Физиология и биохимия растений

Типы РНК, их химический состав, строение и функции. Корневая система как орган поглощения, правило Чаргаффа. Значение фотосинтеза и космическая роль растений. Физиологическая сущность дыхания, закон К. Либиха. Зависимость роста от внутренних факторов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 18.08.2014
Размер файла 44,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Предмет и задачи физиологии и биохимии растений

Физиология растений - наука, которая изучает процессы жизнедеятельности и функции растительного организма. Слово «физиология» греческого происхождения; оно состоит из двух слов: physis - природа и logos - понятие, учение. Физиология растений является наиболее развитой отраслью экспериментальной ботаники, которая в XIX в. выделилась в самостоятельную науку. Она тесно связана с химией, физикой, биохимией, биофизикой, микробиологией, молекулярной биологией.

Предметом физиологии растений являются не столько отдельные элементарные события, сколько сложные интегральные физиологические процессы, исследование функционирования которых на различных уровнях организации системы позволяет максимально близко подойти к пониманию сущности живого, особенно в экстремальных условиях, когда «жизнь находится на грани жизни».

Перед научными работниками, физиологами растений поставлены такие задачи: изучить обмен веществ и энергии в растительном организме, фотосинтез, хемосинтез, биологическую фиксацию азота из атмосферы и корневое питание растений; разработать методы повышения использования растениями солнечной энергии и питательных веществ почвы, обогащения почвы азотом; создать новые, более эффективные формы удобрений и разработать методы их применения; исследовать действие биологически активных веществ с целью использования их в растениеводстве; разработать методы более продуктивного использования воды растением. Без решения этих вопросов невозможно решение и ряда других проблем земледелия и растениеводства, направленных на повышение урожайности.

Интенсивное применение минеральных удобрений, гербицидов, физиологически активных веществ, химических препаратов для защиты растений от болезней и вредителей требует глубокого и всестороннего изучения их влияния на рост и обмен веществ растительных организмов с целью значительного повышения продуктивности сельскохозяйственных растений.

Решение поставленных задач имеет большое значение для разработки проблем ускорения научно-технического прогресса в растениеводстве и дальнейшего развития сельского хозяйства нашей страны.

Основной метод познания процессов, явлений в физиологии - эксперимент, опыт. Следовательно, физиология растений - наука экспериментальная.

Для изучений физико-химической сути функций, процессов в физиологии растений широко применяют методы: лабораторно-аналитический, вегетационный, полевой, меченых атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др. Кроме того, используют фитотроны и лаборатории искусственного климата, в которых выращивают растения и проводят опыты в условиях определенного состава воздуха, нужной температуры и освещения. Применяя эти методы, физиологи исследуют растения на молекулярном, субклеточном, клеточном и организменном (интактное растение) уровнях.

Сейчас в биологических исследованиях широко применяют электронные микроскопы просвечивающего типа с разрешающей способностью 0,15-0,5 нм, в которых объект рассматривают в электронных лучах, проходящих через него. Значительное увеличение разрешающей способности электронных микроскопов по сравнению со световыми обусловливается меньшей длиной волны электронов (на пять порядков меньшей, чем длина волны ультрафиолетовых лучей).

Кроме того, для биологических исследований применяют так называемые растровые электронные микроскопы, в которых изображение создается по принципу телевизионных. Разрешающая способность растровых микроскопов равна 20-40 нм, с их помощью изучают строение поверхности пыльцы, эпидермального слоя клеток, формы клеток и др. Применение электронной микроскопии в биологии имеет большое значение для развития биологической науки и физиологии растений в частности.

Исследование ультраструктуры органоидов растительной клетки (хлоропластов, митохондрий, рибосом, мембранных структур) дало возможность раскрыть суть процессов фотосинтеза и дыхания, которые определяют возможность самой жизни на нашей планете. Изучение строения клеточных оболочек, открытие цитоплазматических мембранных структур способствовали выяснению процессов обмена веществ и энергии в клетке, изучению структуры и функции органоидов растительной клетки. Большое принципиальное значение имеет электронно-микроскопическое исследование строения РНК и ДНК, локализации их на структурных компонентах клетки. Результаты этих исследований легли в основу раскрытия генетической роли ядра и проблемы наследственности.

2. РНК, их типы, химический состав, строение, функции. Правило Чаргаффа

Многочисленными исследованиями было установлено, что синтез белка в клетке происходит не в ядре, где находится ДНК, а в цитоплазме. Следовательно, сама ДНК не может служить матрицей для синтеза белка. Вставал вопрос о молекулярных механизмах переноса информации, закодированной в ДНК (генах), из ядра в цитоплазму к месту синтеза белка. Сравнительно недавно выяснилось, что молекулами, ответственными за считывание и перенос информации, а также за преобразование этой информации в последовательность аминокислот в структуре белковой молекулы, являются рибонуклеиновые кислоты (РНК). Молекулы рибонуклеиновой кислоты имеют одну полинуклеотидную цепь, Нуклеотиды молекулы РНК называются адениловой гуаниловой, уридиловой и цитцдиловой кислотами. На долю РНК приходится около 5--10 % общей массы клетки.

Существует три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК) и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РНК синтезируются на ДНК при участии ферментов -- РНК-полимераз. Информационная, или матричная, РНК составляет 2--3 % всей клеточной РНК, рибосомная -- 80--85, транспортная -- около 15 %.

Информационная РНК (иРНК) впервые была обнаружена в 1957 г. Роль ее в том, что она считывает наследственную информацию с участка ДНК (гена) и в форме скопированной последовательности азотистых оснований переносит ее в рибосомы, где происходит синтез определенного белка. Каждая из молекул иРНК по порядку расположения нуклеотидов и по размеру соответствует гену в ДНК, с которого она была транскрибирована. В среднем иРНК содержит 1500 нуклеотидов (75-- 3000). Каждый триплет (три нуклеотида) на иРНК называется кодоноц. От кодона зависит, какая аминокислота встанет в данном месте при синтезе белка.' Информационная РНК может обладать относительной молекулярной массой от 250 до 1000 тыс. Д (дальтон).

Существует большое разнообразие иРНК как в отношении состава, так и величины молекулы. Это связано с тем, что в клетке находится большое количество разнообразных белков, а строение каждого белка обусловлено своим геном, с которого иРНК считала информацию.

Транспортная РНК (тРНК) обладает относительно невысокой молекулярной массой порядка 24--29 тыс. Д и содержит в молекуле от 75 до 90 нуклеотидов. До 10 % всех нуклеотидов тРНК приходится на долю минорных оснований, что, по-видимому, защищает ее от действия гидролитических ферментов.

