепидозаврам (Lepidosauria) и архозаврам (Archosauria) - приобрели удлиненные челюсти, удобные для схватывания мелкой подвижной добычи, и две пары височных окон, расположенных друг над другом и разделенных тонким костным мостиком - верхней височной дугой. Так возник диапсидный тип черепа (см. рис. 55, в), легкая и ажурная конструкция которого позволила усовершенствовать так называемый кинетизм - подвижность верхней челюсти и некоторых связанных с ней костей, унаследованную наземными позвоночными от кистеперых рыб.

Примитивные лепидозавры (миллерозавры - Millerosauria), у которых лишь началось развитие височных окон и усиление кинетизма черепа, известны из верхнепермских отложений Южной Африки. В породах примерно того же возраста сохранились остатки первых рептилий, имевших настоящий диапсидный череп - эозухий (Eosuchia), наиболее известным представителем которых была янгина (Youngina). Отдаленным потомком эозухий является дожившая до нашего времени новозеландская гаттерия (Sphenodon), которая принадлежит к отряду клювоголовых (Rhynchocephalia), появившихся в раннем триасе. От эозухий или от миллерозавров возникли настоящие ящерицы (Lacertilia), у которых в связи с усилением подвижности верхней челюсти редуцировалась нижняя височная дуга и череп приобрел легкую ажурную конструкцию. Ящерицы достоверно известны начиная со среднего триаса.

Вероятно, эозухий были также предками высших рептилий, принадлежащих к подклассу архозавров, которые оставили самые яркие страницы в палеонтологической истории мезозоя. Д.Уотсон высказал предположение, что обособление предков архозавров от ранних насекомоядных лепидозавров было связано с переходом первых к питанию позвоночными. Этим объясняется более Массивная конструкция черепа архозавров и развитие у них более крупных зубов, сидящих в отдельных ячейках (текодонтность). Для архозавров характерно также более выпрямленное положение конечностей, чем у лепидозавров.

Наиболее ранним известным архозавром является позднепермский проторозавр (Protorosaurus), пропорциями тела и размерами (1-2 м) напоминавший современных ящериц-варанов.

ГЛАВА 3. МЕЗОЗОЙСКАЯ ЭРА - ВЕК РЕПТИЛИЙ

После завершения в середине пермского периода оледенения Гондваны началось потепление, которое продолжалось на протяжении мезозойской эры, в целом более однообразной в климатическом отношении, чем другие эры фанерозоя. В мезозое господствовали теплые климаты с относительно слабо выраженной климатической зональностью. Следов оледенения какого-либо континента в мезозое не обнаружено.

Южный полюс оставался в океане, а Северный перемещался от восточной оконечности Сибири к Аляске. При полном отсутствии оледенений температуры воздуха и воды в океане были, вероятно, значительно выше современных: на экваторе на 3-5 °С, в средних широтах на 10 С, а в полярных - на 20-40 °С.

В то же время происходили существенные изменения рельефа Земли и положения континентов, которые привели к формированию в общих чертах существующих ныне континентов и океанов. В начале триаса сохранялись относительно высокие материки. Затем началась морская трансгрессия с образованием мелких краевых морей Тихого океана, прерывавшаяся в начале и в конце юрского периода Древне- и Позднекиммерийскими фазами горообразования. В меловом периоде новая морская трансгрессия привела к затоплению значительных территорий Европы и Северной Африки краевыми теплыми морями древнего океана Тетис.

По представлениям теории тектоники плит, общей тенденцией в мезозое был распад суперконтинента Пангеи и расхождения континентальных плит (рис. 60). В триасе этот процесс только начался. Лавразия сместилась несколько к северу. При этом происходило раскрытие океана Тетис, отделявшего Лавразию от Гондваны. Затем Лавразия раскололась на Северную Америку и Евразию, между которыми, начиная с раннеюрского времени, началось формирование северной части Атлантического океана. Вероятно, уже к концу юрского периода начался раскол Гондваны и, соответственно, возникновение Индийского океана и южной части Атлантики, отделивших Африку от Австралии и Антарктиды на востоке и юге и от Южной Америки на западе. Соединение северной и южной частей Атлантики произошло уже в позднемеловое время.

