Физиология сенсорных систем
Изучение основных принципов кодирования и передачи сенсорной информации. Характеристики сигнала на уровне рецептора. Внутреннее ядро глаза. Анатомия и физиология сетчатки. Наружное, внутреннее и среднее ухо. Рецепторы химической чувствительности.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 10.07.2014 |
Размер файла | 129,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При нормальном рассматривании объекта обычно чередуются слежение и саккады.
При фиксации взора на неподвижном объекте в идеале его изображение должно удерживаться в области центральной ямки. Реально же периоды фиксации длительностью 0,2-0,6 с чередуются с саккадами. Даже если сосредоточившись подавить на несколько секунд саккады, точка фиксации будет смещаться из-за медленного дрейфа и непроизвольных микросаккад. (0,5 с), периодически прерываемый непроизвольными саккадами (0,1 с), возвращающими объект в центр поля зрения. То есть как только точка фиксации взора смещается на определенную величину (больше, чем на 5є) происходит возврат благодаря саккаде.
Такие движения глаз необходимы в связи с тем, что фоторецепторы - рецепторы фазические, они быстро (примерно через 2 с) перестают реагировать на постоянный сигнал. Если при помощи специальной оптической системы удерживать образ объекта в одной и той же точке сетчатки, изображение через несколько секунд «увядает». Т.о. дрейф и саккады нужны, чтобы избежать адаптации рецепторов.
При рассматривании изображения происходит фиксация взора на наиболее информативных элементах - на контуре предмета, особенно на точках, где контур меняет направление, при рассматривании лица на глазах и губах и т.д. Периоды фиксации сменяются саккадами. Иерархия выбора точек фиксации зависит от индивидуального опыта, мотивации и т.п. При поражениях лобных долей, где находятся центры планирования движений наблюдаются хаотичные фиксации.
3. Слуховая сенсорная система
Слух - это способность организма человека и животных воспринимать звуковые раздражения. Звук, в свою очередь, можно определить как колебательное движение частиц упругой среды (газ, жидкость, твердое тело), распространяющееся в виде продольной волны. Звуковые колебания характеризуются частотой (инфразвук - до 15-20 Гц; собственно звук, т.е. звук, слышимый человеком, - от 16 Гц до 20 кГц; ультразвук - выше 20 кГц), скоростью распространения (зависит от свойств среды): в воздухе - примерно 340 м/с, в морской воде - 1550 м/с) и интенсивностью (силой). На практике применяют сравнительную величину для измерения интенсивности звука - уровень звукового давления, который измеряется относительно порога слышимости человека в децибелах (дБ). Звуки, содержащие колебания только одной частоты (чистые тона), встречаются редко. Большинство звуков образовано наложением нескольких частот.
Чувствительность слуха оценивается по абсолютному порогу слышимости - минимальной улавливаемой интенсивности звука. Чем меньше величина порога слышимости, тем выше чувствительность слуха. Абсолютный порог слышимости, в свою очередь, зависит от частоты тона. Для человека наиболее низкий порог слышимости регистрируется при 1-4 кГц. При действии звуков очень высокой интенсивности возникает болевое ощущение.
Слуховая система, как и другие сенсорные системы, способна к адаптации. В этом процессе участвуют как периферический отдел, так и нейроны ЦНС. Адаптация проявляется во временном повышении слухового порога.
Как уже говорилось, человек воспринимает звуки с частотой от 16 до 20000 Гц. Этот диапазон с возрастом уменьшается за счет сокращения его высокочастотной части. После 40 лет верхняя граница частоты слышимых звуков каждый год становится меньше примерно на 160 Гц.
Диапазон частот, воспринимаемых различными животными, отличается от человеческого. Так, у рептилий он простирается от 50 до 10000 Гц, а у птиц от 30 до 30000 Гц. Ряд животных (дельфины, летучие мыши) способны определять положение объекта в пространстве благодаря особому виду слуха эхолокации - восприятию звуковых сигналов, которые испускаются самим животным и отражаются от объекта.
3.1 Орган слуха
Органом слуха является ухо, в котором выделяют три отдела - наружное ухо, среднее ухо и внутреннее ухо, в котором собственно и находятся слуховые рецепторы.
3.1.1 Наружное и среднее ухо
Наружное ухо состоит из ушной раковины и наружного слухового прохода.
Ушная раковина - эластичный хрящ, покрытый кожей. Функция ушной раковины - звуколокация; она направляет звуковые колебания в наружный слуховой проход, обеспечивая при этом улучшенное восприятие звуков, идущих с определенного направления. У человека ушная раковина рудиментарна и лишена подвижности.
Наружный слуховой проход - полость в виде трубки, покрытая кожей и ведущая к среднему уху. Средняя длина наружного слухового прохода человека составляет 26 мм, средняя площадь - 0,4 см2. Кожа слухового прохода содержит большое количество сальных желез, а также желез, вырабатывающих ушную серу, которая играет защитную роль, задерживая пыль и микроорганизмы и предохраняя барабанную перепонку от высыхания.
Наружный слуховой проход заканчивается барабанной перепонкой, отделяющей его от среднего уха. Это натянутая мембрана воронковидной формы между наружным и средним ухом, передающая звуковые вибрации на слуховые косточки среднего уха. Перепонка состоит из соединительнотканных волокон и имеет площадь около 0,6 см2.
Среднее ухо - полость в каменистой части височной кости, заполненная воздухом и содержащая слуховые косточки. Объем полости среднего уха, или барабанной полости, около 1 см3.
Главная часть среднего уха - это слуховые косточки - небольшие косточки (молоточек, наковальня и стремечко), последовательно связанные между собой и передающие звуковые колебания от барабанной перепонки к мембране овального окна внутреннего уха. Молоточек соединен с барабанной перепонкой, а стремечко - с овальным окном. Слуховые косточки соединены друг с другом подвижно, при помощи суставов. С ними связаны две маленькие мышцы, которые регулируют движения цепи косточек. Степень сокращения этих мышц меняется в зависимости от громкости звука, предохраняя внутреннее ухо от слишком сильных колебаний.
Барабанная полость соединена с носоглоткой евстахиевой трубой. Благодаря ей поддерживается равновесие между давлением в барабанной полости и внешним атмосферным давлением. При отсутствии такого равновесия возникает ощущение «заложенности» ушей (например, в самолете), которое может быть снято сглатыванием. При глотании просвет евстахиевых труб расширяется, что облегчает поступление воздуха в полость среднего уха. К сожалению, через этот же канал могут проникать микроорганизмы, вызывая воспаление - отит среднего уха.
3.1.2 Внутреннее ухо
Внутреннее ухо или лабиринт - система полостей и извитых каналов, лежащих в каменистой части височной кости. Различают костный лабиринт и лежащий внутри него перепончатый лабиринт.