Роль тРНК заключается в том, что они переносят аминокислоты к рибосомам и участвуют в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Ряд аминокислот обладает более одной тРНК. К настоящему времени обнаружено более 60 тРНК, которые отличаются между собой первичной структурой (последовательностью оснований). Вторичная структура у всех тРНК представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными петлями (рис. 20). На конце одной из цепей находится акцепторный участок -- триплет ЦЦА, к аденину которого присоединяется специфическая аминокислота. Аминокислота присоединяется к тРНК под действием фермента аминоацил-тРНК-синтетазы, который «узнает» одновременно и аминокислоту, и тРНК. В головке средней петли тРНК находится антикодон -- триплет, состоящий из трех нуклеотидов. Антикодон комплементарен определенному кодону мРНК. При помощи антикодона тРНК «узнает» соответствующий кодон в иРНК, т. е. определяет место, куда должна быть поставлена данная аминокислота в синтезируемой молекуле белка.

Предполагается, что петли тРНК, не вовлеченные в связывание и выполнение декодирующей функции аминокислоты, используются для связывания тРНК с рибосомой и со специфической аминоацил-тРНК-синтетазой.

Рибосомная РНК (рРНК). Размер рибосомных РНК эукариот составляет 5--28S (S -- единица Сведберга, характеризующая скорость осаждения, седиментации частиц при ультрацентрифугировании), молекулярная масса 3,5-104-- 1,510^ Д. Они содержат 120--3100 нуклеотидов. Рибосомная РНК накапливается в ядре, в ядрышках. В ядрышки из цитоплазмы транспортируются рибосомные белки, и там происходит спонтанное образование субчастиц рибосом путем объединения белков с соответствующими рРНК. Субчастицы рибосомы вместе или врозь транспортируются через поры ядерной мембраны в цитоплазму.

Рибосомы представляют собой органеллы величиной 20-- 30 нм. Они построены из двух субчастиц разного размера и формы. На определенных стадиях белкового синтеза в клетке происходит разделение рибосом на субчастицы. Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка. Субчастицы обозначают у эукариот как 60 и 40S. Целые рибосомы осаждаются при 80S. 40Ј-субчастица содержит 18S РНК и примерно 30 белков; бОБ-субчастица содержит 28S РНК, 5S РНК и 5,8 S РНК. В состав этой частицы входит примерно 50 различных белков. У прокариот функциональная рибосома имеет константу седиментации 70S. 708-рибосомы состоят из малой (30S) и большой (50S) субчастиц. 808-рибосомы содержат примерно равное количество рРНК и белка, у 70S-pn6ocoM соотношение РНК и белка составляет 2:1. Число рибосом в клетке прокариот равно примерно 104, у эукариот -- около 105. В период синтеза белка рибосомы могут объединяться в полисомы, образуя более высокоорганизованные комплексы.

Прамвило Чамргаффа -- система эмпирически выявленных правил, описывающих количественные соотношения между различными типами азотистых оснований в ДНК. Были сформулированы в результате работы группы биохимика Эрвина Чаргаффа в 1949--1951 гг.

До работ группы Чаргаффа господствовала так называемая «тетрануклеотидная» теория, согласно которой ДНК состоит из повторяющихся блоков по четыре разных азотистых основания (аденин, тимин, гуанин и цитозин). Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажной хроматографии и определить точные количественные соотношения нуклеотидов разных типов. Они значительно отличались от эквимолярных, которых можно было бы ожидать, если бы все четыре основания были представлены в равных пропорциях. Соотношения, выявленные Чаргаффом для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказались следующими:

Количество аденина равно количеству тимина, а гуанина -- цитозину: А=Т, Г=Ц.

Количество пуринов равно количеству пиримидинов: А+Г=Т+Ц.

Количество оснований с 6 аминогруппами равно количеству оснований с 6 кетогруппами: А+Ц=Г+Т.

Вместе с тем, соотношение (A+Т):(Г+Ц) может быть различным у ДНК разных видов. У одних преобладают пары АТ, в других -- ГЦ.

3. Корневая система как орган поглощения. Процесс всасывания воды корневой системой

Основной источник влаги для растений -- вода, находящаяся в почве, и основным органом поглощения воды является корневая система. Роль этого органа прежде всего заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растение из почвы. Сформировавшаяся корневая система представляет собой сложный орган с хорошо дифференцированной внешней и внутренней структурой. Определение размеров корневых систем требует специальных методов. Очень много в этом отношении достигнуто благодаря работам русских физиологов В.Г. Ротмистрова, А.П. Модестова, И.В. Красовской. Оказалось, что общая поверхность корней обычно превышает поверхность надземных органов в 140-- 150 раз. Подсчитано, что число корней у однолетних сеянцев яблони достигает 45 тыс. Корневые системы даже однолетних хлебных злаков проникают в почву на глубину 1,5--2 м. При выращивании одиночного растения ржи было установлено, что общая длина его корней может достигать 600 км, при этом на них образуется 15 млрд корневых волосков. Эти данные говорят об огромной потенциальной способности к росту корневых систем. Однако при росте растений в фитоценозах, размеры их корневых систем заметно уменьшаются.

Рост корня, его ветвление продолжаются в течение всей жизни растительного организма, т. е. практически он не ограничен. Меристемы -- образовательные ткани -- расположены на верхушке каждого корня. Доля меристематических клеток сравнительно велика (10% по массе против 1% у стебля). В зависимости от типа растений распределение корневой системы в почве различно. У некоторых растений корневая система проникает на большую глубину, у других, главным образом, распространяется в ширину. Рост корней отличается большой скоростью. Считается, что одно растение риса в благоприятных условиях может образовать до 5 км новых корней в сутки. За счет этого прироста корневой системы в растение может дополнительно поступать 1,5 л воды. Только благодаря такому интенсивному росту корневые системы растений могут использовать скудно рассеянную в почве воду, поскольку скорость передвижения воды в почве за счет диффузии крайне мала -- 1 см/сут. Важное значение имеет явление гидротропизма, при котором рост корневой системы как бы идет из более иссушенных слоев почвы к более влажным.