В меловом периоде расхождение континентов, которые в конце палеозоя входили в состав единой Пангеи, значительно прогрессировало. Продолжали расширяться Атлантический и Индийский океаны. При движении американских плит к западу на их западных окраинах возникли мощные зоны горной складчатости: в юрском периоде - Сьерра-Невада, в меловом - Анды и Скалистые горы (Позднекиммерийская и Ларамийская фазы горообразования). Индостан и Мадагаскар обособились от Африки, Индостанская плита начала смещение к северо-востоку. Сложные взаимные смещения Африки и Европы привели к постепенному закрытию океана Тетис. Из материков, входивших в состав Гондваны, в конце мезозоя остались соединенными лишь Антарктида и Австралия. Зато материки, составлявшие Лавразию и разделившиеся в начале мезозоя, к концу мела вновь соединились, правда противоположными концами: Азия и Северная Америка сошлись в области Чукотки и Аляски. Так возникла Берингия, сухопутный мост, связавший Америку и Европу на месте современного Берингова пролива.

Обновление флоры и фауны в триасе.

Пермское оледенение и последовавшее после его завершения глобальное потепление климата привели к значительному изменению общего облика флоры. Вымерли древовидные плаунооб-разные, столь характерные для лесов второй половины палеозоя. Исчезли также семенные папоротники (птеридоспермы) и кордаиты. Их место занимают разнообразные представители других групп голосеменных растений: саговниковых (Cycadophyta), гинк-говых (Ginkgoales) и хвойных (Coniferales), изображающий ландшафт юрского периода, где представлены указанные голосеменные, появившиеся уже в триасе). Особенно характерны для наземной флоры первой половины мезозоя были саговниковые: древовидные пальмообразные, с высокими колоннообразными стволами, увенчанными пучком перистых листьев (Williamsonia), или приземистые, с бочкообразным или клубневидным коротким и толстым стволом (Cycadeoidea). Саговниковые, хвойные и гинкговые формировали общий облик лесов в первой половине мезозойской эры.

Рубеж между пермским и триасовым периодами был отмечен также существенными изменениями в фауне наземных позвоночных. В пермское время преобладающими группами пресмыкающихся были зверообразные рептилии и котилозавры, тогда как группы с диапсидным черепом (лепидозавры и архозавры), объединяемые под названием "завропсиды", оставались сравнительно Немногочисленными. Это соотношение резко изменилось к началу мезозоя. Из числа котилозавров в триас перешли лишь проколофоны (вымирающие к концу этого периода), а из зверообразных - немногие группы дицинодонтов и высших териодонтов. Зато обилие и разнообразие диапсидных рептилий неуклонно возрас-Тает, и во второй половине триаса они становятся доминирую-Щими. При этом нужно отметить, что высшие териодонты обладали рядом прогрессивных признаков, отсутствовавших у завропсид (например, были способны к пережевыванию пищи, значительно повышающему степень ее усвоения организмом; вероятно, они имели теплоизолирующий волосяной покров и т.д.). Победа в борьбе за существование была достигнута завропсидами, так сказать, вопреки прогрессивным чертам организации териодонтов и, очевидно, основывалась на каких-то важных преимуществах первых.

П.Робинсон предложила гипотезу, связывающую изменения фауны рептилий в триасе с особенностями физиологии завропсид и зверообразных пресмыкающихся, о которых с известной долей вероятности можно судить по соответствующим характеристикам современных потомков тех и других. Современные завропсиды (в широком смысле этот термин используется для объединения всех современных групп этого класса и птиц) характеризуются наличием целого комплекса приспособлений к жизни в условиях жаркого засушливого климата. Завропсиды могут выдержать значительно более высокие температуры тела, чем потомки зверообразных рептилий - млекопитающие (многие ящерицы - до 44 °С, птицы - до 43 °С, млекопитающие - лишь до 39 °С; для Млекопитающих смертельно повышение температуры тела до 43 °С, Для птиц - до 46-47 °С). При этом рептилии используют энергию солнечного облучения для повышения температуры своего тела До оптимального уровня (гелиотермия); в связи с этим для них сохраняет важное значение "теменной глаз", регулирующий различные функции организма в зависимости от интенсивности падающего света.

Конечным продуктом белкового обмена у завропсид является мочевая кислота, тогда как у млекопитающих - мочевина. Мочевая кислота может образовывать перенасыщенные растворы, поэтому для ее выведения из организма требуется примерно в 10 раз меньше воды, чем для выведения мочевины. Очевидно, у завропсид выделительная система гораздо лучше экономит воду для организма, чем у млекопитающих.