Костный лабиринт ограничен костью. В нем различают три части - преддверие (vestibulum), полукружные каналы (canales semicirculares) и улитку (cochlea). Преддверие и полукружные каналы относятся к вестибулярному анализатору, улитка - к слуховому. Перепончатый лабиринт находится внутри костного и более или менее повторяет форму послежнего. Стенки перепончатого лабиринта образованы тонкой соединительнотканной перепонкой. Между костным и перепончатым лабиринтами находится жидкость - перилимфа; сам перепончатый лабиринт заполнен эндолимфой. Все полости перепончатого лабиринта соединены друг с другом системой протоков.
Улитка - часть внутреннего уха в виде спирально закрученного канала. Улитка образует примерно 2,5 оборота вокруг костного стержня. В основании этого стержня находится полость, в которой лежит спиральный ганглий.
На продольном и поперечном разрезах через улитку видно, что она разделена на три отдела двумя мембранами - базилярной или основной (нижней) и вестибулярной или Рейснера (верхней). Средний отдел - это перепончатый лабиринт улитки, он носит название средняя лестница или улиточный проток. Над ним расположена вестибулярная лестница, а под ним барабанная лестница. Улиточный проток заканчивается слепо, вестибулярная и барабанная лестницы на вершине улитки соединяются при помощи небольшого отверстия - геликотремы, составляя, по существу, единый канал, заполненный перилимфой. Полость средней лестницы заполнена эндолимфой.
Вестибулярная лестница берет начало от овального окна - тонкой мембраны, соединенной со стремечком и находящейся между средним ухом и преддверием внутреннего уха. Барабанная лестница начинается от круглого окна - мембраны, находящейся между средним ухом и улиткой.
Звуковые волны, попадая в наружное ухо, раскачивают барабанную перепонку, а затем по цепи слуховых косточек достигают овального окна и вызывают его колебания. Последние распространяются по перилимфе, вызывая колебания базилярной мембраны. Т.к. жидкость несжимаема, колебания гасятся на круглом окне, т.е. когда овальное окно вдается в полость вестибулярной лестницы, круглое окно выгибается в полость среднего уха.
Базилярная мембрана представляет собой упругую пластинку, пронизанную слабо натянутыми поперек белковыми волокнами (до 24000 волокон разной длины). Плотность и ширина базилярной мембраны на разных участках различна. Жестче всего мембрана у основания улитки, а к ее вершине пластичность увеличивается. У человека в основании улитки ширина мембраны составляет 0,04 мм, затем, постепенно увеличиваясь, она достигает у вершины улитки 0,5 мм. Т.е. мембрана расширяется там, где сама улитка сужается. Длина мембраны около 35 мм.
На базилярной мембране расположен кортиев орган, содержащий более 20 тысяч слуховых рецепторов, расположенных между опорными клетками. Слуховые рецепторы представляют собой волосковые клетки; за счет их деятельности колебания жидкости внутри улитки преобразуются в электрические сигналы. На поверхности каждой рецепторной клетки находится несколько рядов убывающих по длине волосков (стереоцилий), заполненных цитоплазмой, их около сотни. Волоски выходят в полость улиточного протока, и кончики самых длинных из них погружены в покровную желеобразную мембрану, лежащую над кортиевым органом по всей его длине. Вершины волосков связаны тончайшими белковыми нитями, по-видимому соединенными с ионными каналами. Если волоски изгибаются, белковые нити натягиваются, открывая каналы. В результате возникает входящий ток катионов, развивается деполяризация и рецепторный потенциал. Таким образом, адекватным раздражителем для слуховых рецепторов является изгибание волоска, т.е. эти рецепторы являются механорецепторами.
Звуковая волна, проходя по перилимфе, вызывает колебания базилярной мембраны, представляющие собой так называемую бегущую волну, которая распространяется от основания улитки к ее вершине. В зависимости от частоты звука амплитуда этих колебаний различается в разных частях мембраны. Чем выше звук, тем более узкая часть мембраны раскачивается с максимальной амплитудой. Кроме того, амплитуда колебаний зависит, естественно, и от силы звука. При колебаниях базилярной мембраны волоски сидящих на ней рецепторов, контактирующие с покровной мембраной, смещаются. Это вызывает открывание ионных каналов, что приводит к возникновению рецепторного потенциала. Величина рецепторного потенциала пропорциональна степени смещения волосков. Минимальное смещение волосков, вызывающее ответ, составляет всего 0,04 нм - меньше диаметра атома водорода.
Слуховые волосковые рецепторы - вторичночувствующие. Для передачи сигнала в ЦНС к каждому из них подходят дендриты биполярных нервных клеток, тела которых лежат в спиральном ганглии. Дендриты формируют синапс с волосковыми рецепторами (медиатор - глутаминовая кислота). Чем больше деформация волосков, тем больше рецепторный потенциал и количество выделяемого медиатора, а, значит, и больше частота нервных импульсов, распространяющихся по волокнам слухового нерва. Кроме того, к некоторым слуховым рецепторам подходят эфферентные волокна, приходящие из ЦНС от ядер верхних олив (см. ниже). Благодаря им можно в некоторой степени регулировать чувствительность рецепторов.
Аксоны нейронов спирального ганглия образуют улиточный (кохлеарный) нерв (слуховая часть VIII пары черепных нервов). У человека в улиточном нерве примерно 30 тысяч волокон. Он идет к слуховым ядрам, расположенным на границе продолговатого мозга и моста.
Таким образом, периферический анализ свойств звукового раздражителя заключается в определении его высоты и громкости. При этом для каждого участка базилярной мембраны характерна «настроенность» на определенную частоту звука - частотная дисперсия. В результате волосковые клетки в зависимости от своей локализации избирательно реагируют на звук разной тональности. Поэтому можно говорить о тонотопическом (греч. tonos - тон) расположении волосковых клеток.
3.2 Проводниковый отдел слуховой сенсорной системы
Волокна слухового нерва заканчиваются на двух кохлеарных (слуховых) ядрах, расположенных в латеральных частях мозгового ствола на границе продолговатого мозга и моста, - дорсальном и вентральном. Большинство волокон от этих ядер перекрещиваются (переходят на другую сторону) и образуют синапсы на слуховых центрах противоположной стороны. Основная часть волокон от вентрального ядра идет к ядрам верхних олив - слуховым ядрам в варолиевом мосту. Оттуда волокна идут к нижним холмикам четверохолмия среднего мозга. Следующий центр проводникового отдела - проекционные сенсорные ядра таламуса (промежуточный мозг) медиальные (наружные) коленчатые тела (МКТ). Волокна от этих ядер идут в височную долю коры больших полушарий, образуя так называемую слуховую лучистость.
Волокна от дорсальных кохлеарных ядер также совершают перекрест и идут в центры среднего мозга и таламуса, минуя верхние оливы. Небольшая часть волокон от кохлеарных ядер поступает в МКТ напрямую, т.е. без переключения в ядрах верхних олив и нижних холмиках. Перекрест некоторых слуховых волокон осуществляется и на других уровнях слуховой системы.