С физиологической точки зрения корневая система неоднородна. Далеко не вся поверхность корня участвует в поглощении воды. В каждом корне различают несколько зон, правда, не всегда все зоны выражены одинаково четко. Окончание корня снаружи защищено корневым чехликом, напоминающим округлый колпачок, состоящий из живых тонкостенных продолговатых клеток. Корневой чехлик служит защитой для точки роста. Клетки корневого чехлика слущиваются, что уменьшает трение и способствует проникновению корня в глубь почвы. Под корневым чехликом расположена меристематическая зона. Меристема состоит из многочисленных мелких, усиленно делящихся, плотно упакованных клеток, почти целиком заполненных цитоплазмой. Следующая зона -- зона растяжения. Здесь клетки увеличиваются в объеме (растягиваются). Затем следует зона корневых волосков. При дальнейшем увеличении возраста клеток, а также расстояния от кончика корня, корневые волоски исчезают, начинается кутинизация и опробковение клеточных оболочек. Поглощение воды происходит главным образом клетками зоны растяжения и зоны корневых волосков. Некоторое количество воды может поступать и через опробковевшую зону корня. Это главным образом наблюдается у деревьев. В этом случае вода проникает через чечевички. Рассмотрим несколько подробнее поперечное строение корня в зоне корневых волосков. Поверхность корня в этой зоне покрыта ризодермой. Это однослойная ткань с двумя видами клеток, формирующими и не формирующими корневые волоски. В настоящее время показано, что клетки, формирующие корневые волоски, отличаются особым типом обмена веществ. Корневые волоски растут путем растяжения клеточной оболочки, которое происходит с большой скоростью (0,1 мм/ч). Для их роста очень важно присутствие кальция. У большинства растений клетки ризодермы обладают тонкими стенками. Вслед за ризодермой до перицикла идут клетки коры. Кора состоит из нескольких слоев паренхимных клеток. Важной особенностью коры является развитие системы крупных межклетников. На границе коры и центрального цилиндра развивается один слой плотно прилегающих друг к другу клеток -- эндодерма, для которой характерно наличие поясков Каспари. Цитоплазма в клетках эндодермы плотно прилегает к клеточным оболочкам. По мере старения вся внутренняя поверхность клеток эндодермы, за исключением пропускных клеток, пропитывается суберином, что не позволяет передвигаться воде и растворенным в ней веществам. При дальнейшем старении сверху могут накладываться еще слои. По-видимому, именно клетки эндодермы служат основным физиологическим барьером для передвижения как воды, так и питательных веществ по свободному пространству (межклетникам и клеточным оболочкам). В центральном цилиндре расположены проводящие ткани корня. При рассмотрении структуры корня в продольном направлении важно отметить, что начало роста корневых волосков, появление поясков Каспари в стенках эндодермы и дифференциация сосудов ксилемы происходят на одном и том же расстоянии от апикальной меристемы. Именно эта зона является зоной снабжения растений питательными веществами. Обычно поглощающая зона составляет около 5 см в длину. Величина ее зависит от скорости роста корня в целом. Чем медленнее растет корень, тем зона поглощения короче.

Надо отметить, что в целом корневые системы значительно менее разнообразны по сравнению с надземными органами, в связи с тем, что среда их обитания более однородна. Это не исключает того, что корневые системы изменяются под влиянием тех или иных условий. Хорошо показано влияние температуры на формирование корневых систем. Как правило, оптимальная температура для роста корневых систем несколько ниже по сравнению с ростом надземных органов того же растения. Все же сильное понижение температуры заметно тормозит рост корней и способствует образованию толстых, мясистых, мало ветвящихся корневых систем. Большое значение для формирования корневых систем имеет влажность почвы. Распределение корней по горизонтам почвы часто определяется распределением воды в почве. Обычно в первый период жизни растительного организма корневая система растет чрезвычайно интенсивно и, как следствие, скорее достигает более влажных слоев почвы. Некоторые растения развивают поверхностную корневую систему. Располагаясь близко к поверхности, сильно ветвящиеся корни перехватывают атмосферные осадки. В засушливых районах часто глубоко и мелко укореняющиеся виды растений растут рядом. Первые обеспечивают себя влагой за счет глубоких слоев почвы, вторые за счет усвоения выпадающих осадков. Развитие корневых систем зависит от аэрации. Именно недостаток кислорода является причиной плохого развития корневых систем на заболоченных почвах. Растения, приспособленные к росту на плохо аэрируемых почвах, имеют в корнях систему межклетников, которые вместе с межклетниками в стеблях и листьях составляют единую вентиляционную систему. Значение имеют и условия питания. Показано, что внесение фосфорных удобрений способствует углублению корневых систем, а внесение азотных удобрений -- их усиленному ветвлению.

4. Типы водного баланса растений

Водным режимом называют всю совокупность явлений поступления влаги в почву, ее передвижения, удержания в почвенных горизонтах и расхода из почвы.

Типы водного режима. Водный баланс складывается неодинаково для различных почвенно-климатических зон и отдельных участков местности. В зависимости от соотношения основных статей годового баланса может быть несколько типов водного режима.

1. Мерзлотный тип. Имеет место в районах распространения вечной мерзлоты. Мерзлый слой грунта, являясь воодоупором, обуславливает наличие надмерзлотной верховодки, поэтому верхняя часть оттаявшей почвы в течение вегетационного периода насыщена водой. Почва оттаивает на глубину 1-4м. Годовой водооборот охватывает лишь почвенный слой.

2. Промывной тип (КУ > 1). Характерен для местностей, где сумма годовых осадков больше величины испаряемости. В годовом цикле водооборота нисходящие токи преобладают над восходящими. Почвенная толща ежегодно подвергается сквозному промачиванию до грунтовых вод, что приводит к интенсивному выщелачиванию продуктов почвообразования. Годовой влагооборот охватывает всю почвенную толщу. В более засушливых регионах он имеет место лишь при легком гранулометрическом составе. В таких условиях формируются почвы подзолистого типа, красноземы и желтоземы. Болотный подтип водного режима развивается при близком к поверхности залегании грунтовых вод, либо слабой водопроницаемости почвообразующих пород.

3. Периодически промывной тип (КУ= 0,8-1,2; в среднем 1) характеризуется средней многолетней сбалансированностью осадков и испаряемости. Годовой влагооборот охватывает только почвенную толщу (непромывные условия) в сухой год и весь слой до грунтовых вод (промывные условия) во влажный год. Промывание бывает раз в несколько лет. Такой водный режим характерен для серых лесных почв, черноземов выщелоченных и оподзоленных.

4. Непромывной тип водного режима (КУ менее 1) свойственен местностям, где влага осадков распределяется только в верхних горизонтах и не достигает грунтовых вод. Связь между атмосферной и грунтовой водой осуществляется через слой с очень низкой влажностью, близкой к ВЗ (мертвый слой). Обмен влагой происходит путем передвижения воды в форме пара. Такой водный режим характерен для степных почв - черноземов и каштановых, бурых полупустынных и серо-бурых пустынных почв. В указанном ряду почв уменьшается количество осадков и растет испаряемость. Коэффициент увлажнения уменьшается от 0,6 до 0,1. Годовым влагооборотом охвачена толща почвогрунтов от 4 м в степях до 1 м в пустынях. Запасы влаги, накопленные в степных почвах к весне за счет позднеосенних осадков и талой воды, интенсивно расходуются на транспирацию и физическое испарение, становясь к осени ничтожными. В полупустынной и пустынной областях без орошения земледелие невозможно. Расход влаги идет преимущественно на транспирацию, поэтому преобладают нисходящие токи влаги. Вся инфильтрующаяся влага возвращается в атмосферу.

