Общая теория систем и системный анализ

Функциональное состояние систем. Активные и пассивные системы. Эволюция блоков управления. Эволюция нашего Мира. Иерархия целей и систем. Следствия из аксиом. Диагностика и лечение с позиций системного анализа. Клинические приложения теории систем.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 16.12.2013
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Но наш Мир заполнен не только материей. Такими же реальными являются и другие объекты - социальные, духовные, культурные, биологические, медицинские и прочие. Их реальность проявляется в том, что они могут активно воздействовать как друг на друга, так и на другие виды материи (через деятельность других систем и человека). И они также существуют и действуют не хаотически, а подчиняются специфическим, но строгим законам своего существования. Их также касается закон сохранения, потому что они имеют свои виды «энергии», не появились вдруг, а могут лишь переходить друг в друга.

Любую систему можно описывать качественными и количественными характеристиками. В отличие от материальных объектов поведение других объектов сегодня возможно описать лишь качественно, потому что для них пока нет своей «термодинамики», например, «психодинамики». Мы не знаем, например, сколько «ватт» душевной энергии необходимо приложить для решения трудной психологической задачки, но мы знаем, для её решения требуется душевная энергия. Тем не менее эти объекты являются такими же полноценными системами, и они построены по тем же принципам, что и другие материальные системы.

Так как системы - это группы элементов, а изменения форм веществ - это есть изменение связей между элементами вещества, то изменения форм веществ это есть изменения форм систем. Следовательно, форма определяется спецификой связей между элементами систем. «Нет ничего вечного под луной», мир постоянно меняется, одни формы материи переходят в другие формы, но изменчивы лишь формы, сама материя неуничтожима и всегда сохраняется. При этом изменение форм также подчиняется закону сохранения и именно он определяет, как одни формы должны сменять другие формы материи. Формы меняются только за счёт изменения связей между элементами систем. А так как каждая связь между элементами системы имеет энергетический эквивалент, то любая система содержит внутреннюю энергию, которая является суммой энергий связей между всеми элементами.

Форма (лат., филос.) - совокупность отношений, определяющих объект. Форма противополагается материи, содержанию объекта.

У Аристотеля форма - это действующая сила, образующая вещи, имеет бытие вне вещей. По Канту, форма - это все, что субъект познания вносит от себя в содержание познаваемого. Пространство, время суть формы познавательной способности. Все категории мышления: количество, качество, отношение, субстанция, место, время и др., суть формы, продукт способности к отвлечению, к образованию общих понятий нашего ума (БСЭ, 1990).

Однако, это не совсем корректные определения. Форма не может быть противопоставлена материи, потому что она неразрывно связана с ней, она сама является формой материи. Форма не может быть также силой, хотя, вероятно имеет отношение к энергии, потому что определяется связями в системе, которые содержат энергию. Если следовать Канту, то форма является чисто субъективным понятием, так как соотносится только к интеллектуальным системам, к их познавательным способностям. А что, без их познания формы не существуют?

Любая система имеет тот или иной вид формы. А форма системы определяется видом и характером связей между элементами системы. Следовательно, форма - это вид связей между элементами системы. А так как могут быть взаимодействия между системами, то при этом образуются новые связи между ними и возникают новые формы систем. Другими словами, при взаимодействии между системами образуются новые системы в виде новых форм. И при взаимодействии между системами всегда расходуется энергия.

Логическим выражением закона сохранения является закон причинно-следственных ограничений, потому что ему соответствует логическая связка: «если..., то...». Возможный выбор внешних воздействий (причин), на которые должна реагировать система, ограничен первой частью этой связки - «если...», а действия системы (следствия) ограничены второй частью - «то...». Поэтому закон называется законом причинно-следственных ограничений.

Этот закон гласит: «На любое следствие есть своя причина». Ничего само собой без причины не появляется и просто так без последствий не исчезает. Без причины нет следствий, без воздействия нет реакции. В однозначности и определённости реакции систем на внешнее воздействие и заключается детерминизм в природе. Всегда на определённую причину есть определённое следствие.

Система всегда должна реагировать только на определённые внешние воздействия и всегда давать только определённую реакцию на них. Хеморецептор на О2 всегда будет реагировать только на О2, но не Na+, Ca++ или глюкозу. При этом он выдаст определённый потенциал действия, а не порцию гормона, механическое сокращение или что-нибудь другое. Любая система отличается специфичностью на внешнее воздействие и специфичностью своей реакции.

Определённость внешних воздействий и реакций на них накладывает ограничения на их виды. Поэтому из закона причинно-следственных ограничений исходит необходимость:

? выполнения какого-либо специфичного (определённого) действия для достижения специфичной (определённой) цели

? существования какой-либо специфичной (определённой) системы (подсистемы) для выполнения такого действия, потому что никакое действие само собой не происходит.

? очередности действий: система всегда начинает действовать и производит свой результат действия только лишь после оказания на неё внешнего воздействия, потому что у неё нет свободы воли для принятия решения о выполнении действия.

Следовательно, всегда результат действия системы может появиться только лишь после определённых действий системы. А эти действия могут быть только лишь после внешнего воздействия. Внешнее воздействие первично, а результат действия - вторичный. Из всех возможных действий будут выполнены только те, которые вызваны внешним воздействием и ограничены (определены) возможностями реагирующей системы. Если после прежнего внешнего воздействия цель уже достигнута и нет нового внешнего воздействия, то после выдачи результата действия система должна быть в полном покое и не действовать, потому что только цель обязывает систему действовать, а она уже достигнута. Нет цели, нет действий. Если появится новое внешнее воздействие, то появится и новая цель, и лишь тогда система снова начнёт действовать и появится новый результат действия.

§3. Основные характеристики систем

Чтобы выполнять целенаправленные действия система должна иметь соответствующие элементы. Это является следствием закона сохранения и причинно-следственных ограничений, потому что ничего само собой не происходит. Поэтому любые системы являются многокомпонентными объектами и их состав не случаен. Именно состав систем во многом определяет их возможности выполнения определённых действий. Например, система составленная из кирпичей может быть домом, но не может быть компьютером. Но не только состав определяет возможности систем. Необходимо ещё также и строго определённое взаимодействие между ними, которое определяется их взаимоотношением. Двумя руками можно сделать то, что невозможно сделать одной или одиночными руками, если можно так выразиться. Рука обезьяны содержит те же пять пальцев, что и рука человека. Но рука человека вместе с его мозгом преобразовала мир на Земле.

Таким образом, два существенных признака определяют качество и количество результатов действия любых систем - состав элементов и их взаимоотношения.