Волокна, идущие от кохлеарных ядер и верхних олив в варолиевом мосту собираются в один пучок - латеральный лемниск (латеральная петля). Большинство волокон этого пучка, как ясно из вышесказанного, заканчивается на нейронах нижних холмиков, небольшая часть сразу идет в МКТ.
Каждое проводящее волокно слухового нерва передает информацию от строго определенных волосковых клеток. В результате отдельные волокна слухового нерва также возбуждаются при предъявлении звука только в определенном частотном диапазоне. По ним информация о звуковых сигналах передается в кохлеарные ядра. В них есть полное представительство («карта») улитки; расположение переключающих нейронов тонотопическое (частота звука кодируется «номером канала»). Тонотопия сохраняется и на всех других уровнях слуховой системы.
Одной из важных характеристик деятельности слуховых нейронов является V-образная частотно-пороговая кривая. Она отражает диапазон частот, на которые реагирует данный нейрон и пороговую силу раздражителя для каждой частоты. В большинстве случаев эта кривая суживается на более высоких уровнях слуховой системы, что говорит о большей частотной избирательности нейронов этих уровней. Более того, по мере повышения уровня форма кривых может становиться все более сложной - неправильной формы, многопиковой и т.п.
Но анализ звуковой информации включает не только определение частоты тона. В повседневной жизни чистые тоны почти не встречаются. Большинство звуков состоят из смешения разных частот, которые постоянно меняются. Меняются также длительность и интенсивность этих звуков, их локализация, интонации человеческой речи и т.д. Анализ всех этих параметров происходит за счет многократной перекодировки информации по мере прохождения через различные уровни слуховой системы.
Так, например, в слуховых ядрах имеются клетки, реагирующие не просто на звук определенной частоты, но только на включение звука или только на выключение звука этой тональности. Нижние холмики четверохолмия (по аналогии со зрительной системой) связаны с выделением новых (только что появившихся) звуковых сигналов и запуском ориентировочной реакции. Многие нейроны МКТ активируются только при сочетании звукового стимула с раздражителями других модальностей (вестибулярными, зрительными и т.п.).
Локализация источника звука определяется при помощи бинаурального слуха, т.е. слышания обоими ушами. Каждый звук, идущий сбоку, достигает более удаленного уха позже и с меньшей силой. Благодаря перекресту волокон информация от рецепторов правого и левого уха может конвергировать на одних и тех же нейронах. Это впервые происходит в ядрах верхнеоливарного комплекса, затем анализ продолжается на более высоколежащих уровнях. Бинауральный слух дает возможность определять направление звука с точностью до 3-4. Человек глухой на одно ухо (с моноуральным слухом) может сориентироваться в направлении звука только вращая головой и оценивая громкость сигнала.
3.3 Корковый отдел слуховой сенсорной системы
Первичная слуховая кора находится в височной доле больших полушарий (поле 41). Первичная слуховая кора получает проекции от медиального коленчатого тела. В коре есть несколько представительств (карт) улитки, в результате чего осуществляется параллельная обработка информации. Корковые нейроны редко реагируют на интенсивность звука; в основном их реакции отражают включение и выключение звука, повышение либо понижение его частоты, хорошо (до 1 кГц) различается частота щелчков. Некоторые нейроны слуховой коры реагируют на комбинации тонов, на бинауральные, но не на моноуральные стимулы и т.д. Обнаружены и слуховые колонки, как структурные элементы коры, обеспечивающие первичные процессы опознавания звукового сигнала. Все нейроны одной колонки имеют одну и ту же оптимальную частоту звука, на который они отвечают.
Поле 41 тесно связано с окружающей его вторичной слуховой корой (поля 42 и 22). У человека повреждение этих зон ведет к нарушению восприятия музыки, речи и т.п. Так, именно здесь в левом полушарии у правшей находится речевой центр Вернике. При поражении этого центра наблюдается сенсорная афазия - нарушение понимания звучащей речи. В экспериментах на обезьянах показано, что здесь находятся нейроны, связанные с внутривидовой коммуникацией (общением) и опознающие издаваемые при этом звуки. По-видимому, большинство нейронов, находящихся в этой зоне, обладают свойством настраиваться на определенные звуковые образы, т.е. проходят процесс обучения. Исследователи, работающие на височной коре животных, отмечают, что порой очень нелегко найти, на какой именно звуковой сигнал реагирует та или иная конкретная клетка, поскольку обычно этот сигнал представляет собой сложный комплекс сигналов разной частоты и амплитуды.
Нарушения в работе слухового анализатора может быть связано как с периферическим, так и с центральными отделами. Например, при воспалении среднего уха часто нарушается костная передача звука из-за снижения подвижности слуховых косточек. При воспалении внутреннего уха возможно поражение слуховых рецепторов, в результате чего нарушается трансформация звукового сигнала в нервный импульс. Сильные шумы, постоянно действующие на ухо, наносят ему большой вред, т.к. барабанная перепонка при этом колеблется с большим размахом и теряет свою эластичность. В результате развивается тугоухость - профессиональная болезнь людей, работающих в условиях повышенного шума.
4. Вестибулярная сенсорная система
Вестибулярная система анализирует изменения положения тела в пространстве, а также действие на организм ускорений и изменений силы тяжести. Это обусловливает возникновение рефлексов, приводящих к координированным сокращениям скелетной мускулатуры, с помощью которых сохраняется равновесие. Выделяют статические и статокинетические вестибулярные рефлексы. Статические рефлексы обеспечивают адекватное взаиморасположение конечностей и устойчивую ориентацию тела в пространстве, т.е. это позные рефлексы. Примером может служить компенсаторное вращение глазного яблока при повороте головы, благодаря чему зрачки сохраняют положение, близкое к вертикальному. Статокинетические рефлексы возникают в ответ на сами движения. Это, например, движения человека, восстанавливающие равновесие после того, как он споткнулся.
Периферический отдел вестибулярного анализатора (рис. 19) находится во внутреннем ухе (см. раздел 3.1). Вестибулярный аппарат (орган равновесия) - это преддверие и полукружные каналы с находящимися в них волосковыми чувствительными клетками, способными воспринимать изменение положения тела в пространстве. Полукружные каналы представляют собой узкие ходы, расположенные в трех взаимно перпендикулярных плоскостях. Один конец каждого канала образует ампулу - колбообразное расширение. Перепончатый лабиринт внутри каналов повторяет форму костного. Внутри костного преддверия перепончатый лабиринт образует два мешочка - круглый (sacculus) лежит ближе к улитке и овальный (utriculus) - ближе к полукружным каналам. Как уже говорилось, перепончатый лабиринт заполнен эндолимфой, а между костным и перепончатым лабиринтами находится перилимфа. Рецепторные клетки находятся в ампулах и мешочках преддверия.
