Эволюционная систематика

Классификация организмов и выяснение их эволюционных взаимоотношений. Таксономические категории растительного царства. Характеристика групп, включающих один род или совокупность родов. Значение систематики как фундаментальной и синтетической науки.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 17.01.2015
Размер файла 22,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение эволюции растение таксон систематика

Классификацией организмов и выяснением их эволюционных взаимоотношений занимается особая ветвь биологии, называемая систематикой. Некоторые биологи называют систематику наукой о многообразии (многообразии организмов). В самом деле, если бы органический мир был представлен совершенно одинаковыми существами, то не было бы предмета для систематики, ибо не было бы разнообразия. В действительности мир живых существ удивительно разнообразен и, по самым скромным подсчетам, насчитывает более 1 млн. видов животных (по мнению некоторых зоологов, даже значительно больше 2 млн.) и, по-видимому, не менее 350 тыс. видов растений (некоторые ботаники доводят эту цифру до полмиллиона). Изучить все это многообразие организмов призвана систематика, занимающая в силу этого совершенно особое положение в системе биологических наук. Ее основной задачей продолжает оставаться классификация этого многообразия, т. е. создание определенной упорядоченной его системы. Еще Линней писал: «Ариадниной нитью ботаники является система. Без нее -- хаос».

Первоначально перед систематикой стояла лишь задача создания удобной для обозрения и пользования классификации, которая носила совершенно искусственный характер. Искусственность классификации выражалась в том, что она основывалась на небольшом количестве произвольно взятых признаков. В результате этого растения и животные подразделялись на группы, в которых оказывались вместе совершенно не родственные между собой организмы. Наивысшего своего развития искусственная систематика достигла в XVIII в., когда была разработана весьма удобная в практическом отношении система (система Линнея). Система эта давала возможность быстро определить названия растений и легко найти в ней место для новых видов и родов.

С развитием морфологии растений искусственная систематика растений уступила свое место «естественной», основанной на совокупности признаков. Первая «естественная система» была создана в 1789 г. Однако «естественная систематика» не была еще естественной в современном смысле, так как она не была еще эволюционной. Авторы естественных систем продолжали верить в постоянство видов. В естественных системах растения объединялись на основании «сродства», или «родства», под которым понималось, однако, не родство по происхождению, а лишь внешнее и часто поверхностное сходство. В естественных системах соединяются такие растения, которые обнаруживают наибольшее внешнее сходство между собой. В результате естественная систематика часто объединяла аналогичные эволюционные стадии или сходные верхушки разных филогенетических ветвей, т. е. она строила свои рубежи поперек течения эволюции. Тем не менее многие построения естественной систематики предвосхитили выводы эволюционной систематики.

После торжества эволюционной идеи в биологии естественная систематика стала постепенно уступать свое место эволюционной, или филогенетической, систематике. Начался новый этап в ее развитии. Употреблявшийся и ранее термин «родство» получил новое значение, и перед систематикой возникли новые цели. Основной задачей систематики является теперь построение такой системы классификации, которая отражала бы родственные, т. е. эволюцион ные, взаимоотношения между организмами.

Современная систематика развивается в тесной связи с другими биологическими науками и широко пользуется как их фактическим Материалом и идеями, так и методами исследования, в том числе экспериментальными.

Таксономические категории

Систематика выработала свою систему понятий и символов, свой язык, служащий для классификации организмов. Любая система классификации является неизбежно системой иерархически соподчиненных единиц. Такая система взаимоподчиненных групп является единственным логически возможным средством расположения организмов в определенной упорядоченной системе. Поэтому каждая система классификации независимо от того, является она искусственной, естественной или эволюционной, подразделяется на определенные, соподчиненные друг другу систематические категории, или единицы. Таковы вид, род, семейство, порядок и т. д. Для обозначения систематических единиц любого ранга на Международном ботаническом конгрессе в 1950 г. был принят термин «таксон» (ед. ч. taxon, мн. ч. taxa).