Любой объект имеет только две основные характеристики: что и сколько он может сделать. Рассмотрим обе характеристки результата действия (что и сколько?) и попробуем выяснить, от чего зависят качество и количество результата действия.

Качество результата действия.

Что может делать данный объект? Рассмотрим этот вопрос на примере группы элементов, состоящей из трёх плоскостей (рис. 1А), свободно парящих в каком-либо пространстве и посмотрим на их взаимодействие между собой и пробным шаром.

Предположим, что у каждой из плоскостей возможны три результата действия:

? независимое движение в пространстве

? толкание других предметов

? соединение с другой плоскостью

А у шара есть только два возможных результата действия:

? независимое движение в пространстве

? толкание других предметов

Все три плоскости являются элементами группы и имеют совершенно одинаковые свойства (качества результата действия). Шар не принадлежит данной группе и мы его запускаем в игру только с одной целью - посмотреть, на что способна данная группа и каждый её элемент в отдельности?

Рис. 1. Различные взаимодействия элементов.

И группа свободных элементов (А), и группа взаимодействующих элементов (В), при условии L>D, имеют одинаковый результат действия - толкают шар, но не лишают его свободы движения. При случайном уменьшении размера выхода полости по отношению к диаметру шара (С) возникнет ловушка для шара, но при его движении плоскости вновь могут разойтись и шар не лишается свободы движения (D). При постоянной фиксации выхода полости (перемычка M, на рис. D) шар вообще лишается свободы движения. При этом группа элементов из трёх плоскостей становится ловушкой для шара, т.е., у этой группы появляется цель - лишить шар свободы движения.

Шар и плоскости свободно двигаются в пространстве и толкают друг друга. При этом неважно, сколько плоскостей имеется в данном пространстве, одна или три, их количество не меняет их качества результатов действия. Все элементы сохраняют свои свойства и шар сохраняет свою способность свободно двигаться в пространстве. Все элементы группы взаимодействуют между собой. Суммарный результат их совместного действия и результат действия каждой отдельной плоскости всегда сохраняется один и тот же. В этом случае данная группа элементов не является системой, а является набором случайных отдельных элементов, поскольку как группа элементов, так и каждый из них в отдельности обладают одинаковыми результатами действия.

Изменим условия эксперимента и заставим плоскости взаимодействовать таким образом, чтобы их края, рёбра плоскостей, сцепились друг с другом (рис. 1В). В результате такого взаимодействия одно из свойств плоскостей было нейтрализовано (независимость движения), они стали двигаться в пространстве уже зависимо друг от друга и появилось новое пространство (полость), ограниченное плоскостями. Поместим внутрь его пробный шар и посмотрим, что с ним происходит?

Если размеры входа (выхода) новой полости больше диаметра шара (L > D, рис. 1В), то опять качественно ничего не изменилось, пробный шар по прежнему сохраняет свои результаты действия (может свободно двигаться). Но если размер выхода полости становится меньше диаметра шара (L < D, рис. 1С), то появляется качественно новое свойство - система из трёх взаимодействующих элементов превращается в ловушку для пробного шара, который лишается одного из своих свойств - свободно двигаться в пространстве. Свойством ловушки не обладает ни один отдельно взятый элемент группы. Таким свойством не обладают и взаимодействующие элементы, при условии L > D. Только постоянное выполнение условия L < D влечёт за собой появление нового качества - появления свойства ловушки у группы из трёх элементов (плоскостей). Причём случайное и однократное выполнение данного условия (L < D) не вызывает появление нового качества (рис. 1С), поскольку при движении шар раздвинет плоскости и уйдёт в пространство (рис. 3D). Только постоянное выполнение условия L < D превращает данную группу из простого набора элементов в группу с качественно новым признаком (рис. 1Е).

Новое качество может быть только у группы определённым образом взаимодействующих элементов. Определённый - значит целевой. Определённым образом взаимодействующих - это значит имеющих определённую цель, построенных определённым образом и действующих определённым образом для достижения данной цели. Его не может быть у отдельно взятых элементов, и у случайно взаимодействующих элементов. До выполнения этого условия группа элементов была бесцельно парящей в пространстве случайной группой плоскостей. После выполнения данного условия эта группа превратилась в новый элемент - ловушку для шара.

В результате определённого взаимодействия элементов часть их свойств нейтрализуется, а другая часть используется для достижения цели. Превращение одних форм материи в другие происходит именно за счёт нейтрализации каких-то свойств этих форм материи. А нейтрализация происходит за счёт изменения каких-либо связей между элементами объекта, потому что эти связи определяют форму объекта. Поэтому «нейтрализуется», но не «уничтожается», потому что ничто в этом мире не исчезает и не появляется (закон сохранения). Весь мир состоит из протонов, нейтронов и электронов, но мы видим различные объекты, которые различаются по цвету, консистенции, вкусу, форме, молекулярному и атомарному содержанию и т.д. Это значит, что при определённом взаимодействии протонов, нейтронов и электронов появляются определённые межэлементарные связи. При этом одни из их свойств нейтрализуются, а другие сохраняются или даже усиливаются таким образом, что возникает всё многообразие нашего мира.

Целью любой системы является выполнение заданного (определённого) условия, достижение заданного результата действия (цели). Если заданный результат действия получился случайно, то в следующий момент он уже может не выполняться и заданный результат исчезнет. Но если для для чего-то необходимо, чтобы результат действия всегда (постоянно) был именно такой, а не какой-либо иной (задание цели), необходимо, чтобы группа взаимодействую-щих элементов постоянно сохраняла этот новый результат действия. Для этого данная группа элементов должна постоянно стремиться сохранять заданное условие (выполнение цели). В примере с плоскостями и пробным шаром этим условием является соблюдение неравенства L < D, которое выполняется, например, перемычкой М (рис. 1Е), или соединив расходящиеся края плоскостей.

Таким образом, группа элементов из трёх плоскостей может быть системой для захвата пробного шара или любого другого тела подходящего размера, как может быть и системой для нашей демонстрации, только в том случае, если она может выполнить заданное условие (выполняет заданную цель). В данном случае, если целью группы из трёх плоскостей является захват какого-либо тела и эта группа может это сделать, она является системой.

Простая системная функциональная единица.

Система может состоять из любого количества исполнительных элементов, при условии, что каждый из них может участвовать (содействовать) достижению цели и их достаточно для реализации этой цели. Рассмотрим это на примере системы-ловушки для червячка (рис. 2). Если какая-либо группа элементов состоит из «m» элементов, причём только «n» из них взаимодействут, или в потенции могут взаимодействовать для достижения цели (элементы «a»), то только эти «n» элементов составляют систему. Остальные же элементы («b») не входят в состав данной системы и их присутствие не влияет на достижение цели.