Вестибулярный рецептор очень похож на слуховой. В верхней его части расположена длинная настоящая ресничка (киноцилия) и отходящая от нее «шеренга» убывающих по длине волосков, заполненных цитоплазмой (стереоцилии; их несколько десятков). Так же как и у слуховых рецепторов вершины волосков связаны тончайшими белковыми нитями, соединенными с ионными каналами. Если происходит деформация волосков по направлению от стереоцилий к киноцилии - белковые нити натягиваются, открывая ионные каналы. В результате возникает входящий ток катионов, развивается деполяризация и рецепторный потенциал. Волосковые рецепторы вторично чувствующие, и для передачи сигнала в ЦНС они формируют синапс с дендритами биполярных проводящих нейронов вестибулярного ганглия Скарпа (медиатор - глутаминовая кислота). Чем больше деформация волосков, тем больше рецепторный потенциал и количество выделяемого медиатора. Таким образом, так же как и слуховые, вестибулярные рецепторы относятся к механорецепторам.
В каждом из мешочков преддверия есть участок, в котором собраны рецепторные волосковые клетки. Он называется макула (пятно). В каждой ампуле рецепторы также сгруппированы и образуют кристу (гребешок). Над рецепторами лежит плавающая в эндолимфе желеобразная масса, в которую погружены кончики волосков рецепторных клеток. В полукружных каналах эту массу называют купулой. В мешочках желеобразная масса содержит кристаллы карбоната кальция (отолиты) и называется отолитовой мембраной.
Адекватным раздражителем для волосковых клеток вестибулярного аппарата является сдвиг желеобразной массы внутри полости, заполненной эндолимфой. Сдвиг этот происходит под действием сил инерции тогда, когда наше тело перемещается с ускорением. Подобным образом сдвигаются пассажиры в автобусе, который тормозит, разгоняется или поворачивает. В результате такого смещения происходит наклон пучка волосков вестибулярных рецепторов, что и приводит к генерации рецепторного потенциала.
В связи с особенностями строения вестибулярного аппарата функции волосковых клеток в ампулах и в мешочках отличаются. Рецепторы в макулах - это гравитационные рецепторы, т.е. рецепторы силы тяжести. Они реагируют на различные наклоны головы. Макулы в круглом и овальном мешочках расположены почти перпендикулярно друг другу, поэтому при любой ориентации головы какая-то часть рецепторов возбуждена. Эти же рецепторы реагируют на появление линейного ускорения (т.е. на смещение тела вперед-назад, вверх-вниз и т.п.). Рецепторы в кристах возбуждаются при угловом (вращательном) ускорении, т.е. при поворотах головы. Еще раз подчеркнем, что вестибулярные рецепторы генерируют рецепторный потенциал именно при ускорении, при достижении постоянной скорости смещения головы они «умолкают». Таким образом, для данной системы значение имеет только изменение скорости.
Чувствительность вестибулярной системы очень велика как к линейным ускорениям (абсолютный порог - 2 см/с2), так и к угловым вращениям (2-3°/с2). Дифференциальный порог наклона головы вперед-назад составляет около 2°, а влево-вправо - 1°.
Вестибулярный нерв (вестибулярная часть VIII пары черепных нервов) образован аксонами клеток вестибулярного ганглия. Большинство волокон этого нерва оканчиваются на четырех вестибулярных ядрах, расположенных с каждой стороны на границе продолговатого мозга и моста. Это верхнее ядро (Бехтерева), латеральное (Дейтерса), нижнее (Роллера) и медиальное (Швальбе).
Вестибулярные ядра посылают свои волокна к многочисленным структурам ЦНС, тесно связанным с регуляцией движений. Основные из них представлены на схеме.
Во-первых, это спинной мозг, через который осуществляется регуляция работы мышц нашего тела по принципу врожденных рефлекторных реакций (быстрое распрямление конечностей при потере равновесия, установка положения головы и т.п.). Во-вторых, это мозжечок, который осуществляет тонкую координацию и регуляцию движений, используя для этого мышечную и вестибулярную чувствительность. Обработкой вестибулярной информации занимается наиболее древняя часть мозжечка - клочково-узелковая доля; ее повреждения ведут к нарушению чувства равновесия - человек не может ходить, а при обширных травмах - даже сидеть.
В-третьих, это глазодвигательные ядра (ядра III, IV и VI пар черепных нервов). Связь с ними необходима для коррекции движений глаз при изменении положения головы и тела в пространстве и, таким образом, для удержания изображения на сетчатке. Одним из важнейших статокинетических рефлексов, осуществляемых при помощи этих связей является глазной нистагм - ритмическое движение глаз в сторону, противоположную вращению, которое сменяется скачком глаз обратно. Этот рефлекс является важным показателем состояния вестибулярной системы; его характеристики широко используются в медицинских исследованиях.
Наконец, это связи с вегетативными центрами - парасимпатическими ядрами ствола и гипоталамусом, которые обеспечивают вегетативные компоненты вестибулярных реакций. Сильные раздражения вестибулярных рецепторов могут вызвать неприятные ощущения - головокружение, рвоту, тахикардию (учащение ритма сердечных сокращений) и т.п. Такие симптомы называют кинетозом (укачиванием, морской болезнью).
Волокна от вестибулярных ядер идут к коре больших полушарий, как и у остальных сенсорных систем, через таламус (через двигательные проекционные ядра). Благодаря этому осуществляется сознательная ориентировка в пространстве. Вестибулярные зоны в коре находятся в задней части постцентральной извилины и нижней части прецентральной извилины.
Приходящие от вестибулярных рецепторов импульсы не обеспечивают ЦНС полной информацией о положении тела в пространстве, т.к. положение головы далеко не всегда соответствует положению туловища. Поэтому ориентация в пространстве осуществляется при комплексном участии ряда сенсорных систем, в первую очередь мышечно-суставной и зрительной.
Работы с вестибулярной системой очень активизировались после начала полетов в космос, т.к. в невесомости вестибулярный аппарат в значительной мере выключен. Однако, по отчетам космонавтов, привыкание к этому состоянию идет быстро, в течение всего нескольких дней. По-видимому, в данном случае работа вестибулярного анализатора начинает выполняться другими органами чувств, что говорит о пластичности (гибкости) нервной системы.
5. Соматическая чувствительность
К ней относятся те виды чувствительности, которые связаны с телом (греч. soma - тело), т.е. кожная рецепция и проприорецепция.
Особенностями этих видов рецепции является отсутствие специализированных органов чувств - рецепторы расположены по всему организму; кроме того у этих видов чувствительности нет отдельных нервов - афферентные волокна входят в состав спинномозговых и смешанных черепных нервов. Такими же особенностями обладает и висцерорецепция, которая будет рассмотрена в разделе хеморецепторов.