5. Выпотной (десуктивно-выпотной) тип водного режима (КУ менее 1) проявляется в степной, особенно полупустынной и пустынной зонах при близком залегании грунтовых вод. Характерно преобладание восходящих потоков влаги в почве за счет ее подтока по капиллярам от грунтовых вод. Верхняя часть капиллярной каймы входит в почвенный слой. Почвенно-грунтовые воды аллохтонные, т.е. имеющие дополнительное грунтовое питание. Годовой водооборот охватывает всю почвенно-грунтовую толщу. При высокой минерализации грунтовых вод в почву попадают легкорастворимые соли и почва засоляется. Выпотной тип водного режима проявляется и в некоторых районах Беларуси, преимущественно на Полесье. Собственно выпотной тип наблюдается при очень близком, в пределах почвенного профиля, залегании грунтовых вод. Верхняя граница капиллярной каймы выходит на дневную поверхность. В этом случае преобладает не транспирация, а физическое испарение.

6. Ирригационный тип создается при дополнительном увлажнении почвы оросительными водами. При орошении в разные периоды проявляются разные типы водного режима. В период полива имеет место промывной тип, сменяющийся непромывным и даже выпотным, то есть в почве периодически преобладают то восходящие, то нисходящие потоки влаги.

5. Сущность и значение фотосинтеза. Космическая роль растений

Синтезируемые в процессе фотосинтеза сахара почти сразу преобразуются в высокополимерные соединения - крахмал, накопленный в виде крахмальных зерен в хлоропластах и лейкопластах; одновременно часть сахаров выделяется из пластид и перемещается по растению в другие места. Сахар, преобразовавшийся в крахмал, тем самым на некоторое время выходит из дальнейших метаболических реакций; однако крахмал может вновь расщепляться до сахара, который окисляется и при этом обеспечивает клетку необходимой энергией

Когда лучи соответствующей длины волны поглощаются хлоропластом, двуокись углерода химически восстанавливается до сахаров, а газоподобный кислород выделяется в объеме, равным восстановленному СО2. Эти изменения противоположны по направлению изменениям, которые происходят в процессе дыхания. Таким образом, важная роль растений в балансе природы связана и с тем, что они возвращают кислород в атмосферу, который необходим для других организмов.

Обозначивши формулой (СН2О) элементарную единицу молекулы углевода (молекула глюкозы С6Н12О6 построена из шести таких единиц), мы можем записать общее выражение фотосинтеза:

Суммарное уравнение фотосинтеза в свое время предложил Ж-Б. Буссенго. Этот процесс В. Пфеффер в 1887 году назвал фотосинтезом.

В 1842 году Ю. Майер сформулировал закон сохранения и преобразования энергии. Не забыл он и зеленые растения. Он писал, что природа поставила своей задачей перехватить приходящий на Землю свет и преобразовать эту подвижнейшую из сил в твердую форму, сложив ее в запас. Для достижения этой цели она покрыла земную кору растениями. Однако ученые того времени не обратили внимания на это высказывание.

Экспериментальное доказательство о том, что процесс фотосинтеза подчиняется закону сохранения и преобразования энергии сделал К. А. Тимирязев в 1867 г. Он показал, что интенсивней всего фотосинтез происходит в тех лучах, которые максимально поглощаются специальным пигментом - хлорофиллом. Поглощенная хлорофиллом энергия света дальше используется на образование органического вещества в растении и выделении О2.

Следовательно, фотосинтез - это процесс, связанный с накоплением света в растении, который собирается в органических веществах. Одновременно К. А. Тимирязев доказал ошибочность взглядов В. Пфеффера, Ю. Сакса и Г. Дрепера. Последние считали, что фотосинтез интенсивней всего идет в самых ярких для человеческого глаза желтых лучах, а не в тех, которые поглощаются хлорофиллом.

Таким образом, суммарное выражение фотосинтеза отражает суть процесса, который сводится к тому, что на свету в зеленом растении из очень окисленных веществ - углекислого газа и воды - синтезируются органические вещества и выделяется молекулярный О2. В ходе этого синтеза происходит преобразование лучистой энергии в энергию химических связей органических веществ.

Все компоненты системы, принимающие участие в фотосинтезе, содержат кислород, поэтому приведенное уравнение не говорит откуда берется выделяемый при фотосинтезе кислород: из СО2 или Н2О. На протяжении многих лет биологи считали, что световая энергия тратится на расщепление молекулы СО2 и перенос атома С на Н2О с образованием (СН2О). Однако наблюдение за фотосинтезирующими организмами пошатнули эти представления.

Биохимический путь у фотосинтезирующих микроорганизмах аналогичен соответствующим процессам у высших растений, но все же немного отличается от них. Так у бактерий имеется только одна пигментная система, а не две. Кроме того, бактерии отличаются от зеленых растений и по природе своих хлорофиллов. Они содержат бактериохлорофилл и (или) хлоробиумхлорофилл (chlorobium - хлорофилл). Фотосинтез у бактерий отличается и по природе световой стадии. У некоторых бактерий восстановитель образуется за счет части молекул АТФ, синтезируемых в световой фазе, при этом запускается обратный перенос электронов по дыхательной цепи (или по фотосинтетической цепи переноса электронов, в которой включены некоторые компоненты дыхательной цепи). У других бактерий восстановитель восстанавливается аналогично растениям, с той только разницей, что в качестве конечного источника электронов используется не вода, а другие доноры электронов. Кроме того, фотосинтезирующие бактерии не выделяют О2 в качестве конечного продукта.

Например, фотосинтезирующие пурпурные бактерии используют при фотосинтезе не Н2О, а Н2S, и в качестве побочного продукта фотосинтеза, выделяют не кислород, а серу.

Во многих местах зеленого шара важным природным источником серы служат отложения серы, образовавшиеся именно таким путем. Как видно, эта сера может происходить только с Н2S, разлагаемого в процессе фотосинтеза. Аналогичным путем ведут себя некоторые водоросли, которых можно «приучить» использовать вместо воды газоподобный водород Н2 для восстановления СО2 до (СН2О), т. е. до уровня углевода:

Известно, что в обоих случаях световая энергия растрачивается на разложение (фотолиз) донора водорода, а восстановительная сила, генерируемая таким путем, используется для преобразования СО2 в (СН2О).