Рис. 2. Элементы системы-ловушки.

В некой группе есть два типа элементов - «a» (квадратные) и «b» (круглые плоскости) (А). Цель системы - быть ловушкой для червячка (В). Цели системы соответствуют только элементы типа «а», потому что только они могут сложится в пятиугольную полость и быть ловушкой. Элементы типа «b» не содействуют заданной цели и не являются элементами данной системы. Стрелками указаны взаимодействия между элементами, которые приводят к достижению цели.

Если убрать эти элементы («b») из данной группы, то функции системы не изменятся и не исчезнут (рис. 2С), потому что они не входят в в состав данной системы.

Начнём убирать по одному элементы системы типа «a» из группы состава «n». По мере убывания возможны два варианта следствий:

? заданный результат действия системы уменьшится (изменение количественное)

? заданный результат действия системы исчезнет (изменение качественное)

Будем убирать элементы из системы до тех пор, пока будет лишь уменьшение количества результата действия, но чтобы качество системы сохранилось. Получим систему (группу элементов) состава «k» с минимальным числом элементов, при котором новое отличительное качество ещё сохраняется (рис. 3В). Если убрать ещё хотя бы один элемент из состава «k», то у группы взаимодействующих элементов качество ловушки исчезнет (рис. 3С).

Рис. 3. Системная функциональная единица.

По мере удаления очередного элемента ловушка становится всё меньше и меньше (A - четырёхугольная и B - треугольная полость), пока система перестаёт быть ловушкой для червячка (C), поскольку в последнем случае червяк может свободно удалиться от данной группы элементов. Группа элементов, представленная на рис. B является системной

Отсюда, минимальной системой является такая группа из «k» элементов, которая при удалении из её состава хотя бы одного любого элемента, теряет качество, присущее данной группе элементов, но отсутствующее у любого из данных «k» элементов.

В этом примере (рис. 3В) удаление любой плоскости лишает эту группу элементов качества, которое отсутствует у каждого элемента группы в отдельности - удерживать одного червячка. Цель этой группы - быть ловушкой для червячка.

Такая группа элементов является простой системной функциональной единицей (простая СФЕ, не составная), минимальной простейшей системой, которая имеет какой-либо признак (способность совершать действие), которого нет у любого её элемента в отдельности.

Любая СФЕ реагирует на внешнее воздействие по закону «всё, или ничего». Этот закон следует из определения простой СФЕ (удаление любого её элемента прекращает её функцию как системы) и из дискретности её состава. Любой из её элементов может либо быть, либо не быть в составе простой СФЕ. А поскольку простая СФЕ по определению состоит из конечного и минимального набора исполнительных элементов и все они должны быть в составе СФЕ и функционировать (действовать), то прекращение функции любого из них прекращает функцию всей СФЕ как системы. Независимо от силы внешнего воздействия, но при условии его превышения определённого порога, её результат действия будет максимальным («всё»). Если нет внешнего воздействия, то СФЕ никак не проявляет себя (не реагирует, «ничего»).

Простые СФЕ, несмотря на своё название, могут быть сколь угодно сложными - от простейших минимальных СФЕ до максимально сложных. Молекула любого вещества состоит из нескольких атомов. Удаление любого атома превращает эту молекулу из одного вещества в другое. И даже каждый атом является очень сложным образованием. Удаление любого его элемента превращает его в ион, другой атом или другой изотоп.

Солдат является простой СФЕ системы под названием «армия». Солдат - это тело человека плюс полное снаряжение солдата. Тело человека - чрезвычайно сложный объект, но удаление любой его части делает из солдата инвалида. Да и солдатское снаряжение также многокомпонентно. Но снаряжение не может стрелять без человека, а человек не может стрелять без снаряжения. Только вместе они могут выполнять функции, присущие СФЕ под названием «солдат».

Несмотря на внутреннюю сложность, которая может быть сколь угодно большой, простая СФЕ является отдельным элементом, который выглядит как целое с определённым единичным свойством (качеством) - совершать одно элементарное по отношению ко всей системе определённое действие - захватывать шар, молекулу, толкать порцию крови, развивать усилие в 0.003 грамма, обеспечивать условия проживания животному (например, одна удельная единица площади леса) или человеку (квартира), делать один выстрел и т.д. Любая СФЕ будучи разделена на части уже перестаёт быть СФЕ для заданной цели. Только во взаимодействии частей группа элементов может проявить себя как СФЕ. Когда ломается какая-нибудь вещь, хороший хозяин всегда сначала раздумывает, где в хозяйстве ещё можно применить обломки и лишь после этого выбрасывает их, потому что поломанную вещь (одна СФЕ) можно превратить в другую, более простую (другая СФЕ).

Гемоглобин является элементом системы кровообращения и служит для захвата и последующей отдачи кислорода. Следовательно, молекулы гемоглобина являются СФЕ эритроцитов. Лиганды молекулы гемоглобина являются СФЕ гемоглобина, поскольку каждая из них может служить ловушкой для молекул кислорода. Но дальнейшее деление лиганды уже прекращает функцию удержания молекул кислорода.

Саркомер миокарда является элементом миокардиоцитов (клеток сердечной мышцы) и служит для сокращения желудочков сердца. Однако для его нормальной работы требуются элементы (органеллы) миокардиоцитов. Следовательно, миокардиоциты являются СФЕ желудочков сердца, а саркомеры - СФЕ миоцитов. И т.д.

Аналогами СФЕ в неживом мире являются, например, все материальные частицы, обладающие способностью при делении терять свои свойства - элементарные частицы (?), атомы, молекулы и т.д.

Аналогом СФЕ в живом мире являются так называемые системные функциональные единицы вентиляции (ФЕВ, в лёгких) и перфузии (ФЕП, тканевые и лёгочные сосудистые модули, состоящие из групп капилляров, одновременно включающихся в перфузию или отключающихся от неё) у различных животных. Но это примеры так называемых составных СФЕ (см. ниже). Вирусы, возможно, могут быть системными функциональными единицами наследственности (ФЕН). Так, вероятно, сначала образовались полимерные молекулы типа ДНК в глинистых слоях или даже в межпланетной пыли или на кометах, по типу автокаталитической реакции Бутлерова - синтеза различных сахаров, в том числе и рибозы, из формальдегида в присутствии ионов Ca и Mg, а рибоза является основой для создания РНК и ДНК, и только затем уже появились клеточные структуры.