5.1 Кожная сенсорная система
Деятельность кожного анализатора связана с осязанием - способностью организма воспринимать болевые, термические и механические (тактильные) воздействия среды при помощи специализированных рецепторов. Кроме кожи такие рецепторы имеются в слизистых оболочках внутренних полостей организма. Однако в последнем случае точность локализации ощущения понижена, т.к. плотность нервных окончаний в слизистой гораздо меньше.
В формировании кожной чувствительности принимают участие раздражители нескольких модальностей. Выделяют тактильную рецепцию, включающую чувство прикосновения, давления, вибрации; температурную рецепцию, разделяющуюся на тепловую и холодовую; ноцицептивную (болевую) рецепцию - ощущение раздражителей, которые сигнализируют о повреждении (или возможности повреждения) тканей и органов. В повседневной жизни осязанием, как правило, называют тактильную рецепцию.
Все осязательные рецепторы - первичночувствующие и представляют собой окончания дендритов псевдоуниполярных нейронов. Тела этих нейронов расположены в сенсорных ганглиях (спинномозговых или черепных нервов).
Органом осязания является кожа. Она состоит из двух основных слоев - эпидермиса (истинный наружный слой - производное эктодермы) и дермы или собственно кожи (производное мезодермы). Производными эпидермиса являются такие специализированные структуры, как волосы, ногти, кожные железы. Функции кожи очень многочисленны: защитная, выделительная, дыхательная и др. Нас будет интересовать сенсорная функция кожи.
Рецепторная поверхность кожного анализатора по сравнению с другими анализаторами очень велика - до 2,0 м2. Кожные рецепторы (рис. 21) расположены главным образом в дерме, а также в самых нижних слоях эпидермиса. Выделяют три основных типа кожных рецепторов: 1) свободные нервные окончания - разветвления нервного волокна в коже; 2) сплетения свободных нервных окончаний в волосяной сумке; 3) инкапсулированные нервные окончания - окончания нервных волокон, заключенные в соединительнотканные капсулы. Последний из названных типов очень разнообразен, например, тельца Пачини, тельца Мейснера, колбы Краузе, цилиндры Руффини и др.
Долгое время физиологи изучают вопрос, есть ли связь между видом кожных рецепторов и модальностью воспринимаемого ими раздражителя. В последнее время исследователи приходят к выводу, что если большинству инкапсулированных нервных окончаний присуща предпочтительная чувствительность к определенным модальностям раздражителя, свободные нервные окончания являются полимодальными, т.е. реагируют на раздражители нескольких типов (ноцицептивные, температурные, тактильные).
При восприятии тактильных раздражителей большое значение имеют пространственные и временные характеристики стимула.
Пространственные характеристики зависят от дифференциальных порогов (см. 1.3). В случае кожных рецепторов - это их способность различать две разные точки прикосновения. Если взять циркуль, ножки которого раздвинуты на 4 см, приставить его к спине человека и спросить, сколько точек раздражают, то скорее всего он ответит, что одну. И только если ножки будут раздвинуты больше чем на 5-6 см, обе раздражаемых точки будут восприниматься раздельно. Наименьшее расстояние между двумя точками кожи, при раздражении которых возникает ощущение двух прикосновений, называют порогом пространственного разрешения (дифференциальный порог). Эти пороги отличаются на разных участках кожи: минимальные - на кончике языка (1-2 мм), указательном пальце (2-3 мм), губах (примерно 5 мм); максимальные - на бедрах, спине (5-6 см). Очевидно, что минимальные пороги наблюдаются в тех частях тела, информация от которых особенно важна для организма. Различение связано с размером рецептивного поля как конкретного сенсорного нейрона (т.е. на каком участке поверхности ветвится его отросток), так и нейронов коры. При повреждениях коры (например, при инсульте) пространственное различение резко ухудшается.
Временные характеристики связаны со способностью рецепторов к адаптации. Очень быстро адаптирующиеся рецепторы (тельца Пачини) реагируют только на изменение скорости механической стимуляции, т.е. на ускорение. Это рецепторы вибрации. Медленноадаптирующиеся рецепторы (диски Меркеля, цилиндры Руффини) служат рецепторами интенсивности и длительности давления. Тельца Мейснера и нервные окончания в волосяных сумках по способности к адаптации лежат между очень быстро и медленноадаптирующимися рецепторами. Они реагируют только на движение кожи и волос. Частота их импульсации увеличивается со скоростью движения, поэтому их называют рецепторами скорости.
Температурная чувствительность играет очень большую роль в работе организма, т.к. с ней связана терморегуляция. Восприятие организмом тепла и холода зависит, в первую очередь, от температуры поверхности кожи, а также от процессов адаптации. Если мы опустим правую руку в горячую воду, а левую - в холодную, подержим их там примерно минуту, а потом опустим обе руки в теплую воду, то правая рука почувствует холод, а левая - тепло. В узком нейтральном диапазоне, соответствующем постоянной температуре тела (у человека примерно от 30до 40С), активность терморецепторов минимальна, они адаптированы к этой температуре, и ни тепло, ни холод не воспринимаются. За пределами такой зоны устойчивые температурные ощущения возникают даже при постоянной температуре, например, чувство замерзших ног может сохраняться часами. Температурные ощущения могут вызываться и неадекватными раздражителями, например, ментол вызывает ощущение холода.
Болевая рецепция (ноцицепция) имеет особое значение в жизни организма, т.к. она сигнализирует об опасности при действии любых чрезмерно сильных или вредных раздражителей. Раздражители эти, повреждая ткани тела, вызывают выброс пострадавшими клетками в межклеточную среду особых веществ, сигнализирующих о травме. Такие вещества (простагландины, серотонин, ионы кальция) воздействуют на болевые рецепторы и возбуждают их. Ключевое значение среди них имеют простагландины - вещества, образующиеся из липидов поврежденных мембран при помощи фермента простагландинсинтетазы.
Как уже было сказано, существуют специальные рецепторы для восприятия боли (свободные нервные окончания), в то же время и чрезмерное раздражение тактильных и терморецепторов может вызывать боль. Адаптация к болевым раздражителям возможна лишь в небольшой степени. Например, если ввести в кожу иглу и не двигать ее, ощущение боли постепенно проходит. Однако для снятия сильной боли требуется применение специальных препаратов - анальгетиков. Наиболее распространенные из них - анальгин, парацетамол, аспирин (то есть ненаркотические анальгетики) - блокаторы простагландинсинтетазы.
В тяжелых случаях используются морфин и сходные с ним соединения (наркотические анальгетики). При оперативных вмешательствах для обезболивания небольших участков тела используют анестезию и, вводя новокаин, лидокаин и т.п., блокируют проведение импульсов по нервным волокнам. При полостных операциях обычно применяют наркоз, характеризующийся обратимой утратой сознания и болевой чувствительности, расслаблением скелетных мышц.