Все растительное царство, представляющее собой таксон высшей категории, охватывается системой таксонов, расположенных в порядке иерархии. Благодаря этому систематические категории выполняют свою функцию сведения существующего в природе многообразия форм в стройную систему. Но они могут выполнить эту функцию лишь при условии, чтобы классификация была достаточно удобной. Это требование удобства, бывшее руководящим принципом при построении искусственных систем классификации, отнюдь не утратило своего значения и в построениях эволюционной систематики. Но в то время как искусственная систематика преследовала исключительно практические цели, пытаясь создать порядок из беспорядка, задача эволюционной систематики гораздо сложнее: она должна стремиться к созданию такой системы' классификации, которая отражала бы отношения, объективно существующие в природе, но таким образом, чтобы классификация была достаточно практичной. Для этого она должна пользоваться некоторым оптимальным числом соподчиненных систематических категорий, которое не должно быть ни слишком большим, ни слишком малым. Это количество систематических категорий бо лее или менее определилось, и большинство их общепринято.

Как гласит статья 2 Международного кодекса ботанической номенклатуры, «каждое растение рассматривается как принадлежащее к ряду таксонов последовательно соподчиненных рангов, среди которых основным является ранг вида (species)*. Вид представляет собой важнейшую таксономическую категорию не только для систематики, но и для всей биологии вообще. Каждое растение, с которым имеет дело исследователь, должно быть определено с точностью до вида, а во многих случаях даже точнее. Не меньшая точность требуется при хозяйственном или медицинском использовании растений, например в лесном хозяйстве и при сборе лекарственных растений. К сожалению, вид, как, впрочем, и все другие таксономические категории, с трудом поддается сколько-нибудь точному логическому определению. Очень трудно, в частности, дать такое определение вида, которое одинаково хорошо подходило как к растениям, размножающимся половым путем, так и к растениям, размножающимся бесполым путем. В одном случае вид представляет собой систему популяций, а в другом случае он есть система клонов. Но в обоих случаях вид характеризуется некоторой целостностью и определенной биологической обособленностью от других видов. Целостность видов выражается в том, что входящие в их состав клоны или популяции связаны между собой переходами. Как бы ни была велика внутривидовая изменчивость и как бы резко не различались крайние формы, при наличии достаточного материала всегда можно расположить представителей вида таким образом, что они составят непрерывный ряд форм. Обособленность же вида заключена в том, что даже группа близких видов представляет собой прерывистый, дискретный комплекс, где, как правило, нет переходных форм.

Виды различаются также условиями их существования, а в случае видов, размножающихся половым путем, также барьерами изоляции, препятствующими скрещиванию. Поэтому если внутри такого вида скрещивания происходят обычно свободно, то между видами они обычно затруднены или полностью отсутствуют.

Каждый вид относится к какому-нибудь роду (ед. ч. genus, мн. ч. genera). Род представляет собой собирательную таксономическую категорию, состоящую из видов, тесно связанных между собой родственными отношениями. Хотя род представляет собой дискретный комплекс видов, эта дискретность не столь велика, чтобы затемнить родовую общность. В то же время роды отделены друг от друга явно выраженным разрывом. Если бы степень различий между видами была совершенно одинакова, т. е. если бы можно было изобразить виды в виде точек, находящихся на одинаковых расстояниях друг от друга, то систематик не имел бы возможности объединить их в различные роды. В действительности эти точки образуют определенные сгущения, внутри которых филогенетические связи теснее, чем связи между разными сгущениями. Такие сгущения и будут соответствовать таксономическому понятию рода. Другими словами, род, как и вид, соответствует отношениям, реально существующим в природе. Считается, что разрывы между родами должны быть обратно пропорциональны их размерам. Род может состоять иэ многих видов (политипные роды), нескольких видов (олиготипные роды) или только из одного вида (монотипные роды). Род может делиться, в свою очередь, на подроды, а последние могут состоять из секций.

Категория рода отличается от всех прочих категорий более высокого ранга тем, что его название входит в названия всех относящихся к нему видов. Название вида представляет собой бинарную, или, точнее, биноминальную, комбинацию, состоящую из двух слов (биномен) -- названия рода в сопровождении видового эпитета. Если название рода употребляется без видового эпитета, то это обычно означает, что имеется в виду род в целом, примеры: Rosa (роза или шиповник), Salix (ива), Triticum (пшеница). Если речь идет о данном конкретном виде, то после названия рода ставится видовой эпитет, примеры: Rosa canina (роза собачья), Salix саргеа (ива козья), Triticum aestivum (пшеница мягкая). Эти два слова-- родовое название и видовой эпитет--несут различные и в то же время взаимно дополняющие функции: в то время как родовое название указывает на существование группы родственных видов, видовой эпитет указывает на самостоятельность и особенность (специфичность) данного вида.