Эти примеры различных конкретных СФЕ показывают, что СФЕ не является чем то неделимым, поскольку любая из них многокомпонентна и потому может быть разделена на части. Только внутриатомные элементарные частицы претендуют на роль истинных СФЕ, лежащих в основе всей материи нашего Мира, потому что пока не удаётся разделить их на части. Потому они и называются элементарными. Возможно они также очень сложно устроены, но не из элементов физического мира, а чего-либо другого, и они являются результом действия систем не физического мира, вернее, не нашего Мира форм. На это указывает существование парных виртуальных частиц, например, позитрона и электрона, появляющихся как-бы из пустоты, из вакума и туда же исчезающих. Мы не можем резать бумагу ножницами, сделанными из той же бумаги. Вероятно, мы не можем также «разрезать» и элементарные частицы «ножницами», сделанными из этой же материи.

Простейший блок управления (прямая положительная связь).

Чтобы любая СФЕ могла действовать, она должна содержать определённые элементы для осуществления своих действий согласно закону сохранения и причинно-следственных ограничений. Для выполнения целевых действий система должна содержать элементы исполнения, а для того, чтобы взаимодействие элементов исполнения было целевым, система должна содержать элементы (блок) управления.

Элементы исполнения (эффекторы) выполняют само определённое (целевое) действие системы, чтобы получался заданный результат действия. Сам собой результат действия не получится. Для его получения необходимо действие определённых объектов. Такими элементами на примере плоскостей с пробным шаром являются сами плоскости.

Но он (элемент исполнения) существует сам по себе и производит собственные результаты действия в ответ на внешние по отношению к нему определённые воздействия. Если на него что-то подействует, он прореагирует, не подействует - не прореагирует. Взаимодействие с другими элементами его касается постольку, поскольку результаты действия других элементов являются внешним воздействием для него самого и могут вызвать его реакцию в ответ на эти воздействия. Эта реакция проявится уже в виде его собственного результата действия, который также будет внешним воздействием для других элементов системы, но не больше. Ни один результат действия любого элемента системы не может быть результатом действия самой системы по определению. Выполнилось ли заданное условие (цель системы) случайно или не случайно, получился ли у данной группы элементов качественно новый заданный результат действия, или что-то помешало этому, для любого отдельно взятого элемента исполнения это совершенно безразлично. На «самочувствии» элементов исполнения, т.е., на их собственных функциях это никак не отражается и никакое их внутреннее свойство не заставит их следить за выполнением генеральной цели системы. Они просто не «умеют» этого делать.

Элементы управления (блок управления) необходимы для того, чтобы получался именно заданный, а не какой-либо иной результат действия. Так как целью является реакция в ответ на специфическое внешнее воздействие, то сначала нужно почувствовать его, выделить его из множества других неспецифических внешних воздействий, принять решение о каких-либо специфических действиях и начать действовать.

Если, например, СФЕ реагирует на давление, то она должна уметь «чувствовать» (рецепция) именно давление, а не температуру или что-либо другое. Для этого у неё должен быть специальный орган (рецептор), который умеет это делать. А для того, чтобы реагировать только на специфическое внешнее воздействие, которое может иметь отношение к выполнению её цели, СФЕ должна не только иметь рецепцию, но и выделить его из всех остальных внешних воздействий, которые действуют на неё (селекция). Для этого у неё должен быть специальный орган (селектор, или анализатор), который умеет выделять нужный сигнал из массы других. Далее, почувствовав и выделив внешнее воздействие она должна принять решение о том, что нужно действовать (принятие решения). Для этого у неё должен быть специальный орган для принятия решений, который может принимать решения. Затем она должна реализовать это решение, т.е., заставить элементы исполнения действовать (реализация решения). Для этого у неё должны быть элементы (стимуляторы), с помощью которых можно передать решение на элементы исполнения.

Следовательно, чтобы прореагировать на определённое внешнее воздействие и получить необходимый результат действия необходимо выполнить выполнить следующую цепочку управляющих действий :

рецепция > селекция > принятие решения > реализация решения (стимуляция)

Какие элементы должны выполнять эту цепочку действий управления? Элементы исполнения (например, плоскости) этого делать не могут, потому что выполняют само действие, например, захвата, но не действия управления. Поэтому они и называются элементами исполнения.

Все действия управления должны выполнять элементы управления (блок управления) и они должны входить в состав СФЕ.

Рис. 4. Неуправляемая простая СФЕ (А) и алгоритм работы её блока управления (В).

Блок управления состоит из (рис. 4):

? рецептора Х (выделяет специфичный сигнал и определяет наличие внешнего воздействия)

? афферентных путей (передают информацию с рецептора в анализатор)

? анализатора-информатора (на основе информации с рецептора «Х» вырабатывает решения об активации исполнительных элементов)

? эфферентных путей (стимулятора) (реализация решения, передают управляющие воздействия на эффекторы)

Рецептор «Х», афферентные пути, анализатор-информатор (побудитель к действию) и эфферентные пути (стимулятор) вместе составляют блок управления. Рецептор и афферентные пути является прямой положительной связью (ППС). Прямой потому, что внутри СФЕ сигнал управления (информации о наличии внешнего воздействия) идёт в том же направлении, что и само внешнее воздействие. Положительной потому, что если есть сигнал, есть реакция, нет сигнала, нет реакции.

Таким образом, блок управления СФЕ реагирует на внешнее воздействие. Он может почувствовать и выделить специфический сигнал внешнего воздействия из множества других внешних воздействий и, в зависимости от наличия или отсутствия специфичного сигнала решить, делать собственное действие или нет. А его собственным действием является побуждение (стимуляция) элементов исполнения действовать.

Есть неуправляемые (рис. 4) и управляемые СФЕ (рис. 5). Блок управления неуправляемых СФЕ решает действовать или нет только в зависимости от наличия внешнего воздействия. Блок управления управляемых СФЕ также решает действовать или нет в зависимости от наличия внешнего сигнала, но при наличии дополнительного условия - разрешения на это действие, которое подаётся на его вход уставки.

У неуправляемой СФЕ есть один вход для внешнего воздействия и один выход для результата действия. Логика работы такой СФЕ чрезвычайно простая - если есть определённое внешнее воздействие, то она действует (есть результат действия), если нет внешнего воздействия, то нет результата действия. Для неуправляемых СФЕ регулятором действия является само внешнее воздействие. У неё есть собственное управление, осуществляемое внутренним блоком управления. Но у такой СФЕ невозможно внешнее управление. Она сама решает, действовать ей, или нет. Поэтому она называется неуправляемой. Это решение зависит только от наличия внешнего воздействия. Если есть внешнее воздействие, то она действует и никакое внешнее решение (не воздействие) не может изменить внутреннего решения данной СФЕ. Неуправляемая СФЕ независима от внешних решений. Если она «решила», то выполнит свое действие.