Преобразованную рецепторами информацию сенсорные волокна передают в спинной мозг и в ствол головного мозга. Там она используется двояким образом: во-первых, участвует в запуске и течении рефлексов, например, в сгибательных рефлексах на болевой раздражитель; во вторых, поступает к восходящим путям, идущим в кору больших полушарий. При этом в спинном мозге происходит перегруппировка афферентных волокон таким образом, что тактильная, температурная и болевая рецепция не смешиваются.
Переключение и переработка болевой чувствительности происходят в наиболее периферической части заднего рога серого вещества спинного мозга. Здесь расположены не только релейные нейроны, проводящие информацию в головной мозг, но и интернейроны, влияющие на работу релейных клеток. Назначение интернейронов заключается в реализации пре- и постсинаптического торможения передачи боли. Напомним, что пресинаптическое торможение реализуется с помощью пептидэргических нейронов (медиаторы - опиоидные пептиды).
Управление работой постсинаптических тормозных интернейронов осуществляется на двух уровнях: за счет команд из головного мозга (от голубого пятна, центрального серого вещества) и за счет тактильных сигналов от той же точки кожи, где расположен болевой рецептор. Последняя система характеризуется как «воротный контроль проведения боли». Именно этот механизм мы интуитивно активируем, массируя больное место, дуя на него и т.п. Блокада боли за счет самовнушения, гипноза, рефлексотерапии, по-видимому, реализуется благодаря тормозным сигналам из головного мозга.
Дальнейшая передача болевой чувствительности происходит в основном по спинно-таламическому тракту в медиальную (внутреннюю) область таламуса, а оттуда - в кору больших полушарий. При этом выделяют два типа проекций - диффузные и локальные. Первые распространяются на всю кору и призваны привлечь внимание к боли, помочь сменить поведение и запустить оборонительные реакции. Вторые идут в постцентральную извилину и способствуют точной локализации и анализу болевых ощущений. Часть болевых сигналов передается в гипоталамус, запуская работу систем отрицательного подкрепления.
Переработка кожной и температурной чувствительности осуществляется в средней зоне заднего рога серого вещества. Однако основная ее масса передается в головной мозг без переключения в спинном. Для этого часть нейронов спинномозговых ганглиев «собирает» свои аксоны вместе и формирует дорзальные канатики белого вещества (дорзальные или задние столбы). Дорзальные столбы делятся на нежный (тонкий) и клиновидный пучки. Первые несут информацию от ног и нижней части туловища, вторые - от рук и верхней части туловища. Далее сигналы переключаются в тонком и клиновидном ядрах продолговатого мозга. После перекреста аксоны клеток этих бугорков и присоединившиеся к ним аксоны клеток сенсорных ядер V (тройничного) нерва (чувствительность головы) направляются в вентральную (нижнюю) заднюю часть таламуса. Волокна, несущие кожную чувствительность в таламус принято называть медиальным лемниском (медиальной петлей). И, наконец, нейроны таламуса передают кожную и температурную чувствительность в соматосенсорную кору в постцентральной извилине.
В этой области больших полушарий представлена соматотопическая карта кожной поверхности. Она была изучена в ходе нейрохирургических операций, когда при стимуляции током больные давали отчет о своих ощущениях. Пропорции соматотопической карты в значительной мере искажены. Это связано с различиями в плотности рецепторов на разных участках кожи, что, соответственно, влияет на пороги пространственного разрешения. Проекции от левой половины тела располагаются в правой половине мозга, а от правой половины тела - в левой. Интересно, что корковые представительства различных частей тела могут несколько меняться у людей в зависимости от рода их деятельности. Например, участок коры, в который проецируется информация от кожных рецепторов левой руки у музыкантов, играющих на струнных инструментах больше, чем у других людей.
5.2 Мышечная сенсорная система
Необходимым условием нормальной мышечной деятельности является получение информации о положении тела в пространстве и о степени сокращения каждой из мышц. Эта информация поступает в ЦНС от различных рецепторов, например, вестибулярного аппарата, глаз. Однако важнейшим ее компонентом являются сигналы от мышечно-суставных рецепторов - проприоцепторов (или проприорецепторов).
Основные проприоцепторы - это мышечные веретена и сухожильные тельца Гольджи. Существуют также рецепторы в суставах (тельца Пачини). Все проприоцепторы - механорецепторы.
Мышечные веретена представляют собой веретенообразные структуры, расположенные в мышцах. Каждое мышечное веретено состоит из нескольких сильно уменьшенных видоизмененных (интрафузальных) мышечных волокон, покрытых единой капсулой. Мышечные веретена расположены параллельно обычным мышечным (экстрафузальным) волокнам и крепятся к ним или к сухожилиям.
К мышечным веретенам подходят афферентные (чувствительные) волокна, являющиеся периферическими отростками (дендритами) псевдоуниполярных нейронов сенсорных спинномозговых ганглиев. Эти отростки входят внутрь веретена и оплетают интрафузальные мышечные волокна таким образом, что растяжение последних вызывает активацию нервного отростка, генерацию рецепторного потенциала и потенциалов действия. Сигналы проводятся к телу псевдоуниполярного нейрона и далее через задние корешки входят в спинной мозг. Таким образом, мышечные веретена обеспечивают ЦНС сведениями о состоянии мышц, их фактической длине и скорости ее изменения. Принципиально важно, что кроме афферентных волокон к мышечным веретенам подходят еще и эфферентные (двигательные) волокна от мотонейронов спинного мозга.
Рассмотрим более детально систему связей между мотонейронами передних рогов спинного мозга и экстра- и интрафузальными волокнами, т.е. волокнами мыщц и мышечных веретен. Обычные мышечные волокна иннервируются альфа-мотонейронами, а интрафузальные - более мелкими гамма-мотонейронами. Импульсы от возбужденных веретен поступают на альфа-мотонейроны, иннервирующие мышечные волокна, к которым прикреплены соответствующие веретена. Таким образом, при возбуждении мышечных веретен сокращение мышцы усиливается.
Через мотонейроны и на обычные, и на интрафузальные волокна поступает одинаковая информация о том, на сколько при каждом конкретном движении мышца должна («с точки зрения» вышележащих отделов ЦНС) сократиться. Но альфа-мотонейроны проводят потенциалы действия с гораздо большей скоростью, чем гамма-мотонейроны. Поэтому возбуждающие сигналы достигают обычных мышечных волокон раньше, чем интрафузальных. Мышца сокращается и устраняет таким образом какое-либо растяжение интрафузальных волокон. Вследствие этого активность в чувствительных нервных волокнах прекращается. Однако затем в мышцу доходят потенциалы действия и от гамма-мотонейронов, и интрафузальные волокна также сокращаются. Если импульсация в гамма-волокнах требует большего сокращения интрафузальных волокон, чем достигнуто окружающими обычными мышечными волокнами, то интрафузальные в безуспешной попытке сократиться (т.к. они прикреплены своими концами к обычным мышечным волокнам) испытывают напряжение. Оно возбуждает чувствительные афферентные окончания, которые передают возбуждающие импульсы к соответствующим альфа-мотонейронам. В результате мышца усиливает свое сокращение (петля положительной обратной связи). В этом случае мышечные веретена работают как устройство сравнения между идеальным и реальным сокращением, осуществляя коррекцию мышечного сокращения.