Подобно тому как родственные виды объединяются в роды, родственные роды объединяются в семейства (ед. ч. familia, мн. ч. familiae).

Семейство определяют как систематическую категорию, включающую один род или группу родов, имеющих общее происхождение и отделенных от других семейств ясно выраженным разрывом. Предполагается, что величина разрыва должна быть обратно пропорциональна величине семейства. Категория семейства является наименьшей среди высших таксономических категорий, но в то же время и наиболее употребительной, а в практическом отношении наиболее важной из них. Название семейства образуется путем присоединения суффикса -асеае к основе названия одного из входящих в него родов, например: Lycopodiaceae (плауновые) от Lycopodium, Ranunculaceae (лютиковые) от Ranunculus, Salicaceae (ивовые) от Salix.

Высшими таксономическими категориями являются порядок, класс, отдел и царство. Разрывы между высшими категориями, подобно разрывам между родами и семействами, должны быть обратно пропорциональны размерам групп. Но так как степени разрыва между высшими категориями определить еще труднее, чем между низшими, то, чем выше таксономическая категория, тем, вообще говоря, менее объективный характер носит ее установление. Относительно наиболее объективный характер носит установление видов.

Порядок (ед. ч. ordo, мн. ч. ordines) является одной из важнейших таксономических категорий в иерархическом ряду рангов. Благодаря порядкам можно сгруппировать семейства в определенной, упорядоченной системе. Порядки объединяют одно или несколько филогенетически тесно связанных семейств, что делает всю систему более обозримой и легче запоминаемой. Благодаря наблюдающейся в настоящее время тенденции к дроблению семейств на более мелкие таксономическое значение категории порядка возрастает. Резко возросло число семейств моховидных, папоротников, хвойных и, особенно, цветковых растений. В.сущности, многие современные порядки соответствуют по объему семействам прошлого столетия. Без категории порядка многочисленные семейства, особенно у цветковых растений, были бы практически чрезвычайно трудно обозримы. Название порядка происходит от названия одного из его семейств и несет окончание -ales. Для цветковых растений, число порядков которых также в последнее время сильно возросло, иногда употребляется еще категория надпорядка, объединяющая группу родственных порядков. Многие из этих надпорядков соответствуют порядкам старых авторов.

Следующей категорией в нашей таксономической иерархии является класс (ед. ч. classis, мн. ч. classes). Классы различаются между собой значительно более резко, чем порядки. Число классов поэтому небольшое. Названия классов лучше всего производить от родового названия, желательно от такого, от которого производится название одного из порядков. Для высших растений наиболее принятым окончанием для названий классов является -opsida, для водорослей (включая цианеи) -phyceae, а для грибов -mycetes. Крупные и достаточно дифференцированные классы могут подразделяться на подклассы.

Классы объединяются в отделы (divisionis), которые различаются между собой наиболее фундаментальными особенностями, касающимися основных особенностей их организации и развития. Отделы соответствуют главным ветвям филогенетического древа растительного мира. Число отделов невелико. В то время как число видов растений исчисляется сотня ми тысяч, число родов -- десятками тысяч, число семейств -- сотнями, число классов -- десятками, число отделов гораздо меньше. Названия отделов водорослей и высших растений оканчиваются на -phyta, а грибов -- на -mycota. Отделами являются, например, Chlorophyta (зеленые водоросли), Phaeophyta (бурые водоросли), Bryophyta (моховидные), Lycopodiophyta (плауновидные) и пр. Низшие растения объединяются в подцарство Thallobionta, а высшие -- в подцарство Embryobionta (иногда их называют Cormobionta или Telomobionta). Высшей таксономической категорией является царство. Растительное царство было названо Линнеем Vegetabilia (иногда его называют Plantae). (Чаще низшие растения называют Thallophyta, а высшие -- Cormophyta, но совпадение окончаний в названиях отделов и подцарств нежелательно.)