Примером неуправляемой СФЕ является, например, молекула нитроглицерина (СФЕ для микровзрыва). Если её тряхнуть (внешним воздействие является тряска), то она начнёт распадаться, выделяя энергию, и во время этого процесса ничто не остановит её от распада.

Аналогом неуправляемых СФЕ в живом организме являются саркомеры, лиганды гемоглобина и т.д. Если саркомер начал сокращаться, он не остановится, пока не закончит сокращение. Если лиганда гемоглобина начала захватывать кислород, она не остановится, пока не закончит захват.

В отличие от неуправляемых у управляемых СФЕ есть два входа (один для входа внешнего воздействия и один - для ввода уставки в анализатор) и один выход для результата действия (рис. 5). Логика работы управляемой СФЕ несколько отличается от логики работы неуправляемой СФЕ. Такая СФЕ будет давать результат действия не только в зависимости от наличия внешнего воздействия, но и от наличия разрешения на входе уставки.

Если есть определённое внешнее воздействие и есть разрешение на входе уставки, то действие начнёт выполняться. Если есть внешнее воздействие и нет разрешения на входе уставки, тот не должно быть действия. Для управляемых СФЕ регулятором действия является разрешение на входе уставки. Потому такие СФЕ называются управляемыми.

Аналогом управляемой СФЕ в живом организме являются, например, лёгочные функциональнальные единицы вентиляции (ФЕВ) или перфузии (ФЕП-МКК), тканевые функциональнальные единицы перфузии (ФЕП-БКК), функциональные единицы секреции (клетки желёз различной секреции, ФЕС), нефроны почек, ацинусы печени и т.д.

Элементы блока управления построены (собраны) из других обычных элементов, подходящих по своим характеристикам. Он может быть построен как из самих исполнительных элементов, соединённых определённым образом и по совместительству выполняющих функции исполнения и управления, так и из других не принадлежащих к данной группе исполнительных элементов и выделеных в отдельную цепь управления. В последнем случае они могут быть точно такими же, как и исполнительные элементы, но также могут быть сделаны и из других элементов. Например, мышечные сократительные функциональные единицы состоят из мышечных клеток, но управляются нервными центрами, состояшими из нервных клеток. В тоже время все виды клеток, как нервных, так и мышечных, построены почти из одинаковых строительных материалов - белков, жиров, углеводов и минералов.

Рис. 5. Управляемая СФЕ (А) и алгоритм работы блока её управления (В).

Отличие управляемой СФЕ от неуправляемой только в наличии входа уставки. Отсюда же и изменение алгоритма её работы. Действия управляемой СФЕ зависят не только от внешнего воздействия, но и от запрета М на входе уставки.

Блок управления является простейшим если он содержит только ППС (рецептор «Х» и афферентные пути), анализатор-информатор и стимулятор.

СФЕ являются первичными ячейками, исполнительными элементами любых систем. Как видим, несмотря на свою примитивность, они представляют собой довольно сложный и многокомпонентный объект. Каждая из них содержит не менее двух типов элементов (управления и исполнения), и каждый тип включает в себя ещё и ещё, но эти элементы являются обязательными атрибутами любой СФЕ.

Сложность СФЕ является сложностью иерархии их элементов. Особой разницы между элементами исполнения и элементами управления нет. В конечном итоге всё в этом мире состоит из электронов, протонов и нейтронов. Разница между ними только в их месте в иерархии систем, т.е., в их взаимном расположении.

Рис. 6. Составная СФЕ в режиме ожидания (А), запрете функции (В) и её реализации (С).

Составная СФЕ содержит 4 простых СФЕ. Если нет никакого внешнего воздействия, все простые СФЕ неактивны, нет никакого результата действия (А). Если есть внешнее воздействие «Х», но уставка вносит «нет» (запрет на действие), все СФЕ также неактивны и также нет результата действия (В). Если есть внешнее воздействие и уставка вносит «да» (разрешение на действие), то все СФЕ активны и есть результат действия (С). «Мощность» данной составной СФЕ в 4 раза больше «мощности» простой СФЕ. Активация СФЕ производится через вводы уставки их блоков управления. У каждой простой СФЕ есть собственная ППС и общая для них всех ППС.

1 - рецептор «X»; 2 - прямая положительная связь.

Из неуправляемых и управляемых СФЕ можно строить другие СФЕ (составные, рис. 6), более мощные, чем одиночная СФЕ. В реальном мире мало простых СФЕ, которые дают минимальный неделимый результат действия. Гораздо больше составных СФЕ. Например, патрон, наполненный крупинками пороха является составной СФЕ (СФЕ для выстрела), но его энергия взрыва намного больше энергии одиночной крупинки пороха.

Блок-схема составной СФЕ очень похожа на блок-схему простой СФЕ. Отличие составной СФЕ от простой только количественное. Простая СФЕ содержит только одну СФЕ - саму себя, а составная содержит несколько СФЕ, потому есть возможность усиления результата действия.

Таким образом, простая и составная СФЕ содержат два типа элементов:

· элементы исполнения (эффекторы, которые выполняют специфические действия для достижения заданной генеральной цели системы)

· элементы (блок) управления (ППС, анализатор-информатор и стимулятор, который активирует СФЕ)

У составной СФЕ такой же блок управления, как и отдельной СФЕ, т.е., простейший, с прямой управляющей связью (ППС). Составные СФЕ также работают по принципу «всё или ничего». Т.е., они либо дают максимальный результат действия в ответ на внешнее воздействие, либо ждут это внешнее воздействие и не делают никаких действий. Отличие составных СФЕ от простых СФЕ только в силе или амплитуде реакции, которая пропорциональна числу простых СФЕ.

Если костяшки домино стоят в последовательном ряду, то их результатом действия будет долгий звук от падения костяшек, длительность которого равна сумме числа падений каждой костяшки (увеличение длительности результата действия). Если костяшки стоят в параллельном ряду, то их результатом действия будет короткий, но громкий звук, равный сумме громкостей от падения каждой костяшки в отдельности (увеличение мощности).

Рис. 7. Полный цикл и микроциклы функции простой идеальной составной СФЕ.

a - внешнее воздействие на которое СФЕ начинает реагировать; b - внешнее воздействие, на которое СФЕ не реагирует, потому что находится в рефрактерном состоянии (не может активировать исполнительные элементы, потому что они уже активированы); с - амплитуда результата действия СФЕ на графике функции СФЕ.