Фотосинтез происходит и в тех многочисленных организмах, которые хоть и содержат хлорофилл, но не имеют зеленого цвета, потому что их цвет определяется присутствием других пигментов, маскирующих хлорофилл, например, бурые или красные водоросли.

Если у разных организмов существует какой либо общий механизм, то приведенные данные позволяют предполагать, что у высших растений световая энергия расходуется на разложение воды. Убедится в том, что мысль верна смогли тогда, когда биохимики начали использовать для изучения фотосинтеза Н2О или СО2, меченные тяжелыми изотопами кислорода (18О). В этих опытах было показано, что выделяющийся О2 всегда соответствует по своему изотопному состоянию кислороду, который содержится в воде, а не а СО2. Вообще, фотолиз воды - это ключ ко всему процессу фотосинтеза, так как на этом этапе световая энергия используется для выполнения химической работы.

В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды - только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О, то мы получим

Если мы пометили при помощи 18О СО2, тогда уравнение принимает следующий вид

Выделяемый при фотосинтезе кислород образуется из вступающей в реакцию воды, образующиеся же молекулы воды, отличаются от тех двух молекул, которые принимают участие в фотосинтезе.

Световая энергия используется на разложение воды. При этом выделяется кислород и образуется «водород» (или восстановительная сила), которая тратится

1) на восстановление СО2 до конечного продукта фотосинтеза (СН2О).

2) на образование новой молекулы воды.

Суммарное выражение фотосинтеза сыграло большую роль в развитии физиологии растений. Оно помогло ученым определить место фотосинтеза в жизни самих растений и существовании жизни на всей планете. Фотосинтез имеет большое значение и для самого растения. Образование органов, их рост тесно связаны с фотосинтезом. В периоды наиболее активного роста дневные приросты сухого вещества достигают от 100 до 500 кг на 1 га. При этом растение должно ассимилировать от 200 до 500 кг СО2, 1-2 кг азота, 0,25-0,5 кг фосфора, 2-4 кг калия, 2-4 кг других элементов и испарить до 1 000 л воды.

Лучистая энергия от солнца до Земли доходит в форме электромагнитных колебаний разной длинной волны. Около 40-45 % излучаемой солнцем энергии приходится на область от 380 до 720 нм. Эта часть спектра воспринимается как видимый свет. Тут располагаются известные цвета: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Пигменты хлоропластов поглощают видимый свет, поэтому эта область была названа физиологически активной радиацией (ФАР). К ФАР со стороны более коротких волн прилегает ультрафиолетовая радиация, а со стороны более длинных - инфракрасная. Инфракрасные лучи не принимают участия в фотосинтезе, но принимают участие в регулировании других процессов жизнедеятельности растений. Коротковолновая радиация (ультрафиолетовая, г-лучи, космические лучи), как показано, играют большую роль в мутагенезе растений, в изменении их наследственности.

Энергия, запасенная в процессе фотосинтеза за год, приблизительно в 100 раз больше энергии, образуемой при сгорании каменного угля, который добывается во всем мире за это время. Эта энергия используется для образования органического вещества из неорганического. Каждый год в процессе фотосинтеза растения образуют 155 млрд. т сухого органического вещества.

Органические вещества, которые используют люди, животные, сначала образуются в зеленом листе. Большая часть той энергии, которая используется человеком в различных областях производства - это энергия солнца, преобразованная в зеленом листе и запасенная в каменном угле, нефти, древесине.

Для образования такого большого количества органического вещества растения поглощают на протяжении года 200 млрд. т СО2 и выделяют 145 млрд. т кислорода. Весь кислород атмосферы образовался в процессе фотосинтеза. Таким образом, процессы дыхания и горения смогли произойти только после возникновения фотосинтезирующих организмов.

Содержание СО2 в атмосфере беспрестанно пополняется за счет растворенных в воде карбонатов, бикарбонатов, выделения из почвы, за счет дыхания и горения.

Изучение фотосинтеза и раскрытие его механизмов является одной из наиболее важных и интересных задач физиологии растений. Во-первых, детальное изучение синтеза органических веществ в зеленом растении - один из путей решения проблемы питания в мире. Так как 95 % массы растения образуется в процессе фотосинтеза, то необходима теоретическая основа для увеличения урожая. Во-вторых, детальное изучение химизма фотосинтеза и строения фотосинтетического аппарата на молекулярном уровне открывают путь для моделирования фотосинтеза, и организации производства органических веществ в искусственных условиях. В-третьих, изучение процесса разложения воды зелеными растениями с помощью света и моделирование этого процесса в искусственных условиях позволит человечеству получать водород и использовать его в качестве экологически чистого топлива, что поможет решить энергетическую проблему.

Особая роль в этом отношении принадлежит зеленым растениям, роль, которую К. А. Тимирязев назвал Космической. Она заключается в том, что «зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на Земле»

Ежегодно на Землю поступает огромное количество энергии солнца (1,26- 1024 кал) , 42% которой отражается в мировое пространство. Используя часть энергии солнечных лучей, зеленые растения утилизируют углекислый газ воздуха в качестве источника углерода в процессе синтеза органических веществ. Но зеленое растение не только получает для себя пищу из неорганической природы, оно, по словам Тимирязева, является посредником между небом и Землей. Энергия, полу­ченная от солнечного луча, аккумулируется в растении и в этом виде вместе с накопленным в его теле органическим веществом поступает в организм других растений или животных, питающихся растительной пищей. Последние в свою очередь служат пищей для других гетеротрофных организмов.

Выделяемый в процессе фотосинтеза кислород оказывается необходимым для жизни всех аэробных организмов, которые в процессе дыхания поглощают его из воздуха, одновременно выделяя углекислый газ. Такое постоянное поступление углекислого газа в атмосферу имеет колоссальное значение в круговороте веществ. По приблизительным подсчетам, растительный покров земного шара ежегодно ассимилирует из углекислого газа свыше 140 млрд. т углерода, что примерно составляет 3 г на гектар. Всего в атмосфере содержится около двух тысяч биллионов килограммов углекислого газа, которого не хватило бы и на100 лет, если бы он не поступал в атмосферу и гидросферу в процессе жизнедеятельности организмов.

6. С3-путь фотосинтез (цикл Кальвина): история открытия, схема, морфологические и эколого-физиологические особенности С3-растений

С3-путь фотосинтеза был открыт в лаборатории М. Кальвина (1946--1956) при изучении фотосинтеза у одноклеточных зеленых водорослей с использованием меченого углерода и фосфора. Анализ динамики включения метки В Органические соединения показал, что первыми органическими соединения­ми, содержащими меченый углерод, являются трехуглеродные соединения -- 3-фосфоглицериновая кислота (3-ФГК) и 3-фосфоглицериновый альдегид (3-ФГА) (отсюда название «С3-путь фотосинтеза»). Позже метка обнаружива­ется в углеводах, содержащих от 4 до 7 атомов углерода. М. Кальвину с сотр. удалось установить последовательность превращения углеводов в хлоропластах. На основании этого был открыт восстановительный пентозофосфатный цикл углерода, названный в честь исследователей Циклом Кальвина.