Значение систематики

Еще сравнительно недавно среди многих, если не большей части, биологов было распространено мнение о систематике как о «старомодной», отсталой науке, которая нужна главным образом для чисто служебной, а потому второстепенной функции определения и хранения музейных коллекций. Исторически это мнение о систематике восходит еще к прошлому веку, когда систематика не достигла достаточно высокого развития, а эволюционные идеи только начинали проникать в нее. Но современную систематику уже больше нельзя рассматривать как чисто описательную науку, занятую простой каталогизацией фактов. В настоящее время систематика развивается в тесной связи с другими биологическими науками, особенно с эволюционной морфологией (включая эмбриологию и гистологию), цитологией, генетикой, биохимией, экологией и биогеографией, все шире пользуется количественными методами обработки материала и автоматизированными системами хранения и поиска информации. Более того, она суммирует и синтезирует многие результаты других биологических дисциплин и, таким образом, объединяет огромное разнообразие знаний. Этот синтез достигается в эволюционной системе организмов па всех таксономических уровнях, начиная от видового уровня и кончая уровнем царств. Поэтому систематика есть одновременно и фундамент и венец биологии, ее начало и конец.

Без систематики мы никогда не поймем жизни в ее изумительном разнообразии, возникшем в результате долгой эволюции. В связи с этим уместно повторить слова известного зоолога Э. Майра, который говорит, что «систематика есть одна из самых важных и необходимых, одна из самых активных и волнующих и одна из самых благодарных ветвей биологической науки. Я не знаю ни одного другого предмета, который учил бы нас большему о мире, в котором мы живем».

Значение систематики как фундаментальной и одновременно синтетической науки начинает сознаваться все более широкими кругами биологов и даже представителями других наук, особенно связанных с изучением экосистем. В наши дни трудно представить серьезное исследование экосистем без солидной систематической базы. Эта тесная связь экологических и систематических исследований все чаще подчеркивается в современной экологической литературе. Особенно важна для экологии внутривидовая систематика. Не менее важно значение систематики для теории эволюции, биогеографии, палеонтологии, само существование которых немыслимо без систематики, а также для генетики, сравнительной и эволюционной биохимии, физиологии, анатомии и морфологии. Из недр систематики выросла популяционная генетика, и не случайно ее создатель С. С. Четвериков был первоначально систематиком--специалистом по чешуекрылым. С другой стороны, представители молекулярной биологии все глубже проникаются идеей необходимости знания филогении организмов для понимания эволюции макромолекул. Становится все более очевидным, что значение систематики выходит далеко за рамки ее чисто служебной функции -- точного определения биологических объектов, подлежащих изучению или практическому использованию.

В связи с усовершенствованием методов систематики за последнее время еще более возросло чисто прикладное ее значение в сельском и лесном хозяйстве, в защите растений, в ветеринарии и медицине, в разработке научных основ разумного использования природных ресурсов и особенно в охране наиболее интересных и ценных, редких и исчезающих видов организмов. Нельзя не упомянуть также культурное значение систематики, глубокое интеллектуальное и эстетическое наслаждение, которое она способна доставить не только профессионалу, но и многочисленным любителям живой природы.

Методы систематики

Систематик имеет дело прежде всего со структурами, т. е. с морфологией в широком смысле этого слова (включая изучение ультраструктур). Поэтому для нее первостепенное значение имеют орудия и методы сравнительного изучения формы и внутреннего строения (анатомии) как ныне живущих, так и вымерших растений. Широко известно, какое значение для систематики имеет микроскопическая техника, применение которой позволяет использовать данные о строении тончайших деталей внешней и внутренней морфологии организмов. В последние десятилетия особое значение для систематики приобрели данные сравнительной цитологии, причем строение не только хромосом, но и других клеточных структур. Данные сравнительной цитологии используются на всех таксономических уровнях и для решения самых разных систематических задач. Особенно большое значение они приобретают для построения общей системы организмов. Наблюдается определенная тенденция к расширению и углублению этих исследований, особенно в связи с расцветом электронной микроскопии. Применение электронного микроскопа позволяет еще более широко использовать для систематики данные морфологии спор и пыльцевых зерен, чем это было возможно раньше, когда исследователи пользовались только световым микроскопом.