Логично предположить, что организация завропсид складывалась под контролем отбора, приспосабливавшего этих рептилий к условиям засушливого и жаркого климата, тогда как зверообразные рептилии сформировались в местообитаниях с более влажным и прохладным климатом. Такие местообитания, вероятно, были широко распространены на континентах, входивших в состав Гондваны, в эпоху великого палеозойского оледенения. К концу пермского периода и в триасе во многих регионах климат становится все более засушливым (или, по крайней мере, характеризовался значительными сезонными засухами). П.Робинсон связывает это с изменениями морских течений и преобладающих направлений циркуляции атмосферных потоков в результате дрейфа континентов, входивших в состав Лавразии и Гондваны. Засушливость климата должна была дать важные преимущества в борьбе за существование тем группам наземных животных, которые обладали более высокой устойчивостью к действию высоких температур, были способны лучше экономить воду и с помощью специальных форм поведения могли использовать энергию солнечного облучения для достижения оптимальной температуры своего тела. Поскольку по всем этим показателям завропсиды превосходили зверообразных рептилий, последние были оттеснены в еще сохранившиеся более прохладные и влажные местообитания. В неблагоприятных для них условиях, при жесткой конкуренции со стороны завропсид, численность зверообразных рептилий значительно упала, и большинство их групп вымерло.

В немногих сохранившихся в триасе филогенетических стволах высших териодонтов продолжались изменения, наметившиеся еще среди пермских терапсид. Общее направление этих эволюционных изменений обозначают иногда термином "маммализация", т. е. развитие комплекса признаков, характерных для высших амниот -млекопитающих. Здесь мы вновь встречаемся с параллельной эволюцией: сходные черты строения независимо возникали в разных филетических линиях териодонтов. Среди этих признаков было постепенное увеличение размеров полушарий переднего мозга, приобретение мягких губ (что делало возможным сосание) и волосяного покрова. По мнению Л.П.Татаринова, зачаточные волоски у териодонтов имели осязательную функцию, располагаясь вблизи рта (как специализированные осязательные волосы - вибриссы у млекопитающих). Однако в среднетриасовых отложениях были обнаружены ископаемые следы цинодонта (Cynodontia - "собакозубые", одна из групп высших териодонтов) с отпечатками волос. Поэтому имеются основания считать, что у териодонтов волосяной покров был развит уже на всем теле, как у млекопитающих, и, вероятно, имел ту же основную функцию, как и у последних, т. е. служил для теплоизоляции (это понятно, если принять гипотезу о возникновении и развитии зверообразных рептилий в прохладном климате).

У цинодонтов продолжалось совершенствование механизма пережевывания пищи с развитием окклюзии (смыкания коронок верхне- и нижнечелюстных зубов в щечной области) и продольных и поперечных движений нижней челюсти. Для обеспечения этих движений произошли сложные перестройки челюстных мышц, сыгравшие важную роль в дальнейшей эволюции челюстного аппарата. Механически наиболее благоприятное расположение челюстных мышц было достигнуто при разрастании зубной кости нижней челюсти назад и вверх с развитием высокого венечного отростка, к которому прикреплялась височная мышца (рис. 62). При этом задние кости нижней челюсти подверглись редукции. Гипертрофия задней части зубной кости Привела к возникновению ее контакта (при движениях нижней Челюсти) с чешуйчатой костью черепа. Между двумя этими костями возникла суставоподобная связь, которая оказалась механически более эффективной опорой и осью вращения для нижней челюсти, чем первичный челюстной сустав (между квадратной Костью верхней и сочленовной костью нижней челюсти). Преобразования нижней челюсти оказались преадаптивными для формирования новой опоры нижней челюсти - вторичного челюстного сустава.

Вторичный челюстной сустав, присущий среди всех позвоночных только млекопитающим, стал поэтому важнейшим диагностическим признаком последних. Редуцированные кости первичного челюстного сустава, освободившиеся от своей прежней функции, вошли в состав цепи косточек среднего уха в качестве двух наружных ее элементов - наковаленки и молоточка, что стало еще одной характерной особенностью млекопитающих, обеспечившей более тонкую слуховую чувствительность в области высоких звуковых частот.

...

Подобные документы

  • Основные положения учения Дарвина. Эволюционные представления до Чарльза Дарвина. Физические и химические основы явлений наследственности. Факторы, вызывающие мутации на генном уровне. Генетическая инженерия.

    реферат [15,5 K], добавлен 25.05.2002

  • Виды и популяции, эволюционные явления. Современные представления о возникновении жизни, природа "живого" и "неживого". Концепция естественного отбора, теория Дарвина. Ошибочные представления об эволюции. Теория наследования приобретенных признаков.

    реферат [1,5 M], добавлен 19.09.2009

  • Этапы становления биологии: традиционный - идея эволюции живой природы, эволюционный - теория Дарвина и Ламарка, молекулярно-генетический - законы наследственности. Создание синтетической теории эволюции. Мир живого: возникновение и эволюция жизни.

    реферат [33,2 K], добавлен 14.01.2008

  • Додарвинистские представления об эволюции. Распространение идей эволюционизма в эпоху Возрождения и Просвещения. Теория эволюции Чарльза Дарвина. Искусственный и естественный отбор. Синтетическая теория эволюции: возникновение, основные положения.