Первый метод, использованный Кальвином,-- метод радиоактивного углерода. Радиоактивные изотопы по химическим свойствам практически не отличаются от стабильных. Принимая участие в реакциях, они как бы помечают те соединения, в которые входят. Скорость распада радиоактивных изотопов пропорциональна их количеству. Излучение, испускаемое ими в процессе разложения, может быть легко измерено. Все это создает возможность использования метода радиоактивных изотопов при изучении химизма фотосинтеза.

Второй метод -- хроматография на бумаге. Если вещества, разогнанные на хроматограмме, содержат радиоактивные атомы, то их легко обнаружить с помощью радиоавтографии. Применяя указанные методы и короткие световые экспозиции можно определить, какие вещества и в какой последовательности образуются из 14С02. В качестве объекта исследований была взята зеленая водоросль хлорелла. После кратковременных экспозиций на свету в присутствии 14СО, растения фиксировались горячим спиртом. Спиртовой экстракт концентрировался, разделялся хроматографически и анализировался. Опыты показали, что через 5 с пребывания в атмосфере 14С02 на свету большая часть радиоактивного углерода сосредоточивается в трехуглеродном соединении -- 3-фосфоглицериновой кислоте (3-ФГК). Кальвин выдвинул предположение, что в хлоропластах имеется какое-то вещество-акцептор, которое, взаимодействуя с С02, образует фосфоглицериновую кислоту (акцептор + С02 --> ФГК). Для того чтобы установить природу акцептора, была проведена серия опытов с изменяющимися внешними условиями (смена света и темноты в присутствии и в отсутствие 14С02). Оказалось, что после выключения света содержание ФГК некоторое время продолжает расти. Одновременно наблюдалось быстрое исчезновение пятиуглеродного соединения -- рибулезо-1,5-бифосфата (РБФ). Через 30 с РБФ не обнаруживался, а количество ФГК не изменялось. Вместе с тем на свету РБФ не исчезал, и его содержание оставалось постоянным. Иная картина наблюдалась в отсутствие С02. В этом случае ни в темноте, ни на свету содержание РБФ не изменялось. Из полученных данных следовало, что в присутствии углекислого газа РБФ в темноте используется для образования ФГК. Дальнейшие превращения ФГК требуют света. В силу этого Кальвин выдвинул следующую предварительную схему процесса фотосинтеза:

Согласно этой схеме РБФ является акцептором, который присоединяет С02, в результате чего образуется ФГК. Однако в отсутствие света РБФ быстро оказывается использованным и исчезает. При этом накапливается известное количество ФГК. Именно это и наблюдалось в эксперименте. На свету при участии продуктов световой фазы происходит восстановление ФГК до фосфоглицеринового альдегида (ФГА). Судьба образовавшихся молекул ФГА различна. Частично путем ряда превращений ФГА используется на регенерацию акцептора (РБФ). Для процесса регенерации РБФ также необходима АТФ, образовавшаяся в световой фазе. В силу этого количество РБФ на свету поддерживается на постоянном уровне. В каждом цикле принимают участие три молекулы акцептора (РБФ) и образуется 6 молекул триозы (ФГА). Пять молекул ФГА идет на регенерацию акцептора через ряд промежуточных продуктов. Каждая шестая молекула ФГА выходит из цикла и используется для построения углеводов и других метаболитов. Рассмотрим этот цикл более подробно.

Цикл Кальвина можно разделить на фазы.

Первая фаза -- карбоксилирование. Эта реакция катализируется специфическим для процесса фотосинтеза ферментом рибулозобисфосфат-карбоксилазой/ оксигеназой (сокращенно РБФ-карбоксилаза/оксигеназа), в научной литературе последних лет чаще встречается под названием Rubisco, от ribulosobiphosphatecarboxylase/oxygenase. Впервые Rubisco был выделен и очищен в 1955 году. Особенностью фермента является то, что катализируемая им реакция является самой медленной стадией в цикле фиксации углекислоты. В листьях Rubisco содержится в больших количествах и является основной фракцией белка хлоропластов. Более того, высказывается мнение, что это самый распространенный белок-фермент на земном шаре. В активное состояние фермент переходит при освещении хлоропластов. Уже отмечалось, что формирование этого фермента происходит под контролем двух геномов: большие субъединицы (54 кДа) кодируются в ядре, синтезируются в цитоплазме; малые -- кодируются и синтезируются в хлоропласте. При взаимодействии РБФ с С02 образуется сначала промежуточное нестойкое шестиуглеродное соединение, которое затем распадается на две молекулы ФГК. Образовавшаяся ФГК -- это органическая кислота, и ее энергетический уровень ниже уровня Сахаров. Поэтому это соединение не может непосредственно превращаться в углеводы. Необходимо превращение его в трехуглеродный сахар -- фосфоглицериновый альдегид (ФГА).

Вторая фаза -- восстановление. Дальнейшие превращения ФГК требуют участия продуктов световой фазы фотосинтеза: АТФ и НАДФН + Н+. Реакция идет в два этапа. Прежде всего, происходит реакция фосфорилирования 3-ФГК. Донором фосфатной группы является АТФ. АТФ требуется здесь в качестве дополнительного источника энергии. Образуется 1,3-дифосфоглицериновая кислота. Реакция катализируется ферментом фосфоглицерокиназой:

Образовавшееся в этой реакции соединение -- дифосфоглицериновая кислота -- обладает более высокой реакционной способностью, содержит макроэргическую связь, полученную от АТФ. Затем карбоксильная группировка этого соединения восстанавливается до альдегидной с помощью триозофосфатдегидрогеназы, коферментом которой служит НАДФ.

Образовавшийся ФГА является по уровню восстановленным углеводом. Это соединение вступает в две последние фазы. Пять молекул ФГА используется на регенерацию акцептора РБФ для того, чтобы фиксация С02 могла снова осуществляться. Оставшаяся шестая молекула вступает в фазу «синтеза продуктов», где превращается в более сложные соединения (углеводы, аминокислоты и др.).