Благодаря развитию электронной микроскопии возникла возможность изучения таких субмикроскопических структур (ультраструктур), о которых нельзя было мечтать в эпоху светового микроскопа. Нет сомнений, что уже в ближайшие годы электронный микроскоп станет одним из основных инструментов, используемых систематиком.

В систематику все шире внедряются генетические и экологические методы, и для решения многих вопросов систематику все чаще приходится экспериментировать -- выращивать близкие виды в сходных условиях среды, скрещивать их между собой и пр.

Исключительно большое значение приобретает применение методов сравнительной биохимии растений. Для систематики имеет определенное значение изучение таких вторичных продуктов обмена веществ, как алкалоиды, флавопоиды, гликозиды, терпепоиды и пр. Но гораздо важнее для систематики сравнительное изучение первичной структуры белков, т. е. изучение порядка чередования аминокислот в белковой молекуле. Сравнительное изучение аминокислотной последовательности в белковых молекулах открывает широкие возможности перед систематикой. Очень перспективным направлением является также сравнительное изучение первичной структуры самого генетического материала, т. е. нуклеиновых кислот (ДНК и РНК). Изучение нуклеиновых кислот служит одним из наиболее прямых и объективных методов установления степени родства между систематическими группами. Для этого используется как определение нуклеотидного состава (нуклеотидной последовательности) ДНК, так и еще более перспективный метод искусственной «гибридизации ДНК» in vitro, выделенных из разных организмов.

Как для построения классификации растений, так и для более удобного и быстрого пользования уже разработанной классификации постоянно прибегают к музейным коллекциям, каталогам, индексам, перфокартам и пр. Однако с быстрым ростом объема информации возникает острая необходимость в автоматизации. Поэтому для целей систематики постепенно создаются современные информационные системы. В наше время -- время бурного развития молекулярной биологии и комплексного изучения экосистем -- особенно остро стоит проблема разработки и внедрения автоматизированной информационной системы с использованием новейших методов обработки данных. Как известно, подготовка любой систематической монографии, определителя или «флоры», кроме интеллектуальной, творческой работы, включает большой объем часто весьма утомительной, технической работы, которая занимает не менее двух третей всего времени. Автоматизация этой рутинной процедуры освобождает время для подлинно творческой работы.

Использованная литература

1. Базилевская Н. А., Белоконь И. П., Щербакова А. А., Краткая история ботаники, М., 1968;

2. Жизнь растений: в 6-ти томах. -- М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров. 1974

3. Развитие биологии в СССР, М., 1967.

Размещено на Allbest.ru

...

Подобные документы

  • Систематика - это наука, изучающая многообразие организмов на Земле, их классификацию и эволюционные взаимоотношения. Значение работ Карла Линнея. Основные особенности морфологической, "искусственной" и филогенетической (эволюционной) систематики.

    реферат [20,1 K], добавлен 27.10.2009

  • Таксономические единицы растительного мира, систематика растений, их значение в питании диких животных и человека. Строение и функции эпидермы листа; классификация, биологическое значение почек. Экологические группы растений по отношению к составу почвы.

    контрольная работа [229,3 K], добавлен 06.02.2012

  • Классификация растений и определение термина "систематика растений" в ходе развития ботаники. Трехчленное деление царства растений. Типы царства протистов. Исследование Линн Маргулиса предполагаемой эволюции "высших" форм жизни из "низших" форм.

    реферат [6,3 M], добавлен 05.06.2010

  • Становление и развитие эволюционных идей. Теория естественного отбора Ч. Дарвина. Механизмы биологической эволюции отдельных групп организмов и всего живого мира в целом, а также закономерности индивидуального развития организма. Стадии эволюции человека.

    реферат [312,5 K], добавлен 27.03.2010

  • Формирование эволюционной биологии. Использование эволюционной парадигмы в биологии в качестве методической основы под влиянием теории Ч. Дарвина. Развитие эволюционных концепций в последарвиновский период. Создание синтетической теории эволюции.