1 - восприятие и селекция внешнего воздействия рецептором “X” после начала внешнего воздействия и принятие решения; 2 - активация элементов исполнения; 3 - выполнение действия элементов исполнения; 4 - прекращение функции; 5 - полный цикл функции СФЕ.

Цикл работы идеальной простой и составной СФЕ складывается из микроциклов (рис. 7):

? восприятие и селекция внешнего воздействия рецептором «X» и принятие решения

? воздействие на исполнительные элементы (СФЕ)

? срабатывание исполнительных элементов (СФЕ)

? прекращение функции.

После начала внешнего воздействия срабатывает рецептор «X» (1-й микроцикл). Затем уходит какое-то время на принятие решения, потому что это решение само является результатом действия определённых СФЕ, входящих в состав блока управления (2-й микроцикл). Затем активируются (включаются) все СФЕ (3-й микроцикл). Время срабатывания СФЕ зависит от скорости утилизации энергии, затраченной на действие СФЕ, например, от скорости сокращения саркомера в мышечной клетке и которое определяется скоростью биохимических реакций в мышечной клетке. После этого все СФЕ прекращают свою функцию (4-й микроцикл). При этом СФЕ полностью затрачивает на своё действие всю ту энергию, которую она имела и могла использовать на это действие. А так как очередность действий и результат действия всегда один и тот же, то и эта мера энергии всегда одна и та же (квант энергии). Чтобы СФЕ снова могла совершить новое действие, её нужно снова «зарядить» энергией. На это также может уходить время (время зарядки энергией, на графике не показано). Как это происходит рассмотрено в разделе, посвященном пассивным и активным системам, см. ниже).

У любой СФЕ цикл её деятельности складывается из этих микроциклов. Поэтому, её время цикла (5 на рис. 7) работы всегда одинаковое и равно сумме этих микроциклов. Если СФЕ начала свои действия, она не остановится, пока не завершит свой полный цикл. В этом причина неуправляемости любых СФЕ в процессе их срабатывания (абсолютная рефрактерность) - внешнее воздействие может быстро закончиться и снова начаться (b на рис. 7), но пока СФЕ не закончит свои действия, она не остановится и не будет реагировать на новое внешнее воздействие.

В реальных составных СФЕ к этим микроциклам могут добавляться дополнительные микроциклы, обусловленные несовершенством реальных объектов, например, несинхронностью срабатывания элементов исполнения из-за их неодинаковости.

Отсюда видно, что даже простейшие системы, каковыми являются СФЕ, срабатывают не сразу, а им требуется какое-то время, пока появится их результат действия. Этим объясняется иннерционность систем, которую можно измерить, используя параметр постоянной времени. Но это, вообще говоря, не иннерционность, а транзиторная (проходящая) инертность объекта (рефрактерность), его неспособность отвечать на внешнее воздействие в определённые фазы своего действия. Истинная иннерционность объясняется независимостью результата действия от системы его произведшей (см. ниже).

Постоянная времени - это время между началом внешнего воздействия и готовностью к новому внешнему воздействию после выработки результата действия.

Аналогом составных СФЕ являются все объекты, которые действуют подобно лавине. В таких случаях работает «принцип домино». Было одно воздействие и всё падает. Но число падений равно числу СФЕ. Если толкнуть одну костяшку домино, от падения будет только один щелчок. Если толкнуть ряд стоящих костяшек домино, будет столько щелчков, сколько костяшек домино стояло в ряду.

Биологическим аналогом составных СФЕ являются, например, функциональные единицы вентиляции (ФЕВ), каждая из которых состоит из большой группы в нескольких сот альвеол, одновременно включающихся в процесс вентиляции или отключающихся от неё. Ацинусы в печени, сосудистые сегменты брыжжейки, лёгочные сосудистые функциональные единицы и пр. являются аналогами составных СФЕ.

Таким образом, простая СФЕ является объектом, который может реагировать на определённое внешнее воздействие, а результат её действия всегда максимальный, потому что блок управления не контролирует его, т.е., она работает по закону «всё или ничего». Тип её реакции обусловлен типом СФЕ. Есть два вида простой СФЕ - неуправляемая и управляемая. Обе они срабатывают от специфического внешнего воздействия. Но для срабатывания управляемой СФЕ дополнительно необходим ещё сигнал внешнего разрешения на входе уставки, а у неуправляемой СФЕ входа уставки нет. Поэтому неуправляемая СФЕ не зависит ни от каких внешних управляющих сигналов. Блок управления управляемой и неуправляемой СФЕ состоит из анализатора-информатора и имеет только ППС (информатор «Х» и афферентные пути).

Составная СФЕ является таким же объектом, как и простая СФЕ, но результат её действия усиленный. Она также работает по закону «всё или ничего» и её реакция обусловлена типом и числом её СФЕ. Вероятно, и составные СФЕ могут быть управляемыми и неуправляемыми, и различие между ними только в наличии входа уставки в общий блок управления, через который в него подаётся разрешение на выполнение действия. Блок управления системы тоже простейший, имеет только ППС и анализатор-информатор.

Следовательно, любые СФЕ функционируют по закону «всё или ничего». СФЕ так устроена, что она либо ничего не делает, либо выдаёт максимум результата действия. Её элементарный результат действия - либо он есть, либо его нет. Может быть СФЕ, которая выдаёт результат действия, например, в два раза больший, чем результат действия другой СФЕ. Но он всегда будет в два раза больший.

Каждый результат действия простой СФЕ является квантом действия (неделимой порцией), причём максимальным для данной СФЕ. Неделимым потому, что СФЕ не может выдать часть своего результата действия, например, половину. А раз «неделимой порцией», то не может быть градации. СФЕ может быть, например, открыта или закрыта, давать электрический ток, или не давать, секретировать что-либо или не секретировать, и т.д. Но она не может регулировать количество результата действия поскольку её результат всегда либо отсутствует, либо максимальный.

Такой режим работы очень грубый, не точный и не выгодный как для самой СФЕ, так и для её цели. Представим себе, что в нашем автомобиле вместо руля будет устройство, которое будет сразу максимально сворачивать вправо, если мы повернём руль направо, или максимально влево, если мы повернём налево. Вместо плавной и точной подстройки под заданный курс движения автомобиль будет резко метаться справа налево. И цель не будет достигнута, и автомобиль будет разрушен.