    реферат [40,0 K], добавлен 01.03.2010

  • Проблема происхождения и эволюции жизни на Земле. Моделирование как метод естественнонаучных исследований. Открытие принципа униформизма Ч. Лайелем. Учение Чарльза Дарвина о факторах эволюции путем естественного отбора, современные представления о ней.

    контрольная работа [19,5 K], добавлен 18.08.2009

  • Вехи биографии автора теории эволюции Чарльза Дарвина. История написания и издания "Происхождения видов". Основные положения эволюционного учения. Предпосылки и движущие силы эволюции. Мнения ученых о теории Ч. Дарвина. Анализ положений антидарвинизма.

    реферат [59,1 K], добавлен 07.12.2014

  • Предпосылки создания эволюционной теории Ч.Дарвина. Эволюционные исследования Ч.Дарвина. Основные положения эволюционного учения Ч. Дарвина. Предпосылки и движущие силы эволюции по Ч. Дарвину. Основные результаты эволюции (по Ч. Дарвину).

    реферат [19,2 K], добавлен 29.03.2003

  • Возникновение теории эволюции и ее значение. Представление о градации живых существ и теория изменчивости видов. Законы эволюции Ж.Б. Ламарка. Концепция искусственного отбора. Значение теории эволюции Ч. Дарвина. Результаты действия естественного отбора.

    контрольная работа [34,9 K], добавлен 13.11.2009

  • Возникновение идеи эволюции живой природы в Новое время. Сущность эволюционных теорий Ламарка и Дарвина, его тезис о естественном отборе наряду с принципами борьбы за существование, наследственности и изменчивости. Теории возникновения и эволюции жизни.

    реферат [35,6 K], добавлен 05.03.2012

  • Эволюционные идеи в античности, Средневековье, эпохи Возрождения и Нового времени. Теория Чарльза Дарвина. Синтетическая теория эволюции. Нейтральная теория молекулярной эволюции. Основные эмбриологические доказательства биологической эволюции.

    реферат [26,6 K], добавлен 25.03.2013

  • Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.

    курсовая работа [65,3 K], добавлен 07.01.2011

  • Основные концепции возникновения планеты: большой взрыв, теория униформизма, геологическая концепция разделения континентов. Факты подтверждения достоверности модели экранированной Земли. Особенности эволюции живых организмов на разных уровнях развития.

    реферат [45,8 K], добавлен 05.12.2010

  • Анализ взглядов на теорию Дарвина. Современные представления об эволюционном учении и его критика. Эмпирические предпосылки эволюционной теории развития живого. Принципы Дарвиновой теории отбора. Креационная модель возникновения и развития жизни.

    реферат [327,7 K], добавлен 22.05.2012

  • Теории планетарной причинности зарождения жизни. Основные разновидности материи и связи между ними. Природа реликтового излучения - космического электромагнитного излучения с высокой степенью изотропности. Материалистическая природа эволюции Дарвина.

    контрольная работа [23,3 K], добавлен 10.06.2011

  • Предпосылки и движущие силы эволюции по Ч.Дарвину. Понятие об изменчивости и ее формах. Определение общей теории эволюции и обстоятельства ее появления. Основные положения эволюционного учения Ч. Дарвина. Основные результаты эволюции по Ч. Дарвину.

    контрольная работа [14,5 K], добавлен 14.02.2009

  • Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.

    реферат [762,6 K], добавлен 06.09.2013

  • Становление эволюционной теории, закономерности индивидуального развития организма. Эволюция живых организмов. Теория Ч.Дарвина - наследственность, изменчивость и естественный отбор. Видообразование. Роль генетики в современном эволюционном учении.

    реферат [24,8 K], добавлен 09.10.2008

  • Теория Дарвина, согласно которой главным фактором эволюции является естественный отбор. Периоды развития дарвинизма. Формирование основных принципов и "правил" эволюции. Изучение изменчивости и наследственности. Синтез классического дарвинизма и генетики.

    презентация [95,2 K], добавлен 25.04.2016

  • Современные физические представления о кварках. Синтетическая теория эволюции. Гипотеза Геи (Земли). Теория Дарвина в ее сегодняшней форме. Космические лучи и нейтрино. Перспективы развития гравитационной астрономии. Современные методы изучения Вселенной.

    реферат [39,8 K], добавлен 18.10.2013

  • Додарвинистские представления об эволюции: культивировавшие идеи развития материального мира из "праматерии". Концепции эволюционизма в эпохи Возрождения и Просвещения. Теории Линнея, Ламарка и Дарвина. Учение о искусственном и естественном отборе.

    реферат [39,9 K], добавлен 29.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.