Третья фаза -- регенерация. В процессе регенерации акцептора используется пять молекул ФГА, в результате чего образуются три молекулы рибулезо-5-фос-фата. Этот процесс идет через образование 4-, 5-, 6-, 7-углеродных соединений. Прежде всего, первая молекула ФГА изомеризуется до фосфодиоксиацетона. Процесс катализируется ферментом триозофосфатизомеразой. От ФДФ отщепляется фосфат, и ФДФ превращается во фруктозо-6-фосфат (ф-6-Ф). Далее от Ф-6-Ф (С6) отщепляется 2-углеродный фрагмент (--СО--СН2ОН), который переносится на следующую (третью) триозу. Это транскетолазная реакция идет при участии фермента транскетолазы. В результате образуется первая пентоза (С5)-рибулезофосфат. От Ф-6-Ф остается 4-углеродный сахар эритрозофосфат фосфорилирование. Для этого используются три молекулы АТФ, образовавшиеся в результате световых реакций. Все реакции, входящие в цикл Образовавшийся триозофосфат (ФГА) вступает в четвертую стадию темновых реакций -- стадию образования продуктов фотосинтеза. (С4), который конденсируется с четвертой триозой с образованием седогептулезодифосфата (С7). После отщепления фосфата седогептулезодифосфат превращается в седогептулезофосфат. Далее снова происходит транскетолазная реакция, в результате которой от седогептулезофосфата отщепляется 2-углеродный фрагмент, который переносится на пятую триозу. Образуются еще две молекулы рибулезофосфата. Таким образом, в результате рассмотренных реакций получаются 3 молекулы рибулезофосфата. При прохождении двух циклов из 12 молекул образовавшегося ФГА две молекулы выходят из них, образуя одну молекулу фруктозодифосфата (ФДФ). Из двух молекул фруктозодифосфата (Ф-1, 6-диФ) образуются фруктозо-6-фосфат (ф-6-Ф) и глюкозо-1-фосфат (Г-1-Ф). Глюкозо-1-фосфат, взаимодействуя с уридинтрифосфатом (УТФ), дает уридиндифосфоглюкозу (УДФГ). В свою очередь УДФГ, реагируя с Ф-6-Ф, дает сахарозофосфат. По-видимому, именно сахароза является первым свободным сахаром, образующимся в процессе фотосинтеза. Из сахарозы образуются нефосфорилированные моносахара (глюкоза и фруктоза). Крахмал образуется из аденозиндифосфоглюкозы (АДФГ) или уридиндифосфоглюкозы (УДФГ), процесс катализируется ферментом амилосинтетазой. Среди первых продуктов фотосинтеза обнаружены аминокислоты. По-видимому, ФГК, образовавшаяся на первом этапе цикла Кальвина, может превращаться в пировиноградную кислоту. Этот процесс идет особенно интенсивно при недостатке НАДФН, из-за чего задерживается преобразование ФГК в ФГА (обычный путь в цикле Кальвина). Пировиноградная кислота в присутствии NH3 дает аминокислоту аланин. Показано, что скорость включения 14С02 в аланин в клетках хлореллы при некоторых условиях может даже превышать скорость ее включения в сахарозу. Из пировиноградной кислоты может образоваться еще ряд органических кислот (в цикле Кребса).

Образовавшиеся органические кислоты в процессе аминирования или переаминирования дают аминокислоты. Сам по себе синтез аминокислот еще не означает образование белков. Однако было показано, что между этими двумя процессами имеется прямая связь. Так, под влиянием освещения синими лучами (458--480 нм) усиливается фотосинтетическое образование, как аминокислот, так и белков. В присутствии ингибиторов синтеза белка действие синего света не проявляется. Наконец, из промежуточных продуктов цикла Кальвина могут образовываться жиры, липиды и другие продукты. Состав продуктов, образующихся при фотосинтезе, может быть определен исходя из величин фотосинтетического коэффициента. Под фотосинтетическим коэффициентом понимается отношение выделенного в процессе фотосинтеза кислорода к поглощенному С02. Если в процессе фотосинтеза образуются углеводы, то, согласно приведенному суммарному уравнению, фотосинтетический коэффициент должен быть равен единице: 602/6С02 = 1. При образовании соединений, более восстановленных (содержащих меньше кислорода) по сравнению с углеводами, фотосинтетический коэффициент должен быть больше единицы. В случае образования белков фотосинтетический коэффициент равен 1,25, в случае жира -- 1,44. Средняя величина фотосинтетического коэффициента для 27 видов растений оказалась равной 1,04. Расчеты показали, что такая величина фотосинтетического коэффициента указывает на образование наряду с углеводами некоторого количества белка (примерно 12%). Установлено, что величина фотосинтетического коэффициента меняется в зависимости от условий. Преобладание синих лучей над красными приводит к увеличению доли образующихся белков, тогда как красный свет благоприятствует образованию углеводов (Н.П. Воскресенская). Усиление снабжения растений азотом, естественно, также приводит к повышению фотосинтетического коэффициента и увеличению первичного синтеза белка. Имеются данные, что на качество продуктов фотосинтеза оказывает влияние интенсивность освещения. При высокой освещенности образуется больше углеводов, а при пониженной -- аминокислот.

Таким образом, изменяя условия среды, можно регулировать соотношение продуктов фотосинтеза. Указанные закономерности имеют большое не только теоретическое, но и практическое значение, так как позволяют направленно регулировать химический состав сельскохозяйственных растений и создавать условия для преимущественного синтеза углеводов, белков или жиров (А.А. Ничипорович). Выяснение механизма регуляции образования тех или иных продуктов фотосинтеза дает возможность улучшить состав сельскохозяйственных культур. Примером в этом отношении могут служить опыты с одноклеточной водорослью хлореллой, у которой удалось повысить содержание аминокислот и жиров за счет снижения содержания углеводов путем добавления в питательную среду NH4Cl (10-3 М). Все же основным продуктом фотосинтеза являются сахара. В связи с этим можно следующим образом расшифровать суммарное уравнение фотосинтеза. На основании приведенных реакций можно рассчитать энергетический баланс цикла Кальвина. Для восстановления шести молекул С02 до уровня углеводов (глюкозы) требуется 18 молекул АТФ и 12 НАДФН. Соответственно для восстановления до уровня углеводов одной молекулы С02 необходимы три молекулы АТФ и две НАДФН. Как мы видели, для образования двух молекул НАДФН и двух молекул АТФ необходимо 8 квантов света. Недостающее количество АТФ образуется в процессе циклического фотофосфорилирования. Следовательно, для восстановления одной молекулы С02 до уровня углеводов должно быть затрачено 8--9 квантов. Энергия квантов красного света равна 168 кДж/моль. Таким образом, при использовании квантов красного света на восстановление одной молекулы С02 до уровня углеводов затрачивается примерно 1340-- 1508 кДж. Из этой энергии в 1/6 моль гексозы откладывается 478 кДж. КПД фотосинтеза в этом случае должен составить около 30--35%. Однако в естественных условиях коэффициент использования света значительно меньше.