Сухожильные тельца Гольджи находятся в зоне соединения мышечных волокон с сухожилием последовательно по отношению к мышечным волокнам. Они состоят из сухожильных нитей, заключенных в соединительнотканную капсулу. Также как и к мышечным веретенам к ним подходят афферентные волокна от спинномозговых ганглиев. Адекватным раздражителем для рецепторов Гольджи также является растяжение, но из-за своего расположения они слабо реагируют на растяжение мышцы, а возбуждаются главным образом при ее сильных сокращениях. Порог срабатывания рецепторов Гольджи заметно больше, чем у мышечных веретен. Таким образом сухожильные рецепторы регистрируют в основном напряжение мышцы.
Суставные рецепторы расположены в стенках суставных сумок и способны с большой точностью оценивать угол сгибания сустава и его движения. По строению они относятся к инкапсулированным нервным окончаниям. Раньше считалось, что они играют ведущую роль в проприорецепции. Тем не менее, было установлено, что больные с искусственными суставами различают их положение почти также хорошо, как здоровые люди за счет информации от мышечных веретен.
Как и в случае системы кожной чувствительности, информация от проприоцепторов не только запускает рефлексы спинного мозга, но и поступает в головной мозг по восходящим трактам. Наиболее быстрый путь передачи совпадает с описанным для тактильной информации: через тонкий и клиновидный пучки к вентральному заднему ядру таламуса и далее в кору. Корковая зона мышечной чувствительности найдена в глубине центральной борозды, где она располагается параллельно соматосенсорной области.
Мышечную чувствительность передают также спинномозжечковые тракты. Они сформированы аксонами нейронов серого вещества спинного мозга. Тела этих нейронов расположены в основании задних рогов (зона обработки мышечной чувствительности). Особенно важна связь с мозжечком для быстрой коррекции хорошо отработанных (автоматизированных) движений. Часть волокон, несущих информацию от проприоцепторов, оканчивается на вестибулярных ядрах (откуда начинается вестибуло-спинальный тракт) ствола мозга.
В обычных условиях человек не осознает, в каком состоянии находятся его мышцы. Но поскольку проекции от проприоцепторов доходят до коры больших полушарий, где информация от органов чувств приобретает форму ощущения, то сознательная оценка степени сокращения мышц, конечно, возможна. Человек может произвольно расслабить или сократить определенные мышцы, т.е. регулировать свои действия благодаря наличию мышечного чувства - ощущения, возникающего в результате срабатывания системы мышечной чувствительности.
Из всех сенсорных систем мышечная имеет наибольшее значение для управления совершаемыми движениями, а также для двигательного обучения и формирования различных навыков (в том числе речевых, трудовых и т.д.). При этом под контролем сознания осуществляются (с привлечением мышечного чувства) лишь наиболее тонкие и нестандартные движения - например, вдевание нитки в иголку. Однако параллельно мы обычно осуществляем массу других движений - поддержание позы, перемещения в пространстве, произнесение слов. За этими движениями следят спинной мозг, вестибулярные ядра, мозжечок - структуры, куда направляется основная часть сигналов от мышечных веретен, рецепторов Гольджи, суставных рецепторов. Подобное разделение функций ускоряет работу двигательных систем, делает ее более точной, а сокращения отдельных мышц более согласованными.
6. Сенсорные системы с рецепторами химической чувствительности (хеморецепторами)
Хеморецепцией называется восприятие организмом сигналов в виде различных химических веществ. Эволюционно это наиболее древний вид рецепции. Чувствительность к химическим веществам и избирательное реагирование на некоторые из них (приближение к пище и избегание повреждающих воздействий) наблюдаются уже у бактерий и одноклеточных. У многоклеточных животных различают интерохеморецепцию, обеспечивающую анализ внутренних сред организма (в т.ч. детекцию гормонов, медиаторов, токсинов), и экстерохеморецепцию, посредством которой воспринимаются внешние химические раздражители. Среди типов химической чувствительности, реагирующих на внешние стимулы, можно, в свою очередь, выделить вкус и обоняние. Хеморецепция играет важнейшую роль при поиске пищи, избегании врагов и вредных факторов, нахождении полового партнера, обнаружении особей своего вида и т.д.
Хеморецепторы - это специализированные клетки или их отростки, благодаря которым организм воспринимает важные для его жизнедеятельности химические сигналы, например, колебания кислотности и ионного состава водной среды, газового состава воздуха, присутствие питательных, едких, ядовитых веществ и т.д. В основе функционирования хеморецепторов лежит деятельность мембранных рецепторных белков. Последние при связывании с определенными химическими веществами запускают цепь внутриклеточных реакций, приводящую к возникновению рецепторного потенциала.
6.1 Обонятельная сенсорная система
Обоняние - это способность воспринимать и различать запахи. По развитию способности к обонянию всех животных разделяют на макросматиков, у которых обонятельный анализатор является ведущим (хищники, грызуны, копытные и т.п.), микросматиков, для которых главное значение имеют зрительный и слуховой анализаторы (приматы, птицы) и аносматиков, у которых обоняние отсутствует (китообразные). Обонятельные рецепторы расположены в верхней части носовой полости. У микросматика человека площадь несущего их обонятельного эпителия 10 см2, а общее число обонятельных рецепторов достигает 10 миллионов. А вот у макросматика немецкой овчарки поверхность обонятельного эпителия 200 см2, а общее число обонятельных клеток - более 200 миллионов.
Изучение работы обоняния затруднено тем, что до сих пор не существует общепризнанной классификации запахов. В первую очередь это связано с крайней субъективностью восприятия огромного количества обонятельных раздражителей. Наиболее популярна классификация, выделяющая семь основных запахов - цветочный, мускусный, мятный, камфарный, эфирный, острый и гнилостный. Смешивание этих запахов в определенных пропорциях позволяет получить любой другой аромат. Показано, что молекулы веществ, вызывающих определенные запахи, имеют сходную форму. Так, эфирный запах вызывается веществами с молекулами в форме палочки, а камфарный запах - в форме шара. Однако острый и гнилостный запахи связаны с электрическим зарядом молекул.
Обонятельный эпителий содержит опорные клетки, рецепторные клетки и базальные клетки. Последние в ходе своего деления и роста могут превращаться в новые рецепторные клетки. Таким образом, базальные клетки восполняют постоянную убыль обонятельных рецепторов, происходящую вследствие их гибели (срок жизни обонятельного рецептора примерно 60 дней).