    контрольная работа [64,7 K], добавлен 20.08.2015

  • Онтогенез как процесс формирования организмов с момента образования половых клеток и оплодотворения или отдельных групп клеток до завершения жизни. Исторические предпосылки и этапы развития эмбриологии как науки. Развитие одноклеточных организмов.

    контрольная работа [140,7 K], добавлен 08.05.2011

  • Общая характеристика интразональной растительности. Выяснение характера взаимоотношений поясов и растительного покрова как задача физической географии. Интразональная растительность, антропогенное воздействие, сохранение ее связи с определёнными зонами.

    контрольная работа [31,6 K], добавлен 09.10.2009

  • Эволюция ботаники ХІХ века: развитие морфологии, физиологии, эмбриологии, систематики растений. Теории распространения растений по земному шару. Становление таких наук как - геоботаника, фитоценология, палеоботаника. Перспективы развития биологии в ХХІ в.

    контрольная работа [21,0 K], добавлен 10.01.2011

  • Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.

    реферат [762,6 K], добавлен 06.09.2013

  • Деление суши на флористические царства. Характерные представители флоры и фауны Голарктической области, Палеотропического царства, Неотропического царства, Капского царства, Австралийского царства, Голантарктического царства. Связи между царствами.

    презентация [3,3 M], добавлен 07.04.2016

  • Понятие и виды микроорганизмов как самостоятельной обширной группы одноклеточных организмов, связанных по своему происхождению с растительным и животным миром. Классификация патогенности Всемирной организации здравоохранения, характеристика групп.

    презентация [897,2 K], добавлен 11.11.2013

  • Классификация и типы биотических взаимоотношений, их характеристика и значение, направления реализации и факторы влияния: хищничество, симбиоз, паразитизм, конкуренция, нейтрализм, нахлебничество, квартиранство, аменсализм, комменсализм, мутуализм.

    презентация [602,1 K], добавлен 25.10.2013

  • Закономерности миграций, сезонные переселения. Ежесуточные и приливно-отливные миграции, миграции на большие расстояния и по схеме "один раз туда — один раз обратно", переселения в "один конец". Активное и пассивное расселение организмов, покой и спячка.

    контрольная работа [126,3 K], добавлен 12.04.2014

  • Антропологические науки: социальная, философская, социально-культурная антропология. Мысль Аристотеля о сходстве человека и обезьян. Эволюционная, возрастная или оксиологическая, конституционная или полеантологическая, энтропологическая антропология.

    шпаргалка [19,7 K], добавлен 05.01.2010

  • История появления, современная концепция и перспективы развития эволюционной теории. Макро и микроэволюция. Общие закономерности эволюции. Основные формы эволюции групп организмов. Филетическая и дивергентная эволюция. Конвергенция и параллелизм.

    курсовая работа [440,1 K], добавлен 16.05.2015

  • Развитие ботаники. Господство в науке представлений о неизменности природы и "изначальной целесообразности". Труды К. Линнея по систематике. Зарождение эволюционных идей. Учение Ж.-Б. Ламарка об эволюции органического мира. Первые русские эволюционисты.

    реферат [26,4 K], добавлен 03.03.2009

  • Особенности низших и высших растений. Систематические категории, объединенные по сходству. Вид как единица систематики. Водоросли: экология и значение. Строение мохообразных, бриевые мхи в природе. Папоротники и их сравнение с хвощами и плаунами.

    реферат [19,6 K], добавлен 03.07.2010

  • Принципы и понятия синтетической теории эволюции. Концепции микро- и макроэволюции, их сравнительное описание, содержание и распространенность. Проблемы и перспективы развития исследуемой теории, тенденции на современном этапе, оценка роли и значения.

    презентация [605,5 K], добавлен 28.02.2015

  • Определение родства организмов в биологии посредством их сравнения во взрослом состоянии, эмбрионального развития и поиска переходных ископаемых форм. Систематика органического мира и бинарная классификация Линнея. Теории происхождения жизни на Земле.

    реферат [717,6 K], добавлен 20.12.2010

  • Разработка естественной классификации высших растений на основе выделения таксономических единиц. Происхождение и методы систематики растений: сравнительно-морфологический, географический, экологический, анатомический, цитологический и биохимический.

    курс лекций [321,3 K], добавлен 09.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.