В принципе составная СФЕ могла бы дать градуированный результат действия, потому что у неё есть несколько СФЕ, которые она могла бы включать в разной последовательности. Но такая система не может сделать этого, потому что не «видит» свой результат действия и не может его сравнить с тем, что должно быть.

Количество результата действия.

Для достижения заданной цели только задания качества результата действия недостаточно. Цель задаёт не только «какое действие должен» сделать объект (качество результата действия), но и «сколько этого действия» должен сделать данный объект (количество результата действия). А система должна стремиться выполнить специфическое действие ровно столько, сколько нужно, ни больше и ни меньше. Качество действия определяется типом СФЕ. Количество определяется количеством СФЕ.

Есть три количественные характеристики результата действия - максимум, минимум и оптимум количества действия. В реальном мире от реальных систем требуется градация их результатов действия. Поэтому в работе системы должен быть не максимум и не минимум, а оптимум.

Оптимум, это функционирование по принципу -необходимо и достаточно. Результат действия необходимо должен быть таким, а не другим по качеству, и достаточным по количеству, ни больше и не меньше. Отсюда, СФЕ не могут быть полноценными системами. Необходимы системы, у которых возможна регулируемая градация результата действия.

Например, требуется, чтобы в тканевых капиллярах было давление 10 мм Hg. Этой фразой сразу задаётся всё, что содержится в понятии «необходимо и достаточно». Необходимо... давление, и достаточно... 10 мм Hg. Можно подобрать СФЕ, которая даёт давление, но не 10 мм Hg., а, например, 100 мм Hg. Это слишком много. Вероятно, можно подобрать СФЕ, которая может давать давление 10 мм Hg и в данный момент этого достаточно. Но если ситуация вдруг изменилась и уже требуется 100 мм Hg, а не 10 мм Hg, тогда что делать? Снова «бегать» и искать СФЕ, которая может давать 100 мм Hg? А нельзя ли сделать такую систему, которая могла бы давать любые давления в диапазоне, например, от 0 до 100 мм Hg, в зависимости от ситуации?

Чтобы давать то количество результата действия, которое необходимо в данный момент, необходима градация результатов действия систем. Это можно было бы достичь путём построения систем из набора однотипных СФЕ по типу блок-схемы составной СФЕ (рис. 6). У неё есть то, что необходимо для градуировки результата действия - она содержит много СФЕ. Если сделать так, чтобы можно было включать в действие от одной до всех СФЕ, в зависимости от потребности, то результат действия будет иметь столько градаций, сколько СФЕ есть в системе. Чем больше точности требуется, тем больше мелких градаций результата действия должно быть. Поэтому, вместо одной СФЕ с её предельно большим результатом действия нужно использовать столько СФЕ с маленькими результатами действия, сумма которых равна требуемому максимуму, а точность выполнения цели равна результату действия одной СФЕ.

Но у составной СФЕ нет возможности регулировать свой результат действия, потому что у неё нет органа, который делал бы это. Для того, чтобы выдать результат действия в точности равный заданному, его (результат действия) нужно постоянно измерять и сравнивать данные измерений с заданием (с уставкой, с «базой данных»).

«База данных» - это список тех должных величин результата действия, которые система должна выдать в зависимости от величины внешнего воздействия и алгоритма работы блока управления. Цель системы - каждому значению измеренного внешнего воздействия должна соответствовать строго определённая величина результата действия (должная величина).

Для этого нужно «видеть» (измерять) результат действия системы, чтобы сравнивать его с должным. А для этого у блока управления должен быть рецептор «У», который может измерять результат действия, должна быть линия связи (реципрокные пути), по которым информация с рецептора «У» идёт в анализатор-информатор, где результат этого измерения должен сравниваться с тем, что должно быть (с «базой данных»). Блок управления системы должен сравнивать внешнее воздействие с должной величиной, а должную величину с собственным результатом действия, чтобы увидеть его соответствие или несоответствие должной величине. Сравнить внешнее воздействие с должной величиной составная СФЕ ещё может, потому что у неё есть ППС. А сравнить должную величину с результатом собственного действия составная СФЕ уже не может, потому что у неё нет ничего (нет соответствующих элементов), что может это сделать.

Простой блок управления (отрицательная обратная связь).

Чтобы блок управления системы мог «увидеть» (почувствовать и измерить) результат действия системы, он должен иметь соответствующий рецептор «У» на выходе системы и линию связи между ним и рецептором «У» (реципрокный путь).

Логика работы такого управления заключается в том, что если результат действия больше заданного, то нужно его уменьшить, активировав меньшее число СФЕ, если меньше - то увеличить, активировав больше число СФЕ. Поэтому такая связь называется отрицательной. А так как информация движется обратно, от выхода системы в сторону её начала, она называется обратной. В итоге получается отрицательная обратная связь (ООС).

Рецептор «У» и реципрокный путь составляют ООС, а вместе с анализатором-информатором и эфферентными путями (стимулятором) составляют петлю ООС. В зависимости от потребности и на основе информации ОСС блок управления по мере необходимости включает или выключает функции управляемых СФЕ (рис. 8).

Рис. 8. Блок-схема системы с простым блоком управления. Отрицательная обратная связь.

Отличие данной системы от составной СФЕ только в наличии рецептора «У», который измеряет результат действия, и реципрокных путей, по которым информация передаётся с этого рецептора в анализатор. А - активна одна СФЕ, В - активны три СФЕ, С - активны все СФЕ. Число активных СФЕ определяется ОСС.

1 - рецептор "Х"; 2 - ППС.; 3 - ООС; 4 - неактивные СФЕ; 5 - рецептор «У» для измерения результата действия системы; 6 - активные СФЕ.

Следовательно, ООС реализуется с помощью петли ООС, которая включает в себя рецептор «У», реципрокный путь, по которым информация с рецептора «У» переносится в анализатор-информатор, сам анализатор и эфферентные пути, через которые решения блока управления передаются на эффекторы (управляемые СФЕ).

Таким образом, система, в отличие от СФЕ, содержит как ППС, так и ООС. Прямая управляющая связь активирует систему, а отрицательная обратная связь определяет число активированных СФЕ.

Например, если в лёгких будет будет открыто больше альвеолярных капилляров, чем есть альвеол с подходящим газовым составом, то артериализация венозной крови будет неполной, и нужно закрыть ту часть альвеолярных капилляров, которые «омывают» кровотоком альвеолы с неподходящим для газообмена газовым составом. Если их будет открыто меньше, будет перегрузка лёгочного кровообращения и давление в лёгочной артерии возрастёт и нужно открыть часть альвеолярных капилляров. В любом случае срабатывает информатор лёгочного кровообращения и блок управления решает, какую часть капилляров нужно открыть или закрыть. Отсюда, диффузионная часть сосудистого русла лёгких является системой, содержащей простой блок управления.