Обонятельные рецепторы - первичночувствующие и являются частью нервной клетки. Это биполярные нейроны, короткий неветвящийся дендрит которых выходит на поверхность слизистой носа и несет пучок из 10-12 подвижных ресничек. Аксоны рецепторных клеток направляются в ЦНС и несут обонятельную информацию. В слизистой оболочке носовой полости есть специальные железы, выделяющие слизь, которая увлажняет поверхность рецепторных клеток. Есть у слизи и другая функция. В слизи молекулы пахучих веществ на короткое время связываются со специальными белками. Благодаря этому гидрофобные пахучие вещества концентрируются в этом насыщенном водой слое, что облегчает их восприятие. При насморке набухание слизистых оболочек препятствует прониканию пахучих молекул к рецепторным клеткам, поэтому порог раздражения резко повышается и обоняние временно исчезает.
Чтобы пахнуть, т.е. возбуждать обонятельные рецепторы, молекулы веществ должны быть летучи и хотя бы слегка растворимы в воде. Чувствительность рецепторов очень велика - возможно возбуждение обонятельной клетки даже одной молекулой. Приносимые вдыхаемым воздухом пахучие вещества взаимодействуют с белковыми рецепторами на мембране ресничек, вызывая деполяризацию (рецепторный потенциал). Она распространяется по мембране рецепторной клетки и приводит к возникновению потенциала действия, «убегающего» по аксону в головной мозг.
...Подобные документы
Понятие сетчатки как внутренней оболочки глаза, являющейся периферическим отделом зрительного анализатора. Строение сетчатки, ее основные слои, функции и особенности кровоснабжения. Центральная зона сетчатки. Анализ симптомов при заболевании сетчатки.
презентация [896,3 K], добавлен 23.11.2014Строение и классификация синапсов по локализации, развитию в онтогенезе и механизму передачи сигнала. Физиология синаптической передачи при химической трансляции сигнала с нейрона на эффекторную клетку. Характеристика нейромедиаторных систем мозга.
реферат [20,4 K], добавлен 10.07.2011Основные защитные факторы, препятствующие повреждению слизистой оболочки желудка. Характеристика центрального дыхательного механизма. Волокна слухового нерва. Наружное, среднее и внутреннее ухо. Регуляция сердечного выброса. Дыхательные объемы легких.
контрольная работа [444,3 K], добавлен 24.04.2015Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.
презентация [10,6 M], добавлен 25.09.2015Структура анализаторной системы. Этапы деятельности анализатора. Строение глаза, его мышцы и зрительные пути. Механизм аккомодации глаза. Схема строения сетчатки. Распределение палочек, колбочек в сетчатке. Виды фоторецепторов, потенциалы клеток сетчатки.
презентация [14,3 M], добавлен 13.12.2013Теории образования временной связи условного рефлекса. Физиология кожной чувствительности человека. Стадии и механизм условного рефлекса. Афферентные раздражения кожно-кинестетического анализатора. Отношения между интенсивностью стимула и ответом.
контрольная работа [1,4 M], добавлен 09.01.2015Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.
курсовая работа [44,5 K], добавлен 08.08.2009Развитие физиологических функций организма на каждом возрастном этапе. Анатомия и физиология как предмет. Организм человека и составляющие его структуры. Обмен веществ и энергии и их возрастные особенности. Гормональная регуляция функций организма.
учебное пособие [6,1 M], добавлен 20.12.2010Крупные железы пищеварительного аппарата. Развитие печени и поджелудочной железы. Строение зрительного анализатора. Веки и образования конъюнктивы. Эмбриогенез органа зрения. Наружное, среднее и внутреннее ухо. Слуховые косточки и их соединения.
реферат [10,3 M], добавлен 30.11.2010Боль как сложная интегративная реакция на повреждающий фактор, ее перцептуальный, двигательный и эмоциональный компоненты. Соматическая и висцеральная, острая и хроническая боль. Болевые рецепторы - ноцицепторы; проводящие пути болевой чувствительности.
реферат [33,5 K], добавлен 20.12.2010Нервная система: анатомическое строение, отделы и виды, нервные связи, формирование энергии передачи информации. Переработка информации в центральной нервной системе. Понятие "сенсорная система". Локализация, особенности, свойства терморегуляторов.
реферат [270,8 K], добавлен 15.08.2014Структурно-функциональная организация анализаторов, а также их периферические, проводниковые, центральные отделы. Устройство и функционирование соматовисцеральной, зрительной, слуховой и вестибулярной сенсорной системы. Обонятельный и вкусовой анализатор.
презентация [6,0 M], добавлен 05.03.2015Зрительный анализатор. Основной и вспомогательный аппарат. Верхнее и нижнее веко. Строение глазного яблока. Вспомогательный аппарат глаза. Цвета радужной оболочки глаз. Аккомодация и конвергенция. Слуховой анализатор - наружное, среднее и внутреннее ухо.
презентация [7,4 M], добавлен 16.02.2015Описание строения клетки, а также некоторых органических соединений, использующихся в живых организмах. Физиология и анатомия человека, особенности функционирования ряда важнейших органов. Взаимодействие и обмен веществ в организме. Водная среда жизни.
реферат [3,3 M], добавлен 02.12.2010Рассмотрение функций сенсорных систем. Изучение механизмов восприятия и передачи звуковой информации. Определение частотного диапазона восприятия звуков. Описание строения вестибулярной сенсорной системы; ее значение для спортивной деятельности.
контрольная работа [261,5 K], добавлен 28.12.2011Понятие, строение, функция сенсорной системы. Кодирование информации в ней. Строение и принцип работы вкусовой и обонятельной сенсорных систем. Опорная схема проводящих путей вкусового и обонятельного анализатора. Общий план строения сенсорных систем.
контрольная работа [348,8 K], добавлен 09.10.2014Изучение глазного яблока, органа, отвечающего за ориентацию лучей света, преобразование их в нервные импульсы. Исследование особенностей фиброзной, сосудистой и сетчатой оболочек глаза. Строение цилиарного и стекловидного тел, радужки. Слезные органы.
презентация [12,3 M], добавлен 12.09.2013Изучение возрастных особенностей зрения: рефлексов, световой чувствительности, остроты зрения, аккомодации и конвергенции. Анализ роли выделительной системы в поддержании постоянства внутренней среды организма. Анализ развития цветового зрения у детей.
контрольная работа [25,0 K], добавлен 08.06.2011Внешнее и внутреннее строение глаза, рассмотрение функций слезных желез. Сравнение органов зрения у человека и животных. Визуальная зона коры больших полушарий и понятие аккомодации и светочувствительности. Зависимость цветового зрения от сетчатки.
презентация [1,2 M], добавлен 14.01.2011Физиология зубочелюстной области. Анализ роли полости рта в пищеварении. Изучение органов желудочно-кишечного тракта. Регуляция выделения слюны. Пищеварительная функция печени. Состав желудочного сока. Характеристика основных фаз и функций глотания.
презентация [3,1 M], добавлен 13.12.2013