В отличие от ферментов, принимающих участие в цепи переноса электронов (световая фаза фотосинтеза), ферменты цикла Кальвина локализованы в строме хлоропластов. Согласованному осуществлению всех реакций способствует то, что эти ферменты часто ассоциированы на поверхности мембран и составляют определенные фотосинтеза образуются углеводы, то, согласно приведенному суммарному уравнению, фотосинтетический коэффициент должен быть равен единице: 602/6С02 = 1. При образовании соединений, более восстановленных (содержащих меньше кислорода) по сравнению с углеводами, фотосинтетический коэффициент должен быть больше единицы. В случае образования белков фотосинтетический коэффициент равен 1,25, в случае жира -- 1,44. Средняя величина фотосинтетического коэффициента для 27 видов растений оказалась равной 1,04. Расчеты показали, что такая величина фотосинтетического коэффициента указывает на образование наряду с углеводами некоторого количества белка (примерно 12%). Установлено, что величина фотосинтетического коэффициента меняется в зависимости от условий. Преобладание синих лучей над красными приводит к увеличению доли образующихся белков, тогда как красный свет благоприятствует образованию углеводов (Н.П. Воскресенская). Усиление снабжения растений азотом, естественно, также приводит к повышению фотосинтетического коэффициента и увеличению первичного синтеза белка. Имеются данные, что на качество продуктов фотосинтеза оказывает влияние интенсивность освещения. При высокой освещенности образуется больше углеводов, а при пониженной -- аминокислот. Таким образом, изменяя условия среды, можно регулировать соотношение продуктов фотосинтеза. Указанные закономерности имеют большое не только теоретическое, но и практическое значение, так как позволяют направленно регулировать химический состав сельскохозяйственных растений и создавать условия для преимущественного синтеза углеводов, белков или жиров (А.А. Ничипорович). Выяснение механизма регуляции образования тех или иных продуктов фотосинтеза дает возможность улучшить состав сельскохозяйственных культур. Примером в этом отношении могут служить опыты с одноклеточной водорослью хлореллой, у которой удалось повысить содержание аминокислот и жиров за счет снижения содержания углеводов путем добавления в питательную среду NH4Cl (10-3 М).

...

Подобные документы

  • Морфоанотомические основы поглощения и движения воды. Корневая система как орган поглощения воды, основные двигатели водного тока. Физиологические механизмы транспирации и ее назначение. Адаптация некоторых растений к дефициту влаги в почве или воздухе.

    курсовая работа [1,4 M], добавлен 02.02.2011

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • История развития исследований в области физиологии растений. Принципы происхождения и развития хлоропласта из пропластиды в клетке растений. Основные функции, строение, фотосинтез и генетический аппарат хлоропластов. Характеристика продукции фотосинтеза.

    реферат [23,9 K], добавлен 11.12.2008

  • Изучение дыхания растений как окислительного распада органических веществ синтезированных в процессе фотосинтеза. Характеристика процесса аэробного дыхания растений как процесса, в ходе которого расходуется кислород. Специфика и типы анаэробного дыхания.

    реферат [371,6 K], добавлен 29.03.2011

  • Физиологическая роль основных клеточных органоидов. Макроэргические соединения, их роль в метаболизме клетки. Условия, необходимые растению для нормального водообмена. Источники углерода для растений. Лист как орган фотосинтеза. Роль ферментов оксидазы.

    контрольная работа [179,1 K], добавлен 12.07.2010

  • Определение и характеристика воздействия разных факторов, оказывающих влияние на дыхание растений: температура, кислород, углекислый газ, вода, свет, питательные соли, поранения. Изменение интенсивности дыхания в онтогенезе. Связь фотосинтеза и дыхания.

    презентация [1,7 M], добавлен 01.12.2016

  • Определение, общее уравнение, основные этапы становления учения о фотосинтезе. Историческое значение работ К.А. Тимирязева. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Космическая роль фотосинтеза.

    реферат [10,9 M], добавлен 07.01.2011

  • Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

    курс лекций [188,8 K], добавлен 15.06.2010

  • Дыхание как основная форма диссимиляции у человека, животных, растений и многих микроорганизмов. Важность дыхания для живых организмов. С помощью чего дышат люди и рыбы. Степень поглощения кислорода из воды. Дыхание растений и процесс фотосинтеза.

    творческая работа [195,4 K], добавлен 30.04.2009

  • Фитоморфология как наука. Стебель и побег, их роль для растений. Классификация и значение выделительных тканей цветков. Сущность эмбриогенеза растений. Основные типы ветвлений. Виды млечников и устройство смоляных ходов. Форма и строение нектарников.

    лекция [11,6 K], добавлен 02.06.2009

  • Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

    контрольная работа [194,8 K], добавлен 17.04.2019

  • Факторы среды, влияющие на рост и развитие растений. Основные этапы органогенеза. Физиологическая сущность покоя растений, методы повышения зимостойкости. Способы уменьшения предуборочного опадания плодов. Физиология накопления белков в зерне злаковых.

    контрольная работа [97,2 K], добавлен 05.09.2011

  • Значение дыхания в жизни растительного организма. Специфика дыхания у растений. Каталитические системы дыхания. Типы окислительно-восстановительных реакций. Основные пути диссимиляции углерода. Цепь переноса водорода и электрона (дыхательная цепь).

    реферат [2,8 M], добавлен 07.01.2011

  • Обмен углеводов при прорастании семян. Механизм действия на растения ретардантов. Основные способы ускорения дозревания плодов. Выращивание растений при искусственном облучении (электросветкультура). Холодоустойчивость растений и способы ее повышения.

    контрольная работа [41,7 K], добавлен 22.06.2012

  • Строение корня и стебля. Надземная и подземная корневая системы. Листовые (вегетативные) и цветочные (генеративные) почки. Распространение плодов и семян. Простые и сложные соцветия. Органы растений и листорасположение. Виды жилкования и функции листьв.

    презентация [2,4 M], добавлен 20.03.2011

  • Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация [21,1 M], добавлен 18.11.2014

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

  • Физиологическое действие регуляторов роста растений и роль представлений о гормонах исследований Ч. Дарвина. Эксперименты и испытания химических соединений в качестве средств для управления жизненными процессами и применение их в растениеводстве.

    реферат [19,9 K], добавлен 02.04.2009

  • Распространение плодов и семян. Почки и их типы. Происхождение и морфологическое строение цветка. Стерильные и фертильные его части, андроцей и гинецей. Видоизменения клеточной оболочки. Проводящие ткани и их функции. Строение корня однодольных растений.

    контрольная работа [31,3 K], добавлен 17.01.2011

  • История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация [1,4 M], добавлен 23.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.