Рис. 9. Простой блок управления систем с ООС (А) и алгоритм его работы (В) .

Цель системы - результат действия «Y» должен быть равен уставке «М» (Y=M). Действия системы для достижения цели осуществляют элементы исполнения. Блок управления следит за правильностью выполнения действий.

Блок управления, содержащий ППС и петлю ООС, является простым. Алгоритм работы простых блоков управления не отличается большой сложностью (рис. 9). Петля ООС постоянно отслеживает результат действия исполнительных элементов (СФЕ). Если результат действия получается больше, чем задано, нужно его уменьшить, если результат меньше заданного - нужно его увеличить. Через уставку задаются параметры управления («база данных»), например, каким должно быть соотношение между внешним воздействием и результатом действия, или какой уровень результата действия нужно постоянно удерживать и т.д. При этом максимальной точностью будет результат действия одной СФЕ (квант действия).

Системы с ООС, как и составные СФЕ, также содержат два типа объектов:

...

Подобные документы

  • Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.

    реферат [53,9 K], добавлен 18.11.2007

  • Особенности строения и эволюция скелета и внешних покровов тела, пищеварительного тракта и органов дыхания, кровеносной, лимфатической, выделительной, нервной, эндокринной и репродуктивной систем живых существ от простейших организмов до человека.

    реферат [50,4 K], добавлен 25.01.2010

  • Возникновение и развитие науки или теории. Предмет и метод теории систем. Этапы становления науки. Закономерности систем и закономерности целеобразования. Поиск подходов к раскрытию сложности изучаемых явлений. Концепции элементаризма и целостности.

    реферат [33,7 K], добавлен 29.12.2016

  • Системы органического мира, их характеристика. Современная классификация организмов. Паренхиматозные и репродуктивные органы животных. Эволюция систем органов животных. Эволюция висцерального скелета. Строение пищеварительной системы кишечнополостных.

    контрольная работа [38,4 K], добавлен 15.03.2012

  • Открытые и замкнутые системы, их активность и обмен, строение и классификация. Иерархическое соподчинение систем, подсистем и элементов. Симптомы и признаки современного экологического кризиса. Характеристика уровней иерархии биологических систем.

    реферат [24,6 K], добавлен 14.08.2009

  • Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.

    курсовая работа [65,3 K], добавлен 07.01.2011

  • Паразиты человека и животных - причина появления расстройств многих органов и систем; механизм эволюционного взаимодействия гельминтов. Характеристика трематод, цестод, нематод и филярий; заболевания человека, их диагностика, лечение и профилактика.

    курсовая работа [32,3 K], добавлен 07.06.2011

  • Дриопитеки как животные предки человека. Представители человеческой линии эволюции - австралопитеки. Эволюция рода человек. Самоорганизация как основа эволюции. Основные условия и положения самоорганизации систем. Две теории о происхождении материков.

    контрольная работа [29,6 K], добавлен 10.08.2009

  • Основные системы живого мира, образующие различные уровни организации. Вирусы и клетки, биосфера, виды и популяции, биоценоз и биогеоценоз, многоклеточные системы. Классическая таксономическая и современная теории систем живого мира, их особенности.

    реферат [30,4 K], добавлен 18.11.2009

  • Мир живого как система систем. Открытость - свойство реальных систем. Открытость. Неравновесность. Нелинейность. Особенности описания сложных систем. Мощное научное направление в современном естествознании - синергетика.

    реферат [24,1 K], добавлен 28.09.2006

  • Характеристика основных положений общей теории химической эволюции и биогенеза А.П. Руденко. Этапы химической эволюции. Географическая оболочка земли. Понятие зональных, континентальных и океанических комплексов. Динамические и статистические законы.

    контрольная работа [27,6 K], добавлен 23.12.2010

  • Исследование строения, деятельности функциональных систем организма, особенности и принципы их организации. Теории изучения закономерностей развития организма ребенка и особенностей функционирования его физиологических систем на разных этапах онтогенеза.

    контрольная работа [22,9 K], добавлен 08.08.2009

  • Аспекты разнообразия живых систем. Открытые, закрытые, организменные и надорганизменные живые системы. Первые древнейшие доклеточные протобионты. Адаптивный смысл структурной агрегации монобионтов. Развитие живых систем как функция структурной агрегации.

    курсовая работа [730,6 K], добавлен 21.07.2009

  • Этапы становления биологии: традиционный - идея эволюции живой природы, эволюционный - теория Дарвина и Ламарка, молекулярно-генетический - законы наследственности. Создание синтетической теории эволюции. Мир живого: возникновение и эволюция жизни.

    реферат [33,2 K], добавлен 14.01.2008

  • Системология как наука о системах. Примеры систем и их элементов. Целесообразность как назначение, главная функция, которую она выполняет. Структура системы и порядок связей между ее элементами, варианты иерархии. Примеры системного подхода в науке.

    презентация [2,0 M], добавлен 14.10.2013

  • Предметная область естествознания. Античная натурфилософия, механистическая физическая картина мира. Галактики: характеристика и эволюция. Теории возникновения жизни. Проблема биологического и социального в человеке. Общая характеристика кибернетики.

    контрольная работа [32,1 K], добавлен 10.09.2010

  • Общая характеристика группы хордовых животных. Скелет, кожа и сускулатура млекопитающих. Особенности дыхательной, кровеносной, пищеварительной и нервной систем. Органы чувств, тип развития рыб. Пороки сердечно-сосудистой системы класса позвоночных.

    реферат [37,1 K], добавлен 14.01.2010

  • Становление эволюционной теории, закономерности индивидуального развития организма. Эволюция живых организмов. Теория Ч.Дарвина - наследственность, изменчивость и естественный отбор. Видообразование. Роль генетики в современном эволюционном учении.

    реферат [24,8 K], добавлен 09.10.2008

  • Эволюция как учение о длительном процессе исторического развития живой природы. Объяснение многообразия видов и приспособленности живых существ к условиям жизни. Развитие описательной ботаники и зоологии. Первая теория об эволюции органического мира.

    реферат [22,8 K], добавлен 02.10.2009

  • Истоки теории и роль эволюции, эволюция и естественный отбор, адаптация: "понятие и смысл", классификация адаптаций. Эволюционная теория составляет основу парадигмы сегодняшней науки антропологии. Накопленные археологические свидетельства.

    реферат [11,4 K], добавлен 02.12.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.